To see the other types of publications on this topic, follow the link: Field Cycling NMR.

Journal articles on the topic 'Field Cycling NMR'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Field Cycling NMR.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kimmich, Rainer, and Esteban Anoardo. "Field-cycling NMR relaxometry." Progress in Nuclear Magnetic Resonance Spectroscopy 44, no. 3-4 (July 2004): 257–320. http://dx.doi.org/10.1016/j.pnmrs.2004.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kresse, B., A. F. Privalov, and F. Fujara. "NMR field-cycling at ultralow magnetic fields." Solid State Nuclear Magnetic Resonance 40, no. 4 (November 2011): 134–37. http://dx.doi.org/10.1016/j.ssnmr.2011.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blanz, M., T. J. Rayner, and J. A. S. Smith. "A fast field-cycling NMR/NQR spectrometer." Measurement Science and Technology 4, no. 1 (January 1, 1993): 48–59. http://dx.doi.org/10.1088/0957-0233/4/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anoardo, E., G. Galli, and G. Ferrante. "Fast-field-cycling NMR: Applications and instrumentation." Applied Magnetic Resonance 20, no. 3 (April 2001): 365–404. http://dx.doi.org/10.1007/bf03162287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miesel, K., K. L. Ivanov, A. V. Yurkovskaya, and H. M. Vieth. "Coherence transfer during field-cycling NMR experiments." Chemical Physics Letters 425, no. 1-3 (July 2006): 71–76. http://dx.doi.org/10.1016/j.cplett.2006.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schauer, G., W. Nusser, M. Blanz, and R. Kimmich. "NMR field cycling with a superconducting magnet." Journal of Physics E: Scientific Instruments 20, no. 1 (January 1987): 43–46. http://dx.doi.org/10.1088/0022-3735/20/1/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pine, Kerrin J., Gareth R. Davies, and David J. Lurie. "Field-cycling NMR relaxometry with spatial selection." Magnetic Resonance in Medicine 63, no. 6 (April 23, 2010): 1698–702. http://dx.doi.org/10.1002/mrm.22346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

NOACK, F., ST BECKER, and J. STRUPPE. "ChemInform Abstract: Applications of Field-Cycling NMR." ChemInform 28, no. 44 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199744350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bielecki, A., D. B. Zax, A. M. Thayer, J. M. Millar, and A. Pines. "Time Domain Zero Field NMR and NQR." Zeitschrift für Naturforschung A 41, no. 1-2 (February 1, 1986): 440–44. http://dx.doi.org/10.1515/zna-1986-1-286.

Full text
Abstract:
Field cycling methods are described for the time domain measurement of nuclear quadrupolar and dipolar spectra in zero applied field. Since these techniques do not involve irradiation in zero field, they offer significant advantages in terms of resolution, sensitivity at low frequency, and the accessible range of spin lattice relaxation times. Sample data are shown which illustrate the high sensitivity and resolution attainable. Comparison is made to other field cycling methods, and an outline of basic instrumental requirements is given.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhukov, Ivan V., Alexey S. Kiryutin, Alexandra V. Yurkovskaya, Yuri A. Grishin, Hans-Martin Vieth, and Konstantin L. Ivanov. "Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer." Physical Chemistry Chemical Physics 20, no. 18 (2018): 12396–405. http://dx.doi.org/10.1039/c7cp08529j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Haber-Pohlmeier, S., S. Stapf, and A. Pohlmeier. "NMR Fast Field Cycling Relaxometry of Unsaturated Soils." Applied Magnetic Resonance 45, no. 10 (October 2014): 1099–115. http://dx.doi.org/10.1007/s00723-014-0599-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Noack, F. "NMR field-cycling spectroscopy: principles and a]lications." Progress in Nuclear Magnetic Resonance Spectroscopy 18, no. 3 (January 1986): 171–276. http://dx.doi.org/10.1016/0079-6565(86)80004-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Reutter, S., A. Privalov, G. Buntkowsky, and F. Fujara. "Rotational Resonance in milli-tesla fields detected by Field Cycling NMR." Solid State Nuclear Magnetic Resonance 41 (February 2012): 74–77. http://dx.doi.org/10.1016/j.ssnmr.2011.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gizatullin, Bulat, Carlos Mattea, and Siegfried Stapf. "Field-cycling NMR and DNP – A friendship with benefits." Journal of Magnetic Resonance 322 (January 2021): 106851. http://dx.doi.org/10.1016/j.jmr.2020.106851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grossl, C., F. Winter, and R. Kimmich. "Optimisation of magnetic coils for NMR field-cycling experiments." Journal of Physics E: Scientific Instruments 18, no. 4 (April 1985): 358–60. http://dx.doi.org/10.1088/0022-3735/18/4/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hall, Andrew M. R., Topaz A. A. Cartlidge, and Giuseppe Pileio. "A temperature-controlled sample shuttle for field-cycling NMR." Journal of Magnetic Resonance 317 (August 2020): 106778. http://dx.doi.org/10.1016/j.jmr.2020.106778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nusser, Wolfgang, and Rainer Kimmich. "Protein backbone fluctuations and NMR field-cycling relaxation spectroscopy." Journal of Physical Chemistry 94, no. 15 (July 1990): 5637–39. http://dx.doi.org/10.1021/j100378a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kruk, D., A. Herrmann, and E. A. Rössler. "Field-cycling NMR relaxometry of viscous liquids and polymers." Progress in Nuclear Magnetic Resonance Spectroscopy 63 (May 2012): 33–64. http://dx.doi.org/10.1016/j.pnmrs.2011.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Erro, E. M., C. C. Fraenza, L. Gerbino, and E. Anoardo. "Monitoring lubricant oil degradation using field-cycling NMR relaxometry." Molecular Physics 117, no. 7-8 (November 15, 2018): 983–89. http://dx.doi.org/10.1080/00268976.2018.1546023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Anoardo, E., G. Galli, and G. Ferrante. "ChemInform Abstract: Fast-field-cycling NMR: Applications and Instrumentation." ChemInform 33, no. 10 (May 22, 2010): no. http://dx.doi.org/10.1002/chin.200210280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Broche, Lionel M., Saadiya R. Ismail, Nuala A. Booth, and David J. Lurie. "Measurement of fibrin concentration by fast field-cycling NMR." Magnetic Resonance in Medicine 67, no. 5 (October 24, 2011): 1453–57. http://dx.doi.org/10.1002/mrm.23117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Galuppini, Giacomo, Roberto Rolfi, Chiara Toffanin, Davide Raimondo, Yong Xia, Gianni Ferrante, and Lalo Magni. "Towards a Model-Based Field-Frequency Lock for Fast-Field Cycling NMR." Applied Magnetic Resonance 50, no. 8 (June 15, 2019): 1025–47. http://dx.doi.org/10.1007/s00723-019-01130-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Anoardo, E., and G. M. Ferrante. "Magnetic field compensation for field-cycling NMR Relaxometry in the ULF band." Applied Magnetic Resonance 24, no. 1 (March 2003): 85–96. http://dx.doi.org/10.1007/bf03166680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Reutter, Stefan, and Alexei Privalov. "Compensation of Magnetic Field Instabilities in Field Cycling NMR by Reference Deconvolution." Applied Magnetic Resonance 44, no. 1-2 (October 5, 2012): 55–63. http://dx.doi.org/10.1007/s00723-012-0396-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Roberts, Mary F., Jingfei Cai, Sivanandam V. Natarajan, Hanif M. Khan, Nathalie Reuter, Anne Gershenson, and Alfred G. Redfield. "Phospholipids in Motion: High-Resolution 31P NMR Field Cycling Studies." Journal of Physical Chemistry B 125, no. 31 (July 29, 2021): 8827–38. http://dx.doi.org/10.1021/acs.jpcb.1c02105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Parigi, Giacomo, Enrico Ravera, Marco Fragai, and Claudio Luchinat. "Unveiling protein dynamics in solution with field-cycling NMR relaxometry." Progress in Nuclear Magnetic Resonance Spectroscopy 124-125 (June 2021): 85–98. http://dx.doi.org/10.1016/j.pnmrs.2021.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Perrin, Jean-Christophe, Sandrine Lyonnard, Armel Guillermo, and Pierre Levitz. "Water Dynamics in Ionomer Membranes by Field-Cycling NMR Relaxometry." Journal of Physical Chemistry B 110, no. 11 (March 2006): 5439–44. http://dx.doi.org/10.1021/jp057433e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Satheesh, V., and G. Ferrante. "Application of fast field cycling NMR relaxometer to porous media." Magnetic Resonance Imaging 19, no. 3-4 (April 2001): 591. http://dx.doi.org/10.1016/s0730-725x(01)00366-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Perrin, Jean-Christophe, Sandrine Lyonnard, Armel Guillermo, and Pierre Levitz. "Water dynamics in ionomer membranes by field-cycling NMR relaxometry." Magnetic Resonance Imaging 25, no. 4 (May 2007): 501–4. http://dx.doi.org/10.1016/j.mri.2007.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Flämig, M., M. Hofmann, and E. A. Rössler. "Field-cycling NMR relaxometry: the benefit of constructing master curves." Molecular Physics 117, no. 7-8 (September 16, 2018): 877–87. http://dx.doi.org/10.1080/00268976.2018.1517906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Elliott, Stuart J., Pavel Kadeřávek, Lynda J. Brown, Mohamed Sabba, Stefan Glöggler, Daniel J. O'Leary, Richard C. D. Brown, Fabien Ferrage, and Malcolm H. Levitt. "Field-cycling long-lived-state NMR of 15N2 spin pairs." Molecular Physics 117, no. 7-8 (November 8, 2018): 861–67. http://dx.doi.org/10.1080/00268976.2018.1543906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Barker, Peter, and Ray Freeman. "Pulsed field gradients in NMR. An alternative to phase cycling." Journal of Magnetic Resonance (1969) 64, no. 2 (September 1985): 334–38. http://dx.doi.org/10.1016/0022-2364(85)90360-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Steele, Rebecca M., Jean-Pierre Korb, Gianni Ferrante, and Salvatore Bubici. "New applications and perspectives of fast field cycling NMR relaxometry." Magnetic Resonance in Chemistry 54, no. 6 (April 9, 2015): 502–9. http://dx.doi.org/10.1002/mrc.4220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Perrin, J. C., S. Lyonnard, A. Guillermo, and P. Levitz. "Water Dynamics in Ionomer Membranes by Field-Cycling NMR Relaxometry." Fuel Cells 6, no. 1 (February 2006): 5–9. http://dx.doi.org/10.1002/fuce.200500094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Clarkson, Michael W., Ming Lei, Elan Z. Eisenmesser, Wladimir Labeikovsky, Alfred Redfield, and Dorothee Kern. "Mesodynamics in the SARS nucleocapsid measured by NMR field cycling." Journal of Biomolecular NMR 45, no. 1-2 (July 30, 2009): 217–25. http://dx.doi.org/10.1007/s10858-009-9347-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Conte, Pellegrino, and Paolo Lo Meo. "Nuclear Magnetic Resonance with Fast Field-Cycling Setup: A Valid Tool for Soil Quality Investigation." Agronomy 10, no. 7 (July 18, 2020): 1040. http://dx.doi.org/10.3390/agronomy10071040.

Full text
Abstract:
Nuclear magnetic resonance (NMR) techniques are largely employed in several fields. As an example, NMR spectroscopy is used to provide structural and conformational information on pure systems, while affording quantitative evaluation on the number of nuclei in a given chemical environment. When dealing with relaxation, NMR allows understanding of molecular dynamics, i.e., the time evolution of molecular motions. The analysis of relaxation times conducted on complex liquid–liquid and solid–liquid mixtures is directly related to the nature of the interactions among the components of the mixture. In the present review paper, the peculiarities of low resolution fast field-cycling (FFC) NMR relaxometry in soil science are reported. In particular, the general aspects of the typical FFC NMR relaxometry experiment are firstly provided. Afterwards, a discussion on the main mathematical models to be used to “read” and interpret experimental data on soils is given. Following this, an overview on the main results in soil science is supplied. Finally, new FFC NMR-based hypotheses on nutrient dynamics in soils are described
APA, Harvard, Vancouver, ISO, and other styles
37

Schweikert, K. H., R. Krieg, and F. Noack. "A high-field air-cored magnet coil design for fast-field-cycling NMR." Journal of Magnetic Resonance (1969) 78, no. 1 (June 1988): 77–96. http://dx.doi.org/10.1016/0022-2364(88)90158-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ivanov, Dmitri, and Alfred Redfield. "Development of a Field Cycling NMR System for PQR Detection in Biopolymers." Zeitschrift für Naturforschung A 53, no. 6-7 (July 1, 1998): 269–72. http://dx.doi.org/10.1515/zna-1998-6-703.

Full text
Abstract:
Abstract Our goal is to extend the sensitivity of field cycling pure quadrupole resonance (PQR) methods to be of use in biological systems. The nuclei of interest are 25Mg, 67Zn, 43Ca, 11B and 17O. The experiment is based on a field cycling double resonance technique, in which the quadrupole resonance of a rare nucleus is found through its effect on the magnetic order of the abundant nucleus to which the rare nucleus is coupled through dipole-dipole interaction. A field-cycling NMR spectrometer has been developed, based on our existing 500 MHz high resolution spectrometer. The sample can be shuttled pneumatically from the high field of a commercial 500 MHz magnet to the magnet's top, where the residual field and its gradient is canceled out by a pair of Helmholtz coils. Low field homogeneity is within 0.5 gauss. The X H signal is observed at high field as a free induction decay (FID) after a 90° pulse. At low field the sample can be irradiated by a digitally tuned RF coil in the 300 kHz-7 MHz range. The sample has to be maintained at low temperature (~30 K) to avoid relaxation via thermal motion of methyl groups in biomolecules. For this purpose field cycling equipment is placed in a variable temperature dewar (4 - 300 K). We plan to use solutions of biomolecules in standard cryoprotective buffer, containing ~ 30% glycerol. Preliminary results on the quadrupole resonance of natural abundance 17O in the cryoprotective buffer and of natural abundance 11B in a protease inhibitor at 50 mM are presented.
APA, Harvard, Vancouver, ISO, and other styles
39

Overbeck, Viviane, Henning Schröder, Anne-Marie Bonsa, Klaus Neymeyr, and Ralf Ludwig. "Insights into the translational and rotational dynamics of cations and anions in protic ionic liquids by means of NMR fast-field-cycling relaxometry." Physical Chemistry Chemical Physics 23, no. 4 (2021): 2663–75. http://dx.doi.org/10.1039/d0cp05440b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cunha, Joao T., Pedro J. Sebastiao, António Roque, Vitor Vaz da Silva, and Duarte M. Sousa. "Design Overview of a Toroidal Fast-Field Cycling electromagnet." Renewable Energy and Power Quality Journal 19 (September 2021): 368–72. http://dx.doi.org/10.24084/repqj19.296.

Full text
Abstract:
In this paper, the design and development of a novel Fast-Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer’s electromagnet is described. This magnet is tailored to increase the relaxometers’s usability, by increasing its portability capacities. It presents a compact toroidal shaped iron core, allowing to operate in a field range of 0 to 0.21 T, with high field homogeneity (less than 800 ppm in a volume of ≈ 0.57 cm3 ), low power consumption and reduced losses (about 40W). The simulation software COMSOL Multiphysics® is used to characterize the induced magnetic field, the heating and the cooling effects. The proposed optimized layout constitutes an innovative solution for FFC magnets.
APA, Harvard, Vancouver, ISO, and other styles
41

Pizzanelli, Silvia, Susanna Monti, Larisa G. Gordeeva, Marina V. Solovyeva, Angelo Freni, and Claudia Forte. "A close view of the organic linker in a MOF: structural insights from a combined 1H NMR relaxometry and computational investigation." Physical Chemistry Chemical Physics 22, no. 27 (2020): 15222–30. http://dx.doi.org/10.1039/d0cp01863e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Murray, Eoin, Darren Carty, Peter C. Innis, Gordon G. Wallace, and Dermot F. Brougham. "Field-Cycling NMR Relaxometry Study of Dynamic Processes in Conducting Polyaniline." Journal of Physical Chemistry C 112, no. 45 (October 17, 2008): 17688–93. http://dx.doi.org/10.1021/jp8034902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Roberts, Mary F., and Alfred G. Redfield. "High-Resolution31P Field Cycling NMR as a Probe of Phospholipid Dynamics." Journal of the American Chemical Society 126, no. 42 (October 2004): 13765–77. http://dx.doi.org/10.1021/ja046658k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pravdivtsev, Andrey N., Alexandra V. Yurkovskaya, Hans-Martin Vieth, and Konstantin L. Ivanov. "Coherent transfer of nuclear spin polarization in field-cycling NMR experiments." Journal of Chemical Physics 139, no. 24 (December 28, 2013): 244201. http://dx.doi.org/10.1063/1.4848699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hofmann, M., B. Kresse, A. F. Privalov, L. Willner, N. Fatkullin, F. Fujara, and E. A. Rössler. "Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics in Polymer Melts." Macromolecules 47, no. 22 (November 12, 2014): 7917–29. http://dx.doi.org/10.1021/ma501520u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Roberts, M. F., and A. G. Redfield. "Phospholipid bilayer surface configuration probed quantitatively by 31P field-cycling NMR." Proceedings of the National Academy of Sciences 101, no. 49 (November 29, 2004): 17066–71. http://dx.doi.org/10.1073/pnas.0407565101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fujara, Franz, Danuta Kruk, and Alexei F. Privalov. "Solid state Field-Cycling NMR relaxometry: Instrumental improvements and new applications." Progress in Nuclear Magnetic Resonance Spectroscopy 82 (October 2014): 39–69. http://dx.doi.org/10.1016/j.pnmrs.2014.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Broche, L. M., B. W. Kennedy, C. MacEachern, G. P. Ashcroft, and D. J. Lurie. "Fast field-cycling NMR of cartilage: a way toward molecular imaging." Osteoarthritis and Cartilage 22 (April 2014): S66—S67. http://dx.doi.org/10.1016/j.joca.2014.02.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lee, Youngil, Daniel C. Michaels, and Leslie G. Butler. "11B imaging with field-cycling NMR as a line narrowing technique." Chemical Physics Letters 206, no. 5-6 (May 1993): 464–66. http://dx.doi.org/10.1016/0009-2614(93)80168-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kresse, B., M. Hofmann, A. F. Privalov, N. Fatkullin, F. Fujara, and E. A. Rössler. "All Polymer Diffusion Regimes Covered by Combining Field-Cycling and Field-Gradient 1H NMR." Macromolecules 48, no. 13 (June 24, 2015): 4491–502. http://dx.doi.org/10.1021/acs.macromol.5b00855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography