Journal articles on the topic 'Field effect'

To see the other types of publications on this topic, follow the link: Field effect.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Field effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vasilev, Dragomir. "BIOLOGICAL EFFECT OF THE ELECTROMAGNETIC FIELD." Journal Scientific and Applied Research 21, no. 1 (November 15, 2021): 64–69. http://dx.doi.org/10.46687/jsar.v21i1.321.

Full text
Abstract:
In this paper presents biological effect of the Electromagnetic field. The human body consists of cells, tissues, organs with different electrical characteristics. When an electric current flows through the human body, cells and tissues prevent the movement of charged particles. The value of the resistance depends on the type and condition of the cells, the value and frequency of the applied voltage and the duration.
APA, Harvard, Vancouver, ISO, and other styles
2

Saragi, Tobat P. I., and Thomas Reichert. "Magnetic-field effects in illuminated tetracene field-effect transistors." Applied Physics Letters 100, no. 7 (February 13, 2012): 073304. http://dx.doi.org/10.1063/1.3684835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seton-Rogers, Sarah. "Field effect." Nature Reviews Cancer 12, no. 8 (July 5, 2012): 508–9. http://dx.doi.org/10.1038/nrc3324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Ho-Shik, Yong-Pil Park, and Min-Woo Cheon. "Electrical Properties of CuPc Field-effect Transistor with Different Electrodes." Journal of the Korean Institute of Electrical and Electronic Material Engineers 21, no. 10 (October 1, 2008): 930–33. http://dx.doi.org/10.4313/jkem.2008.21.10.930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prakash, Shaurya, and A. T. Conlisk. "Field effect nanofluidics." Lab on a Chip 16, no. 20 (2016): 3855–65. http://dx.doi.org/10.1039/c6lc00688d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghowsi, Kiumars, and Robert J. Gale. "Field effect electroosmosis." Journal of Chromatography A 559, no. 1-2 (October 1991): 95–101. http://dx.doi.org/10.1016/0021-9673(91)80061-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bondar, E. A., and D. A. Luzhbin. "Effect of Magnetic Field on Electrodeposition of Nanosize Structures." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, no. 5 (September 11, 2018): 615–23. http://dx.doi.org/10.15407/mfint.40.05.0615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niu, Zhi Ping. "Thermoelectric effects in spin field-effect transistors." Physics Letters A 375, no. 36 (August 2011): 3218–22. http://dx.doi.org/10.1016/j.physleta.2011.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsap, B. "Silicon carbide microwave field-effect transistor: Effect of field dependent mobility." Solid-State Electronics 38, no. 6 (June 1995): 1215–19. http://dx.doi.org/10.1016/0038-1101(94)00219-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pradhan, Nihar R., Daniel Rhodes, Yan Xin, Shahriar Memaran, Lakshmi Bhaskaran, Muhandis Siddiq, Stephen Hill, Pulickel M. Ajayan, and Luis Balicas. "Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities." ACS Nano 8, no. 8 (July 14, 2014): 7923–29. http://dx.doi.org/10.1021/nn501693d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Palma, John, and Samson Mil’shtein. "Field effect controlled lateral field emission triode." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, no. 2 (March 2011): 02B111. http://dx.doi.org/10.1116/1.3554216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Yifan, and Paul R. Berger. "High electric-field effects on short-channel polythiophene polymer field-effect transistors." Journal of Applied Physics 95, no. 3 (February 2004): 1497–501. http://dx.doi.org/10.1063/1.1636830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Belyaev, M. A., A. A. Velichko, P. P. Boriskov, N. A. Kuldin, V. V. Putrolaynen, and G. B. Stefanovitch. "The Field Effect and Mott Transistor Based on Vanadium Dioxide." Journal on Selected Topics in Nano Electronics and Computing 1, no. 2 (June 2014): 26–30. http://dx.doi.org/10.15393/j8.art.2014.3045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

GOEL, GOURAV, and S. N. SACHDEVA. "Effect of Varying Field Conditions on Stripping of Bituminous Roads." INTERNATIONAL JOURNAL OF EARTH SCIENCES AND ENGINEERING 10, no. 02 (April 26, 2017): 404–7. http://dx.doi.org/10.21276/ijee.2017.10.0240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mariotti, M., A. Masoni, L. Ercoli, and I. Arduini. "Nitrogen leaching and residual effect of barley/field bean intercropping." Plant, Soil and Environment 61, No. 2 (June 6, 2016): 60–65. http://dx.doi.org/10.17221/832/2014-pse.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lukiyanets, B., and D. Matulka. "Effect of magnetic field on quantum capacitance of the nanoobject." Mathematical Modeling and Computing 2, no. 2 (December 31, 2015): 176–82. http://dx.doi.org/10.23939/mmc2015.02.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Boudinov, Henry, and Gabriel Volkweis Leite. "Organic Field Effect Transistors." Journal of Integrated Circuits and Systems 17, no. 2 (September 17, 2022): 1–12. http://dx.doi.org/10.29292/jics.v17i2.615.

Full text
Abstract:
This article begins with a brief overview of the structure, physical characteristics, and peculiarities of organic field effect transistors. The main differences from the silicon MOSFET are emphasized. The results of poly 3-hexylthiophene and cross-linked polyvinyl alcohol top gate-bottom contact transistors with different channel lengths fabricated by standard photolithography and plasma etching are described. Transistors showed good charge mobility, high ION/IOFF and excellent environmental stability. The Shockley model and the Transmission Line Method (TLM) were applied to characterize the transistors. Mobility was extracted by both methods and differences were discussed. The shorter the channel length and the higher the conductivity of the semiconductor, the greater the impact of contact resistance. In these cases, the use of TLM for parameters extraction becomes essential. The transistors were submitted to extended current-voltage measurements and drain current degradation was observed. Drain current as a function of the integral charge passing through the channel was investigated. The strong decrease in current was found to be related to reduced mobility of charge carriers. Reasons for this behavior are suggested.
APA, Harvard, Vancouver, ISO, and other styles
18

Tabib-Azar, Massood, and Pradeep Pai. "Microplasma Field Effect Transistors." Micromachines 8, no. 4 (April 5, 2017): 117. http://dx.doi.org/10.3390/mi8040117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Adinolfi, Valerio, and Edward H. Sargent. "Photovoltage field-effect transistors." Nature 542, no. 7641 (February 8, 2017): 324–27. http://dx.doi.org/10.1038/nature21050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aslam, Kashif, Syed Gilani, Amnah Andarabi, Elise Schriver, and Paul Branca. "Field Effect of Cancer." Chest 144, no. 4 (October 2013): 606A. http://dx.doi.org/10.1378/chest.1704923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cartwright, Steven. "Near-field Lau effect." Applied Optics 27, no. 11 (June 1, 1988): 2100. http://dx.doi.org/10.1364/ao.27.002100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Echtermeyer, T. J., M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz. "Graphene field-effect devices." European Physical Journal Special Topics 148, no. 1 (September 2007): 19–26. http://dx.doi.org/10.1140/epjst/e2007-00222-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Reddy, Dharmendar, Leonard F. Register, Gary D. Carpenter, and Sanjay K. Banerjee. "Graphene field-effect transistors." Journal of Physics D: Applied Physics 44, no. 31 (July 14, 2011): 313001. http://dx.doi.org/10.1088/0022-3727/44/31/313001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Reddy, Dharmendar, Leonard F. Register, Gary D. Carpenter, and Sanjay K. Banerjee. "Graphene field-effect transistors." Journal of Physics D: Applied Physics 45, no. 1 (December 9, 2011): 019501. http://dx.doi.org/10.1088/0022-3727/45/1/019501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wernersson, Lars-Erik, Erik Lind, Lars Samuelson, Truls Löwgren, and Jonas Ohlsson. "Nanowire Field-Effect Transistor." Japanese Journal of Applied Physics 46, no. 4B (April 24, 2007): 2629–31. http://dx.doi.org/10.1143/jjap.46.2629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sandomirsky, V., A. V. Butenko, R. Levin, and Y. Schlesinger. "Electric-field-effect thermoelectrics." Journal of Applied Physics 90, no. 5 (September 2001): 2370–79. http://dx.doi.org/10.1063/1.1389074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dreifus, D. L., B. P. Sneed, J. Ren, J. W. Cook, J. F. Schetzina, and R. M. Kolbas. "ZnSe field‐effect transistors." Applied Physics Letters 57, no. 16 (October 15, 1990): 1663–65. http://dx.doi.org/10.1063/1.104079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xie, Y. H. "SiGe field effect transistors." Materials Science and Engineering: R: Reports 25, no. 3 (May 1999): 89–121. http://dx.doi.org/10.1016/s0927-796x(99)00002-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pfleiderer, Hans, and Wilhelm Kusian. "Ambipolar field-effect transistor." Solid-State Electronics 29, no. 3 (March 1986): 317–19. http://dx.doi.org/10.1016/0038-1101(86)90210-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Levy, A., J. P. Falck, M. A. Kastner, R. J. Birgeneau, and A. T. Fiory. "Field-effect conductance ofLa2CuO4." Physical Review B 51, no. 1 (January 1, 1995): 648–51. http://dx.doi.org/10.1103/physrevb.51.648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ayasli, Y. "Field effect transistor circulators." IEEE Transactions on Magnetics 25, no. 5 (1989): 3242–47. http://dx.doi.org/10.1109/20.42266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Horowitz, Gilles. "Organic Field-Effect Transistors." Advanced Materials 10, no. 5 (March 1998): 365–77. http://dx.doi.org/10.1002/(sici)1521-4095(199803)10:5<365::aid-adma365>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Di Bartolomeo, Antonio. "Advanced Field-Effect Sensors." Sensors 23, no. 9 (May 8, 2023): 4554. http://dx.doi.org/10.3390/s23094554.

Full text
Abstract:
Sensors based on the field-effect principle have been used for more than fifty years in a variety of applications ranging from bio-chemical sensing to radiation detection or environmental parameter monitoring [...]
APA, Harvard, Vancouver, ISO, and other styles
34

Whall, Terrence E., and Evan H. C. Parker. "SiGe field effect transistors." Journal of Telecommunications and Information Technology, no. 1 (March 30, 2001): 3–12. http://dx.doi.org/10.26636/jtit.2001.1.49.

Full text
Abstract:
Recent and encouraging developments in Schot- tky and MOS gated Si/SiGe field effect transistors are sur- veyed. Circuit applications are now beginning to be investi- gated. The authors discuss some of this work and consider future prospects for the role of SiGe field effect devices in mobile communications.
APA, Harvard, Vancouver, ISO, and other styles
35

Caliskan, S., and M. Kumru. "The effect of magnetic field on a nonballistic spin field effect transistor." Journal of Physics: Condensed Matter 19, no. 7 (February 2, 2007): 076205. http://dx.doi.org/10.1088/0953-8984/19/7/076205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ohshima, Yuki, Hideki Kohn, Takaaki Manaka, and Mitsumasa Iwamoto. "Space charge field effect on light emitting from tetracene field-effect transistor under AC electric field." Thin Solid Films 518, no. 2 (November 2009): 583–87. http://dx.doi.org/10.1016/j.tsf.2009.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Koo, Hyun Cheol, Jonghwa Eom, Joonyeon Chang, and Suk-Hee Han. "A spin field effect transistor using stray magnetic fields." Solid-State Electronics 53, no. 9 (September 2009): 1016–19. http://dx.doi.org/10.1016/j.sse.2009.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ohkuma, Yasunori, Tsutomu Takahashi, Kiyomitsu Suzuki, and Yasuyuki Nogi. "Effect of Multipole Fields on Field-Reversed-Configuration Plasma." Journal of the Physical Society of Japan 63, no. 8 (August 15, 1994): 2845–48. http://dx.doi.org/10.1143/jpsj.63.2845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chaney, Alexander, Henryk Turski, Kazuki Nomoto, Zongyang Hu, Jimy Encomendero, Sergei Rouvimov, Tatyana Orlova, et al. "Gallium nitride tunneling field-effect transistors exploiting polarization fields." Applied Physics Letters 116, no. 7 (February 18, 2020): 073502. http://dx.doi.org/10.1063/1.5132329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Grillo, Alessandro, Aniello Pelella, Enver Faella, Filippo Giubileo, Stephan Sleziona, Osamah Kharsah, Marika Schleberger, and Antonio Di Bartolomeo. "Memory effects in black phosphorus field effect transistors." 2D Materials 9, no. 1 (December 17, 2021): 015028. http://dx.doi.org/10.1088/2053-1583/ac3f45.

Full text
Abstract:
Abstract We report the fabrication and the electrical characterization of back-gated field effect transistors with a black phosphorus (BP) channel. We show that the hysteresis of the transfer characteristic, due to intrinsic defects, can be exploited to realize non-volatile memories. We demonstrate that gate voltage pulses allow to trap and store charge inside the defect states, which enable memory devices with endurance over 200 cycles and retention longer than 30 min. We show that the use of a protective poly(methyl methacrylate) layer, positioned on top of the BP channel, does not affect the electrical properties of the device but avoids the degradation caused by the exposure to air.
APA, Harvard, Vancouver, ISO, and other styles
41

Hu, Zhaoying, Dhiraj Prasad Sinha, Ji Ung Lee, and Michael Liehr. "Substrate dielectric effects on graphene field effect transistors." Journal of Applied Physics 115, no. 19 (May 21, 2014): 194507. http://dx.doi.org/10.1063/1.4879236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yue-E, Xie, Yan Xiao-Hong, and Chen Yuan-Ping. "Nonideal effects in quantum field-effect directional coupler." Chinese Physics 15, no. 10 (September 21, 2006): 2415–21. http://dx.doi.org/10.1088/1009-1963/15/10/038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Artaki, Michael, and Peter J. Price. "Hot phonon effects in silicon field‐effect transistors." Journal of Applied Physics 65, no. 3 (February 1989): 1317–20. http://dx.doi.org/10.1063/1.343027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Voronin, K. V., G. A. Ermolaev, Y. V. Stebunov, A. V. Arsenin, A. N. Bylinkin, B. B. E. Jensen, B. Jørgensen, and V. S. Volkov. "Substrate effects in graphene field-effect transistor photodetectors." Journal of Physics: Conference Series 1461 (March 2020): 012188. http://dx.doi.org/10.1088/1742-6596/1461/1/012188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ren, F., J. R. Lothian, J. D. Mackenzie, C. R. Abernathy, C. B. Vartuli, S. J. Pearton, and R. G. Wilson. "Plasma damage effects in InAlN field effect transistors." Solid-State Electronics 39, no. 12 (December 1996): 1747–52. http://dx.doi.org/10.1016/s0038-1101(96)00092-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Singhal, A., A. Mishra, and P. Chakrabarti. "Optical effects in modulation-doped-field-effect-transistor." Solid-State Electronics 33, no. 9 (September 1990): 1214–16. http://dx.doi.org/10.1016/0038-1101(90)90103-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Luo, Jun-Wei, Shu-Shen Li, Jian-Bai Xia, and Lin-Wang Wang. "Quantum mechanical effects in nanometer field effect transistors." Applied Physics Letters 90, no. 14 (April 2, 2007): 143108. http://dx.doi.org/10.1063/1.2719151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Klein, Manfred. "Time effects of ion-sensitive field-effect transistors." Sensors and Actuators 17, no. 1-2 (May 1989): 203–8. http://dx.doi.org/10.1016/0250-6874(89)80081-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Adeishvili, Teimuraz. "THE EFFECT OF RADON AND GEOMAGNETIC FIELD ON BIO-SYSTEMS." Journal Scientific and Applied Research 8, no. 1 (October 12, 2015): 5–9. http://dx.doi.org/10.46687/jsar.v8i1.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Boudjella, Aissa, Zhongfang Jin, and Yvon Savaria. "Electrical Field Analysis of Nanoscale Field Effect Transistors." Japanese Journal of Applied Physics 43, no. 6B (June 29, 2004): 3831–37. http://dx.doi.org/10.1143/jjap.43.3831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography