Academic literature on the topic 'Field effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Field effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Field effect"

1

Vasilev, Dragomir. "BIOLOGICAL EFFECT OF THE ELECTROMAGNETIC FIELD." Journal Scientific and Applied Research 21, no. 1 (November 15, 2021): 64–69. http://dx.doi.org/10.46687/jsar.v21i1.321.

Full text
Abstract:
In this paper presents biological effect of the Electromagnetic field. The human body consists of cells, tissues, organs with different electrical characteristics. When an electric current flows through the human body, cells and tissues prevent the movement of charged particles. The value of the resistance depends on the type and condition of the cells, the value and frequency of the applied voltage and the duration.
APA, Harvard, Vancouver, ISO, and other styles
2

Saragi, Tobat P. I., and Thomas Reichert. "Magnetic-field effects in illuminated tetracene field-effect transistors." Applied Physics Letters 100, no. 7 (February 13, 2012): 073304. http://dx.doi.org/10.1063/1.3684835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seton-Rogers, Sarah. "Field effect." Nature Reviews Cancer 12, no. 8 (July 5, 2012): 508–9. http://dx.doi.org/10.1038/nrc3324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Ho-Shik, Yong-Pil Park, and Min-Woo Cheon. "Electrical Properties of CuPc Field-effect Transistor with Different Electrodes." Journal of the Korean Institute of Electrical and Electronic Material Engineers 21, no. 10 (October 1, 2008): 930–33. http://dx.doi.org/10.4313/jkem.2008.21.10.930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prakash, Shaurya, and A. T. Conlisk. "Field effect nanofluidics." Lab on a Chip 16, no. 20 (2016): 3855–65. http://dx.doi.org/10.1039/c6lc00688d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghowsi, Kiumars, and Robert J. Gale. "Field effect electroosmosis." Journal of Chromatography A 559, no. 1-2 (October 1991): 95–101. http://dx.doi.org/10.1016/0021-9673(91)80061-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bondar, E. A., and D. A. Luzhbin. "Effect of Magnetic Field on Electrodeposition of Nanosize Structures." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, no. 5 (September 11, 2018): 615–23. http://dx.doi.org/10.15407/mfint.40.05.0615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niu, Zhi Ping. "Thermoelectric effects in spin field-effect transistors." Physics Letters A 375, no. 36 (August 2011): 3218–22. http://dx.doi.org/10.1016/j.physleta.2011.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsap, B. "Silicon carbide microwave field-effect transistor: Effect of field dependent mobility." Solid-State Electronics 38, no. 6 (June 1995): 1215–19. http://dx.doi.org/10.1016/0038-1101(94)00219-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pradhan, Nihar R., Daniel Rhodes, Yan Xin, Shahriar Memaran, Lakshmi Bhaskaran, Muhandis Siddiq, Stephen Hill, Pulickel M. Ajayan, and Luis Balicas. "Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities." ACS Nano 8, no. 8 (July 14, 2014): 7923–29. http://dx.doi.org/10.1021/nn501693d.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Field effect"

1

Muntahi, Abdussamad. "NANOSCALE EFFECTS IN JUNCTIONLESS FIELD EFFECT TRANSISTORS." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1527.

Full text
Abstract:
Though the concept of junctionless field effect transistor (JLFET) is old, it was not possible to fabricate a useful JLFET device, as it requires a very shallow channel region. Very recently, the emergence of new and advanced technologies has made it possible to create viable JLFET devices using nanowires. This work aims to computationally investigate the interplay of quantum size-quantization and random dopant fluctuations (RDF) effects in nanoscale JLFETs. For this purpose, a 3-D fully atomistic quantum-corrected Monte Carlo device simulator has been integrated and used in this work. The size-quantiza¬tion effect has been accounted for via a param¬eter-free effec¬tive potential scheme and benchmarked against the NEGF approach in the ballistic limit. To study the RDF effects and treat full Coulomb (electron-ion and electron-electron) interactions in the real-space and beyond the Poisson picture, the simulator implements a corrected-Coulomb electron dynamics (QC-ED) approach. The essential bandstructure and scattering parameters (energy bandgap, effective masses, and the density-of-states) have been computed using an atomistic 20-band nearest-neighbour sp3d5s* tight-binding scheme. First, an experimental device was simulated to evaluate the validity of the simulator. Because of the small dimension, quantum mechanical confinement was found to be the dominant mechanism that significantly degrades the current drive capability of nanoscale JLFETs. Surface roughness scattering is not as prominent as observed in conventional MOSFETs. Also, because of its small size, the performance of the device is prone to the effect of variability, for which a discrete doping model was proved essential. Finally, a new JLFET was designed and optimized in this work. The proposed device is based on a gate-all-around silicon nanowire. Source/drain length is 32.5 nm and channel length is 14 nm. Gate contact length is 9 nm. The EOT (equivalent oxide thickness) is 1 nm. It has a metal gate with a workfunction of 4.55 eV. The source, channel and drain regions are n-type with a doping density of 1.5×1019 cm-3. Detailed simulation shows that the two most influential mechanisms that degrade the drive capability are quantum mechanical confinement and Coulomb scattering. Surface roughness scattering is found to be very weak. In addition, thinner nanowire is more prone to Coulomb scattering exhibiting a reduced ON-current (ION). Simulation results show that silicon nanowires with a side length (width and depth) of 3 nm and a doping density of 1.5×1019 cm-3 produce satisfactory drive current.
APA, Harvard, Vancouver, ISO, and other styles
2

Rawcliffe, Ruth. "Polymer field-effect transistors." Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/8889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Georgakopoulos, Stamatis. "Polymer field-effect transistors." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582857.

Full text
Abstract:
High Ionisation Potential (IP) amorphous conjugated polymers are very practical semiconductors and promising candidates for printing applications as they exhibit 1) high air-stability due to the high IP, and 2) reproducible electrical performance due to the uniformity of amorphous morphology. However they generally exhibit low mobilities on the order of 10-3 cm2Ns and below. This work is based mainly on two high-IP amorphous conjugated polymers poly(indenofluorene-triarylamine) (PIFTAA) and poly(indenofluorene- phenanthrene) (PIFPA). The long term ambient stability of PIFTAA and PIFPA with IPs of 5.45 eV and 5.79 eV respectively is characterised in Field-Effect Transistors (FETs) over a period of 4 and 2 months respectively. FET parameters such as the turn-on voltage and subthreshold slope are found to be generally stable, and the charge carrier mobility is found to degrade at an approximate rate of 10% per month, which is amongst the lowest reported values for organic semiconductors. PIFT AA and particularly PIFPA exhibit high field-effect saturation mobilities of 0.03 - 0.04 cm2Ns and 0.2 - 0.3 cm2Ns respectively, which are unusually high for amorphous conjugated polymers. The morphologies are examined by atomic force microscopy, grazing incidence wide angle x-ray scattering, and differential scanning calorimetry, and no evidence of crystallinity is detected, suggesting that the conjugated polymers are indeed amorphous. To investigate charge transport in PIFTAA and PIFPA, FETs of multiple channel lengths are fabricated, providing mobility data for multiple electric fields, and measured over a range of temperatures. In addition to PIFT AA and PIFP A, the measurements are performed on typical amorphous conjugated polymers poly(triarylamine) (PTAA) and poly(indenofluorene-triarylamine-triarylamine) (PIFTAATAA), with mobilities of 0.003 cm2/Vs and 0.004 cm2Ns respectively. The gate voltage dependence of the mobility extracted from FET measurements, as well as the lIT2 fit of the mobility with temperature is consistent with a Gaussian Density of States. The indenofluorene copolymers PIFTAA, PIFTAATAA, and PIFPA exhibit clear negative electric field dependence of the mobility, signature of high spatial disorder in the polymer films. The temperature dependence of the mobility is fed into the Gaussian Disorder Model, which indicates that the source of the high mobility for PIFPA is mainly strong intermolecular coupling indicated by the high pre-factor mobility as well as low energetic disorder along the path of charge flow. These results challenge the widely accepted concept that high crystallinity is a requirement for mobility exceeding 0.1 cm2/Vs in organic semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
4

Chua, L. L. "Organic field-effect transistors." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597679.

Full text
Abstract:
In this thesis, we demonstrated that divinyltetramethyldisiloxane-benzocyclobutene (BCB), which has previously been used as an isolation dielectric in III-IV semiconductor devices, in fact makes an excellent gate dielectric material in OFETs after suitable purification. Robust ultra-thin films with high glass transition temperature and high dielectric breakdown strength can be obtained by simple spin-coating followed by rapid-thermal-anneal to above 250°C. With this material, we were able to demonstrate remarkable performance in polymer OFETs and explore several aspects of their physics. In Chapter 2, we introduce the use of BCB as a good candidate for solution-processable organic gate dielectric. Pinhole-free ultra-thin gate dielectric film as thin as 50nm can be made from this material. With this gate dielectric, robust continual cyclic operation of poly[(9,9-dioctylfluorene-2,7-diyl)-alt-(phenylene-(N-(p-2-butylphenyl-imino-phenylene)) (TFB) FETs at 120°C was achieved. Previously, the thinnest practical solution-processable gate dielectric thickness was >300 nm-thick. In Chapter 3, we demonstrated self-organised polymer semiconductor/dielectric FETs fabricated using a spontaneous and an unusual vertical phase separation of the TFB polymer semiconductor and the BCB dielectric materials during film spinning. This method enables the formation of semiconductor and dielectric layers at the same time without exposing their interface to air. Using these devices, we established that a critical root-mean-square interface roughness of 0.7 nm (measured on the 100 nm length scale) could be tolerated without loss of mobility of the devices, probably related to the hopping of the carries at the interface. In Chapter 4, we demonstrated using this non-trapping BCB dielectric the generality of n-type field-effect conduction across a wide range of polymer organic semiconductors. We showed that this was previously suppressed by interface trapping of the accumulated electrons by the –OH group in the gate dielectrics that have often been used. We found electron mobilities very similar to, if not larger than, hole mobilities across a range of organic semiconductors. Therefore, many (though not all) π-conjugated materials are by their nature ambipolar and can support both electron and hole conduction nearly equally well. Their previous classification into “n-type” and “p-type” materials is thus somewhat arbitrary. Finally, in Chapter 5, we used BCB as the top gate dielectric and fabricated fully functional double-gate OFETs over a bottom gate dielectric. We showed that such devices exhibit electrostatic coupling of the two gates occurs to produce an “AND” logic gate.
APA, Harvard, Vancouver, ISO, and other styles
5

Leydecker, Tim. "Multiresponsive and supramolecular field-effect transistors." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF056/document.

Full text
Abstract:
Cette thèse a exploré comment, en mélangeant des matériaux avec des propriétés électriques différentes, il est possible de fabriquer des transistors avec des performances accrues. Des transistors organiques à effet de champ basés sur un oligothiophène (DH4T) ont été fabriqués et optimisés jusqu’à ce que les mobilités mesurées fussent supérieures à celles observées dans des films évaporés. Ces résultats ont été obtenus par le contrôle précis des interfaces et de la vitesse d’évaporation. Des polymères de type p ont été mélangés à des polymères de type n. Chaque solution obtenue a été utilisée pour la fabrication de transistors ambipolaires. Les transistors ont été caractérisés et il a été possible de fabriquer des transistors avec des mobilités équilibrées pour chaque paire de polymères. Des transistors à effet de champ basés sur un mélange de P3HT et d’une molécule photochromique (DAE-Me) ont été fabriqués. Le courant a été mesuré pendant et entre les irradiations et il a été démontré qu’une mémoire non-volatile à multiple niveaux peut être fabriquée
This thesis explored how, by blending of materials with different electrical characteristics, it is possible to fabricate transistors with new or improved performances. First, organic field-effect transistors based on a single oligothiophene, DH4T, were fabricated and optimized until the measured mobility was superior to that observed in vacuum deposited films. This was achieved through careful tuning of the interfaces using self-assembled monolayers and by strong control of the solvent- evaporation rate. P-type polymers were blended with an n-type polymer. Each resulting solution was used for the fabrication of ambipolar field-effect transistors. These devices were characterized and it was found that for each pair of p- and n-type polymers, a transistor with balanced mobilities and high Ion/Ioff could be fabricated. Finally field-effect transistors based on a blend of P3HT and a photoswitchable diarylethene (DAE-Me) were fabricated. The current was measured during and between irradiations and it was demonstrated that a non-volatile multilevel memory could be fabricated
APA, Harvard, Vancouver, ISO, and other styles
6

Nasrallah, Iyad. "Investigating charge trapping effects in organic field-effect transistors." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johnson, Simon. "Field effect transistor type sensors." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robins, Ian. "Gas sensitive field effect transistors." Thesis, King's College London (University of London), 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Günther, Alrun Aline. "Vertical Organic Field-Effect Transistors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-207731.

Full text
Abstract:
Diese Arbeit stellt eine eingehende Studie des sogenannten Vertikalen Organischen Feld-Effekt-Transistors (VOFET) dar, einer neuen Transistor-Geometrie, welche dem stetig wachsenden Bereich der organischen Elektronik entspringt. Dieses neuartige Bauteil hat bereits bewiesen, dass es in der Lage ist, eine der fundamentalen Einschränkungen herkömmlicher organischer Feld-Effekt-Transistoren (OFETs) zu überwinden: Die für Schaltfrequenz und An-Strom wichtige Kanallänge des Transistors kann im VOFET stark reduziert werden, ohne dass teure und komplexe Strukturierungsmethoden genutzt werden müssen. Das genaue Funktionsprinzip des VOFET ist bisher jedoch weitgehend unerforscht. Durch den Vergleich von experimentellen Daten mit Simulationsdaten des erwarteten Bauteil-Verhaltens wird hier ein erstes, grundlegendes Verständnis des VOFETs erarbeitet. Die so gewonnenen Erkenntnisse werden im Folgenden genutzt, um bestimmte Parameter des VOFETs kontrolliert zu manipulieren. So wird beispielsweise gezeigt, dass die Morphologie des organischen Halbleiters, und damit seine Abscheidungsparameter, sowohl für die VOFET-Herstellung als auch für den Ladungsträgertransport im fertigen Bauteil eine wichtige Rolle spielen. Weiterhin wird gezeigt, dass der VOFET, genau wie der konventionelle OFET, durch das Einbringen von Kontaktdotierung deutlich verbessert werden kann. Mit Hilfe dieser Ergebnisse kann gezeigt werden, dass das Funktionsprinzip des VOFETs mit dem eines konventionellen OFETs nahezu identisch ist, wenn man von geringen Abweichungen aufgrund der unterschiedlichen Geometrien absieht. Basierend auf dieser Erkenntnis wird schließlich ein VOFET präsentiert, welcher im Inversionsmodus betrieben werden kann und so die Lücke zur konventionellen MOSFET-Technologie schließt. Dieser Inversions-VOFET stellt folglich einen vielversprechenden Ansatz für leistungsfähige organische Transistoren dar, welche als Grundbausteine für komplexe Elektronikanwendungen auf flexiblen Substraten genutzt werden können
This work represents a comprehensive study of the so-called vertical organic field-effect transistor (VOFET), a novel transistor geometry originating from the fast-growing field of organic electronics. This device has already demonstrated its potential to overcome one of the fundamental limitations met in conventional organic transistor architectures (OFETs): In the VOFET, it is possible to reduce the channel length and thus increase On-state current and switching frequency without using expensive and complex structuring methods. Yet the VOFET's operational principles are presently not understood in full detail. By simulating the expected device behaviour and correlating it with experimental findings, a basic understanding of the charge transport in VOFETs is established and this knowledge is subsequently applied in order to manipulate certain parameters and materials in the VOFET. In particular, it is found that the morphology, and thus the deposition parameters, of the organic semiconductor play an important role, both for a successful VOFET fabrication and for the charge transport in the finished device. Furthermore, it is shown that VOFETs, just like their conventional counterparts, are greatly improved by the application of contact doping. This result, in turn, is used to demonstrate that the VOFET essentially works in almost exactly the same way as a conventional OFET, with only minor changes due to the altered contact arrangement. Working from this realisation, a vertical organic transistor is developed which operates in the inversion regime, thus closing the gap to conventional MOSFET technology and providing a truly promising candidate for high-performance organic transistors as the building blocks for advanced, flexible electronics applications
APA, Harvard, Vancouver, ISO, and other styles
10

Sondell, Niklas. "The wind field in coastal areas." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302884.

Full text
Abstract:
The land-sea transition in coastal areas makes the meteorological conditions rather complex and the structure of the coastal boundary layer is important for many reasons. Two examples are air pollution dispersion and wind energy potential. The wind field off the coast when offshore flow is present has been studied. At the coast there is a sudden change in surface properties that will affect the wind field in the area. When warm air is advected out over the much colder sea we get a stable stratification whose structure depends on wind speed and temperature difference. The roughness length over the sea is much less than over land, which gives less friction over the sea and usually increased winds. This is the general situation. But with a stable stratification the wind speed decreases near the surface partly due to the much denser air. However, there may be a wind speed decrease a certain distance from the coast, after an initial wind speed maximum. This is due to the growth of a stable internal boundary layer that develops over the sea. What is new in this investigation is that the more stable the stratification over the sea is, the farther offshore the decrease in wind speed occurs, probably more than 30 km. Thus with a very stable stratification the wind speed off the coast in coastal areas seems to be increased instead of decreased. This investigation also includes an explanation of why this behavior seldom is seen in measurements. The wind field structure dependence of the IBL-height and the stability has been studied and an expression for the distance to the decrease in wind speed has been found. Also the prediction of a sea breeze circulation is studied as well as the affect a low-level jet has on the wind field near the coast. Measurements from three sites are used, the Baltic Sea near the Island of Gotland, around the strait of Öresund and outside the Atlantic coast near Duck in North Carolina, USA. These measurements are used in simulations with a 2-dimensional meso-γ-scale model as well as a lot of arbitrary simulations. All simulations correspond very well to the expression found and the simulated cases agree well with the measured ones. In the lowest 100 m of the marine atmosphere over the Baltic Sea, the stratification is probably stable more than half of the year. Thus the behavior of decreased wind speeds a certain distance offshore, after an initial increase, would be a very common phenomenon. It must be of great importance in extracting wind energy, to avoid these areas and layers with decreasing wind speed, which in turn have lower wind energy potential. In an area with often very stable stratification over the sea there can be an energy loss of more than 50 % in the lowest 50 m of the boundary layer.
Sammanfattning av ”Vindfältet i kustnära områden” Övergången mellan land och hav gör de meteorologiska förhållandena i kustnära områden komplicerade. Vetskap om egenskaperna hos gränsskiktet vid kusten är viktigt av flera orsaker. Några exempel är spridning av luftföroreningar, vindenergipotential samt det faktum att man ska kunna ge rätt vindprognos till dem som av nytta eller nöje befinner sig utanför kusten. Vindfältet utanför kusten vid frånlandsvind har studerats här. Vid kusten sker en plötslig ändring av ytans egenskaper. När varm luft strömmar ut över kallt hav fås en stabil skiktning som beror på vindhastighet och temperaturdifferensen mellan land och hav. Skrovlighetslängden är större över land än över hav. Det ger vanligtvis en ökning av vindhastigheten över havet då luften strömmar från land till hav. Men vid tillräckligt stabil skiktning över hav samt med instabil skiktning över land fås istället ett vindavtagande. Initialt ökar dock alltid vindhastigheten. Det beror på tillväxten av ett internt gränsskikt. Höjden på detta måste vara tillräcklig för att ett avtagande skall ske. Stabilare skiktning över hav ger längre sträcka till avtagandet i vindhastighet som kan ske mer än 30 km utanför kusten och det kan inte längre kallas för kustnära område. Varför detta beteende sällan upptäcks utreds också. Vindfältets beroende av interna gränsskiktets höjd samt stabiliteten har studerats och ett uttryck för att beräkna avståndet till avtagandet i vindhastighet har också tagits fram. Även möjligheten att förutspå en sjöbris har studerats liksom den effekt en low-level jet har på vindfältet nära kusten. Mätningar från tre platser används, Östersjön nära Gotland, över Öresund samt vid Atlantkusten nära Duck i North Carolina, USA. Dessa tre fall simuleras i en 2-dimensionell modell liksom en mängd godtyckliga simuleringar av olika fall. I de lägsta 100 metrarna av det marina gränsskiktet över Östersjön är skiktningen troligen stabil mer än halva året. Beteendet med initialt ökande vindhastighet följt av en dramatiskt avtagande en viss sträcka utanför kusten borde vara ett vanligt fenomen. Vid utvinning av vindenergi måste det vara av stort intresse att undvika dessa områden med lägre vindhastighet, som i sin tur har lägre vindenergipotential. I ett område där det ofta blir stabilt skiktat över havet kan energiförlusten bli på över 50 % i de lägsta 50 metrarna av gränsskiktet.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Field effect"

1

Pierret, Robert F. Field effect devices. 2nd ed. Reading, Mass: Addison-Wesley Pub. Co., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zetex. Junction field effect transistors. Chadderton: Zetex, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kymissis, Ioannis. Organic Field Effect Transistors. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-92134-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhenan, Bao, and Locklin Jason John, eds. Organic field-effect transistors. Boca Raton: CRC Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yadav, Dharmendra Singh, Shiromani Balmukund Rahi, and Sukeshni Tirkey. Advanced Field-Effect Transistors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003393542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heime, Klaus. InGaAs field-effect transistors. Taunton, Somerset, England: Research Studies Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Samuel, T. S. Arun, Young Suh Song, Shubham Tayal, P. Vimala, and Shiromani Balmukund Rahi. Tunneling Field Effect Transistors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Shiyu, Zakir Hossain, Yan Zhao, and Tao Han. Graphene Field-Effect Transistor Biosensors. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mamidala, Jagadesh Kumar, Rajat Vishnoi, and Pratyush Pandey. Tunnel Field-Effect Transistors (TFET). Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119246312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Lining, and Mansun Chan, eds. Tunneling Field Effect Transistor Technology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Field effect"

1

Sparkes, J. J. "Field effect transistors." In Semiconductor Devices, 101–28. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-7128-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Watson, John. "Field-Effect Transistors." In Mastering Electronics, 110–18. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08533-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Warnes, Lionel. "Field-effect transistors." In Electronic and Electrical Engineering, 181–89. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-15052-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gift, Stephan J. G., and Brent Maundy. "Field-Effect Transistor." In Electronic Circuit Design and Application, 89–125. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46989-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Warnes, Lionel. "Field-effect transistors." In Electronic and Electrical Engineering, 181–92. London: Macmillan Education UK, 2003. http://dx.doi.org/10.1007/978-0-230-21633-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warnes, Lionel. "Field-effect transistors." In Analogue and Digital Electronics, 155–98. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14037-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Watson, John. "Field-effect Transistors." In Mastering Electronics, 98–104. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-14210-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weik, Martin H. "field-effect transistor." In Computer Science and Communications Dictionary, 601. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Waterworth, G. "Field Effect Transistors." In Work Out Electronics, 36–56. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-10008-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Papadopoulos, Christo. "Field Effect Transistors." In Undergraduate Lecture Notes in Physics, 121–72. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8836-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Field effect"

1

Rolin, Cedric, Robby Janneck, Khalid Muhieddine, Thomas Nowack, Hany Ali, Jan Genoe, and Paul Heremans. "Contact resistance characterization in organic thin film transistors (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2320949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Höppner, Marco, David Kneppe, Hans Kleemann, and Karl Leo. "Vapor-deposited vertical organic field-effect transistors with optimized geometry for unrivaled transition frequencies (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2320990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kneppe, David, Marco Höppner, Hans Kleemann, and Karl Leo. "Investigations on electrical performance and contact resistance in solution-processed vertical organic field-effect transistors (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2321012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Shuo, David Guérin, and Kamal Lmimouni. "Flexible organic nano-floating memory with multilevel charge storage by combing charge store in nanoparticles and electrets (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2321087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sawatzki, Franz Michael, Hans Kleemann, and Karl Leo. "Rubrene-based diodes for rectification applications (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2321134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Tianlei, Runqiao Song, Nrup Balar, and Brendan T. O'Connor. "Viscoelastic polymer semiconductors for stretchable electronics: the importance of interfaces on mechanical behavior (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2322023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dodabalapur, Ananth, Kelly Liang, and Oleksiy Kratko. "New designs for high-performance polymer thin-film transistors (Conference Presentation)." In Organic Field-Effect Transistors XVII, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2018. http://dx.doi.org/10.1117/12.2322180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fallon, Kealan, Nilushi Wijeyasinghe, Eric Manley, Tobin Marks, Thomas D. Anthopoulos, and Hugo A. Bronstein. "Indolo-naphthyridine-6,13-dione thiophene building block for conjugated polymer electronics: Molecular origin of ultrahigh n-type mobility (Conference Presentation)." In Organic Field-Effect Transistors XVI, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2017. http://dx.doi.org/10.1117/12.2273880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rochford, Luke A., Alexandra J. Ramadan, and Christian Nielsen. "Truxenones on coinage metal surfaces: structure and epitaxial templating (Conference Presentation)." In Organic Field-Effect Transistors XVI, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2017. http://dx.doi.org/10.1117/12.2273913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Georgiou, Vasileia, Dmitry Veksler, Jason P. Campbell, Pragya R. Shrestha, Jason T. Ryan, Dimitris E. Ioannou, and Kin P. Cheung. "Anomalous behaviors of FeFETs based on polar polymers with high glass temperature (Conference Presentation)." In Organic Field-Effect Transistors XVI, edited by Oana D. Jurchescu and Iain McCulloch. SPIE, 2017. http://dx.doi.org/10.1117/12.2274201.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Field effect"

1

Dorsey, Andrew M., and Matthew H. Ervin. Effects of Differing Carbon Nanotube Field-effect Transistor Architectures. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada502660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xing, Huili. Ideal Channel Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada518256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amatuni, A. Ts, S. S. Elbakian, and E. V. Sekhpossian. Coulomb field effect on plasma focusing and wake field acceleration. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10112471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, Michael J. Proteomic Analysis of Prostate Cancer Field Effect. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada497256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Subba, Rama, Reddy Gorla, and Larry W. Byrd. Effect of Electrostatic Field on Film Rupture. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada361177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Yang. High Performance Vertical Organic Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada564828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, Michael J. Proteomic Analysis of Prostate Cancer Field Effect. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada560531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cooper, Donald E., and Steven C. Moss. Picosecond Optoelectronic Diagnostics of Field Effect Transistors,. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peatman, William C. Novel Field Effect Transistors for Low Power Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wowchak, Andrew. Organic Field Effect Transistors for Large Format Electronics. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada415261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography