Journal articles on the topic 'Field-Coupled Nanocomputing'

To see the other types of publications on this topic, follow the link: Field-Coupled Nanocomputing.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 journal articles for your research on the topic 'Field-Coupled Nanocomputing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Csaba, G., A. Imre, G. H. Bernstein, W. Porod, and V. Metlushko. "Nanocomputing by field-coupled nanomagnets." IEEE Transactions on Nanotechnology 1, no. 4 (December 2002): 209–13. http://dx.doi.org/10.1109/tnano.2002.807380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chaves, Jeferson F., Marco A. Ribeiro, Frank Sill Torres, and Omar P. Vilela Neto. "Designing Partially Reversible Field-Coupled Nanocomputing Circuits." IEEE Transactions on Nanotechnology 18 (2019): 589–97. http://dx.doi.org/10.1109/tnano.2019.2918057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Formigoni, Ruan Evangelista, Ricardo Santos Ferreira, and José Augusto M. Nacif. "A Survey on Placement and Routing for Field-Coupled Nanocomputing." Journal of Integrated Circuits and Systems 16, no. 1 (April 5, 2021): 1–9. http://dx.doi.org/10.29292/jics.v16i1.480.

Full text
Abstract:
CMOS technology is reaching power, thermal, and physical limits at an alarming pace. As a response, post-silicon research investigates alternative technologies to perform computation. Field-Coupled Nanocomputing (FCN) presents low power dissipation, high frequencies, and room temperature operation. Nevertheless, FCN imposes several challenges in the development of efficient and scalable CAD tools. The placement and routing step is especially tricky in FCN compared to CMOS because of synchronization issues inherent to these technologies, such as path balancing and reconvergent paths. In this work, we survey the state-of-art of placement and routing algorithms for FCN. We describe the most recent FCN placement and routing algorithms, highlighting their limitations and, finally, presenting future work directions.
APA, Harvard, Vancouver, ISO, and other styles
4

Ardesi, Yuri, Alessandro Gaeta, Giuliana Beretta, Gianluca Piccinini, and Mariagrazia Graziano. "Ab initio Molecular Dynamics Simulations of Field-Coupled Nanocomputing Molecules." Journal of Integrated Circuits and Systems 16, no. 1 (April 5, 2021): 1–8. http://dx.doi.org/10.29292/jics.v16i1.474.

Full text
Abstract:
Molecular Field-Coupled Nanocomputing (FCN) represents one of the most promising solutions to overcome the issues introduced by CMOS scaling. It encodes the information in the molecule charge distribution and propagates it through electrostatic intermolecular interaction. The need for charge transport is overcome, hugely reducing power dissipation.At the current state-of-the-art, the analysis of molecular FCN is mostly based on quantum mechanics techniques, or ab initio evaluated transcharacteristics. In all the cases, studies mainly consider the position of charges/atoms to be fixed. In a realistic situation, the position of atoms, thus the geometry, is subjected to molecular vibrations. In this work, we analyse the impact of molecular vibrations on the charge distribution of the 1,4-diallyl butane. We employ Ab Initio Molecular Dynamics to provide qualitative and quantitative results which describe the effects of temperature and electric fields on molecule charge distribution, taking into account the effects of molecular vibrations. The molecules are studied at near-absolute zero, cryogenic and ambient temperature conditions, showing promising results which proceed towards the assessment of the molecular FCN technology as a possible candidate for future low-power digital electronics. From a modelling perspective, the diallyl butane demonstrates good robustness against molecular vibrations, further confirming the possibility to use static transcharacteristics to analyse molecular circuits.
APA, Harvard, Vancouver, ISO, and other styles
5

Beretta, Giuliana, Yuri Ardesi, Mariagrazia Graziano, and Gianluca Piccinini. "Multi-Molecule Field-Coupled Nanocomputing for the Implementation of a Neuron." IEEE Transactions on Nanotechnology 21 (2022): 52–59. http://dx.doi.org/10.1109/tnano.2022.3143720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Lei, and Guangjun Xie. "A Power-Efficient Single Layer Full Adder Design in Field-Coupled QCA Nanocomputing." International Journal of Theoretical Physics 58, no. 7 (April 29, 2019): 2303–19. http://dx.doi.org/10.1007/s10773-019-04121-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ardesi, Yuri, Giuliana Beretta, Marco Vacca, Gianluca Piccinini, and Mariagrazia Graziano. "Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits." Electronics 11, no. 2 (January 16, 2022): 276. http://dx.doi.org/10.3390/electronics11020276.

Full text
Abstract:
The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.
APA, Harvard, Vancouver, ISO, and other styles
8

Labrado, C., and H. Thapliyal. "Design of adder and subtractor circuits in majority logic‐based field‐coupled QCA nanocomputing." Electronics Letters 52, no. 6 (March 2016): 464–66. http://dx.doi.org/10.1049/el.2015.3834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ardesi, Yuri, Mariagrazia Graziano, and Gianluca Piccinini. "A Model for the Evaluation of Monostable Molecule Signal Energy in Molecular Field-Coupled Nanocomputing." Journal of Low Power Electronics and Applications 12, no. 1 (March 1, 2022): 13. http://dx.doi.org/10.3390/jlpea12010013.

Full text
Abstract:
Molecular Field-Coupled Nanocomputing (FCN) is a computational paradigm promising high-frequency information elaboration at ambient temperature. This work proposes a model to evaluate the signal energy involved in propagating and elaborating the information. It splits the evaluation into several energy contributions calculated with closed-form expressions without computationally expensive calculation. The essential features of the 1,4-diallylbutane cation are evaluated with Density Functional Theory (DFT) and used in the model to evaluate circuit energy. This model enables understanding the information propagation mechanism in the FCN paradigm based on monostable molecules. We use the model to verify the bistable factor theory, describing the information propagation in molecular FCN based on monostable molecules, analyzed so far only from an electrostatic standpoint. Finally, the model is integrated into the SCERPA tool and used to quantify the information encoding stability and possible memory effects. The obtained results are consistent with state-of-the-art considerations and comparable with DFT calculation.
APA, Harvard, Vancouver, ISO, and other styles
10

Walter, Marcel, Robert Wille, Daniel Große, Frank Sill Torres, and Rolf Drechsler. "Placement and Routing for Tile-based Field-coupled Nanocomputing Circuits Is NP -complete (Research Note)." ACM Journal on Emerging Technologies in Computing Systems 15, no. 3 (June 29, 2019): 1–10. http://dx.doi.org/10.1145/3312661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bilal, Bisma, Suhaib Ahmed, and Vipan Kakkar. "Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing." International Journal of Theoretical Physics 57, no. 5 (February 6, 2018): 1356–75. http://dx.doi.org/10.1007/s10773-018-3664-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ardesi, Yuri, Ruiyu Wang, Giovanna Turvani, Gianluca Piccinini, and Mariagrazia Graziano. "SCERPA: A Self-Consistent Algorithm for the Evaluation of the Information Propagation in Molecular Field-Coupled Nanocomputing." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, no. 10 (October 2020): 2749–60. http://dx.doi.org/10.1109/tcad.2019.2960360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yangshuai, Guangjun Xie, Qian Han, Xiaoshuai Li, Gaisheng Li, Bing Zhang, and Fei Peng. "Field-Coupled Nanocomputing Placement and Routing With Genetic and A* Algorithms." IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 1–13. http://dx.doi.org/10.1109/tcsi.2022.3197450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Garlando, U., F. Riente, and M. Graziano. "FUNCODE: Effective Device-to-System Analysis of Field Coupled Nanocomputing Circuit Designs." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 1. http://dx.doi.org/10.1109/tcad.2020.3001389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Paranaiba, Omar, Poliana Oliveira, Renan Marks, Gabriel Novy, Maria Vieira, Laysson Oliveira Luz, Pedro Arthur Silva, et al. "Design Automation for Emerging Technologies." Journal of Integrated Circuits and Systems 17, no. 3 (January 25, 2023). http://dx.doi.org/10.29292/jics.v17i3.652.

Full text
Abstract:
After the continuous development of CMOS technology driven by transistor miniaturization and Moore’s law, the scientific community is witnessing the exploration of emerging paradigms to find new ways to develop computational systems. This paper presents critical concepts for understanding some of these new nanocomputing technologies, specifically field-coupled, quantum-dot cellular automata, nanomagnetic logic, silicon dangling bounds, photonic crystal logic, and DNA computing. Next, it shows emerging design automation tools for each of these areas and how they can be applied to support the development of new computing systems. The level of maturity and production speed of solutions achieved by conventional silicon technology thanks to very efficient electronic design automation (EDA) is remarkable. However, here we are dealing with technologies still in their infancy. Therefore, improvements in design automation tools are undoubtedly a way to accelerate the growth of new substrate alternatives and modern applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography