Dissertations / Theses on the topic 'Fibroblasts reprogramming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 dissertations / theses for your research on the topic 'Fibroblasts reprogramming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Elyaderani, Parisa Javadian. "Reprogramming of fibroblasts by the Piwil2 gene." Thesis, University of Newcastle Upon Tyne, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613436.
Full textRohanisarvestani, Leili. "Integration-free mRNA reprogramming of human fibroblasts: The study of aging upon reprogramming." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-159985.
Full textKaramariti, Eirini. "Direct reprogramming of fibroblasts into smooth muscle cells." Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/direct-reprogramming-of-fibroblasts-into-smooth-muscle-cells(d0feb08f-4d4a-4ded-a2b3-00e41c575cec).html.
Full textRohanisarvestani, Leili [Verfasser], Friedemann [Gutachter] Horn, and Torsten [Gutachter] Remmerbach. "Integration-free mRNA reprogramming of human fibroblasts: The study of aging upon reprogramming / Leili Rohanisarvestani ; Gutachter: Friedemann Horn, Torsten Remmerbach." Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1238525598/34.
Full textHao, Ru. "Reprogramming of mesenchymal stem cells and adult fibroblasts following nuclear transfer in rabbits." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-96652.
Full textMAZZARA, PIETRO GIUSEPPE. "TWO FACTOR BASED REPROGRAMMING OF FIBROBLASTS AND INDUCED PLURIPOTENT STEM CELLS INTO MYELINOGENIC SCHWANN CELLS." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199039.
Full textSchwann cells (SCs) are neural crest (NC) derived cells able to produce the myelin sheaths, wrapping neuronal axons in the peripheral nervous system (PNS). Transplantations of SCs might become an interesting therapeutic opportunity for the treatment of spinal cord and peripheral nerves injuries and demyelinating diseases of the PNS. However, these therapeutic approaches are strongly limited by the current lack of a renewable source of SCs. Cell reprogramming strategies have proven to be effective in providing a variety of tissue-specific cells for disease modelling, and cell transplantation procedure by over expression of cardinal developmental transcription factors of the interest cell type. I have identified the two transcription factors Sox10 and Egr2 able to generate induced Schwann Cells (iSCs) when co-expressed in murine fibroblasts with high efficiency. iSCs resembled primary SCs in global gene expression profiling and expressed cardinal markers of SCs including S100ß, O4 and MPZ. When co-cultured with mouse dorsal root ganglion (DRG) explants, iSCs generated compact myelin sheaths organized in Mbp+ internodes spaced by Caspr+ paranodal and Na+ channel nodal domains. Conversely, iSCs from Twitcher mice showed a severe loss in the myelinogenic potential, indicating iSCs as an attractive system for in vitro modeling of PNS diseases. Then, I derived iSCs from rats that were subjected to median nerve axotomy followed by transplantation of chitosan conduits previously seeded with autologous iSCs. These iSC-seeded conduits supported accelerated nerve regeneration with improved myelin content. Similarly, Sox10 and Egr2 are sufficient to convert human fibroblasts into iSCs. Moreover, their expression strongly facilitate the SC differentiation of human induced pluripotent stem cells (iPSCs), including in the reprogramming strategy few intermediate steps that provide different trophic stimuli to the differentiating cells. In particular, after the lentiviral transduction with the Sox10 and Egr2 expressing lentiviruses, I added neuralizing small molecules (SB431542 and LDN193189 in hiPS medium), together with a neural crest differentiation medium (B27, Ascorbic Acid and FGF2 in neurobasal medium), and finally a specific medium for Schwann cell growth (Forskoline, NRG1, FGF2 in DMEM 10% FBS), providing a simple procedure for obtaining a large number of homogeneous and well-differentiated SCs. Altogether, Sox10 and Egr2 is a unique combination of factors for the effective generation of myelinogenic iSCs from rodent as well as human fibroblasts and iPSCs. The fast and straightforward process to generate iSCs will facilitate in vitro disease modeling and autologous cell transplantation approaches for PNS diseases.
Tanabe, Koji. "Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts." Kyoto University, 2013. http://hdl.handle.net/2433/180465.
Full textBachamanda, Somesh Dipthi [Verfasser]. "Induced cardiomyocyte precursor cells obtained by direct reprogramming of cardiac fibroblasts / Dipthi Bachamanda Somesh." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2020. http://d-nb.info/1223925676/34.
Full textRaciti, Marilena. "Reprogramming fibroblasts to neural-stem-like cells by structured overexpression of pallial patterning genes." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/3924.
Full textKole, Denis. "Role of Fibroblast Growth Factor 2 in Maintenance of Multipotency in Human Dermal Fibroblasts Treated with Xenopus Laevis Egg Extract Fractions." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/207.
Full textVillafranca, Locher Maria Cristina. "Fusion of bovine fibroblasts to mouse embryonic stem cells: a model to study nuclear reprogramming." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82864.
Full textPh. D.
Yang, Chao-Shun. "Molecular Landscape of Induced Reprogramming: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/698.
Full textYang, Chao-Shun. "Molecular Landscape of Induced Reprogramming: A Dissertation." eScholarship@UMMS, 2002. http://escholarship.umassmed.edu/gsbs_diss/698.
Full textGuastali, Midyan Daroz. "Reprogramação de fibroblastos de pele e células do cordão umbilical por meio de plasmídeos virais e transposons na produção de iPS equinas." Botucatu, 2016. http://hdl.handle.net/11449/147075.
Full textResumo: As pesquisas envolvendo a biologia das células-tronco abordam um amplo espectro de fenômenos, que vão desde o nível tecidual e celular, até o seu uso em terapias celulares. Esta crescente atenção sugere que é necessário estudar conceitos básicos da biologia das células-tronco para compreender completamente os processos de diferenciação funcional. Desta forma, o instrumento da reprogramação celular por meio da manipulação gênica fornece subsídios para melhor compreender os processos de renovação e diferenciação que constituem as características fundamentais das células-tronco. A obtenção dessas células em medicina veterinária visa validar diversos modelos experimentais domésticos, como o equino, na busca de novos fármacos e terapias alternativas para reabilitação. Uma série de estudos, porém, ainda são necessários para que tais aplicações sejam viáveis, uma vez que os mecanismos fundamentais das técnicas empregadas ainda não estão totalmente elucidados. Embora a reprogramação celular por meio de vetores virais tenha sido relatada com sucesso em diversas espécies animais, outras técnicas também podem ser empregadas, como o uso de transposons, sequências de DNAs capazes de se movimentar de uma região para outra no genoma de uma célula. Não se tem conhecimento de qual o melhor tipo celular a ser utilizado, e nem tão pouco qual a metodologia de reprogramação mais eficiente. Sabe-se que o cordão umbilical possui uma reserva rica em células-tronco mesenquimais, as quais por serem mu... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Researches on the biology of stem cells cover a broad spectrum of phenomena, ranging from tissue and cellular level, to their use in cell therapy. This growing attention suggests that is necessary to study basic concepts of stem cells organization in order to fully understand the functional differentiation processes. Thus, the cell reprogramming through gene manipulation provides grants to better understand the processes of renewal and differentiation which are the essential characteristics of stem cells. Obtaining these cells in veterinary medicine aims to validate various household experimental models, such as horses, on the search for new drugs and alternative therapies for rehabilitation. However, a number of studies is still necessary for such applications to be feasible, since the fundamental mechanisms of techniques employed are not fully elucidated yet. Although cell reprogramming using viral plasmid has been reported with success in several animal species, other techniques may also be employed, such use transposons, this is, DNAs sequences capable of moving from one region to another in the cell genome. The unawereness of what the best cell type to be used, and nor what is the most efficient reprogramming methodology. It is known that the cord has rich reserves mesenchymal stem cells, which are multipotent and can improve the efficiency of obtaining the induced Pluripotent Stem Cells (iPS) compared to the use of fibroblast, inefficient to be reprogrammed. The aim of this study was to obtain iPS through viral transfection and nonviral adult fibroblasts and equine cord cells, aiming to observe which transfection and cell type is more efficient for cell reprogramming. Both cell types was infected with viral vectors and transposons containing the genes OCT-4, SOX-2, c-MYC, and KLF-4; transformed cells were evaluated for morphology, immunocytochemistry... (Complete abstract click electronic access below)
Doutor
Lucas, Emma S. "Defining global DNA methylation differences betwen embryonic stem cells and fibroblasts for exploitation in Epigenetic reprogramming in vitro." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519395.
Full textFIRRITO, CLAUDIA. "Targeted Gene Correction and Reprogramming of SCID-X1 Fibroblasts to Rescue IL2RG Expression in iPSC-derived Hematopoietic Cells." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94656.
Full textGene replacement by integrating vectors has been successfully used to treat several inherited diseases, such as Lysosomal Storage Disorders (LSD), Thalassemia and Primary Immunodeficiencies (PIDs). X-linked Combined Immunodeficiency (SCID-X1) is a fatal monogenic disorder, caused by mutation of the Interleukin 2 Receptor common γ-chain (IL2RG) gene. For SCID-X1, the early clinical studies have clearly shown the therapeutic potential of integrating vector based gene replacement therapy, which achieved efficient lymphoid reconstitution thanks to the selective growth advantage of the genetically modified cells. However, these studies also highlighted the potential risk of insertional mutagenesis due to random integration of the vector into the host cell genome and to unregulated transgene expression, thus calling for the development of safer gene therapy approaches. Here, by combining the Zinc Finger Nuclease (ZFNs) technology to induce site-specific DNA double-strand breaks (DSB) and of Integrase-Defective Lentiviral Vector (IDLV) to deliver a corrective donor template, we exploited Homology Driven Repair (HDR) to correct SCID-X1 mutation in situ, restoring both physiological expression and function of the IL2RG gene . By knocking-in a corrective IL2RG cDNA transgene downstream of its endogenous promoter in B-lymphoblastoid cells, which constitutively express IL2RG, and in primary T-lymphocytes, which requires IL2RG for their survival and growth, we provide evidence of physiologic activity of the gene-edited IL2RG gene. By including an excisable GFP- or a Puromycin Resistance (PuroR) expression cassette downstream of the corrective cDNA, we coupled correction with exogenous selection of corrected SCID-X1 primary fibroblasts, which do not physiologically express IL2RG, and obtained an enriched population of gene-corrected cells. We then reverted this population to pluripotency by using a novel reprogramming vector that expresses OCT4, SOX2, KLF4 and microRNA cluster 302-367 to obtain a potentially unlimited source of gene-corrected induced pluripotent stem cells (iPSC). We thus generated several gene-corrected bona-fide iPSCs, as confirmed by molecular analyses for targeted integration, which were characterized for their pluripotent state. IDLV-mediated transient delivery of the Cre-recombinase resulted in the co-excision of the reprogramming vector together with the selector cassette, thus allowing the generation of several gene-corrected, reprogramming-factor free iPSCs with normal karyotypes. Finally, by differentiating corrected iPSC to T-lymphoid progenitor cells, which are lacking in SCID-X1 patients, and showing a selective growth advantage of those derived from corrected iPSCs, we provide evidence of the functional correction of the IL2RG mutant allele. Overall these data demonstrate the feasibility of our targeted gene editing strategy, which couples gene correction with cell reprogramming to generate disease-free IPSC, thus paving the way for the development of novel and safer therapeutic approaches for SCID-X1.
Chang, Chia-Wei. "Polycistronic lentiviral vector for hit and run reprogramming of mouse and human somatic cells to induced pluripotent stem cell." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009p/changc.pdf.
Full textPreskey, David Alexander. "An mRNA-reprogramming method with improved kinetics and efficiency and the successful transdifferentiation of human fibroblasts using modified mRNA." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18242/.
Full textLi, Zhonghan. "Dissecting Somatic Cell Reprogramming by MicroRNAs and Small Molecules: A Dissertation." eScholarship@UMMS, 2012. https://escholarship.umassmed.edu/gsbs_diss/607.
Full textDubé, Delphine. "Différence dans la capacité de fibroblastes à être reprogrammés par le cytoplasme de l'ovocyte : étude d'une situation différentielle chez le bovin." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS252.
Full textReprogramming, which is the return of a nucleus from a somatic state to a less differentiated state, is a major issue for cell therapy. However, the initial mechanisms governing the reprogramming remain poorly understood. Nuclear transfer (cloning) takes advantage of the unique reprogramming properties of the oocyte cytoplasm, and therefore is an interesting experimental approach to analyze these processes. The aim of this thesis is to study the difference in fibroblasts’ ability to be reprogrammed by taking advantage of a model-situation of differential reprogramming efficiency after cloning in cattle. This model consists of two batches of donor fibroblasts, which form cloned embryos having an 8 fold difference in development to term efficiency. Analysis of donor cells has shown increase ploidy abnormalities in cells of low potential, and transcriptomic similarity between the donor cells, whereas comparison ofcloned embryos transcriptomes showed gene expression reprogramming differences just after embryonic genome activation. Differences in DNA methylation between donor cells were observed in the promoters of candidate genes differentially reprogrammed and in a more comprehensive analysis by RRBS. Finally we studied the distribution of the first two blastomeres’ daughter cells at the blastocyst stage, as an "orthogonal" distribution and development to term of mice cloned embryos are linked (Liu et al., 2012). We have shown the existence of three distributions in the fertilized embryos but haven’t seen any difference of proportions between bovine cloned embryos. In conclusion, in our model, the distribution of the first two blastomeres’ daughter cells at the blastocyst stage does not seem related to the reprogramming efficiency in bovine cloned embryos, unlike epigenetic differences between donor cells
Alves, André Filipe Baltazar. "Cited2 in mouse embryonic fibroblasts reprogramming." Master's thesis, 2014. http://hdl.handle.net/10400.1/8353.
Full textCélulas diferenciadas podem ser reprogramadas de modo a voltarem a ser pluripotentes e se transformarem em outros tipos de células através da inserção de factores específicos. No entanto a reprogramação de células somáticas de modo a se obter células estaminais pluripotentes induzidas (iPS), tem um tempo de reprogramação é relativamente longo, a eficiência da reprogramação ainda é relativamente baixa, alguns dos factores de pluripotencia que são usados para este processo são pro-oncogenes, e ainda existe a dificuldade de ultrapassar a senescência. Através de células embrionárias fibroblasticas de ratinho (MEF’s) o objectivo é reprogramar com os 4 factores de transcrição idenficados como genes de pluripotencia, Sox2, Nanog, Klf4 e c-Myc, acrescentando o mais um factor de transcrição Cited2 e usando estas células nas passagens P2 e P4. O Cited 2 é um regulador de transcrição de genes envolvido em muitas cadeias de transcrição biológicas, sendo esta capaz de induzir a proliferação das células quer de ratinhos como de humanos, é considerado um “anti-senescente”, tem a capacidade de activar a transcrição dos genes envolvidos na pluripotencia. Para este trabalho foram criados vectores virais, dois retrovírus, sendo um deles o Cited2 de modo a ser sobreexpresso nas células contendo GFP acoplada (KRK1), outro apenas com GFP que servirá de controlo (LZRS) e dois lentivírus que permitiram a inserção e activação da transcrição dos 4 factores de Yamanaka (respectivamente TET STENCCA e M2RTTA). Serão analisadas morfologias das colonias obtidas através da reprogramação, serão feitos qRT-PCR às colonias de modo a se perceber se expressão os factores de pluripotência das células estaminais embrionárias (ESC), e se através da formação de corpos embrionários (EB’s) através das iPS obtidas estas são capazes de dar origem às três linhas germinativas, mesoderme, ectoderme e endoderme, este processo será realizado por qRT-PCR. Após análise dos resultados obtidos, pode-se concluir, que o Cited2 nas MEF’s P2 possibilita o aparecimento precoce dos agregados de colónias em relação às MEF’s que não têm Cited2 exógeno, enquanto nas MEF’s P4 com Cited2 sobreexpresso, consegue-se ultrapassar a senescência e obter-se iPS com valores bastante semelhantes entre si a nível da transcrição dos factores de pluripotencia (Nanog, Sox2, Oct4 e Rex1).
Rohanisarvestani, Leili. "Integration-free mRNA reprogramming of human fibroblasts: The study of aging upon reprogramming." Doctoral thesis, 2014. https://ul.qucosa.de/id/qucosa%3A12076.
Full textRosa, Fábio Alexandre Fiúza. "Direct Reprogramming of Fibroblasts to Dendritic Cells for Immunotherapy." Master's thesis, 2016. http://hdl.handle.net/10316/33773.
Full textThe maintenance of cellular identity relies on stable and complex gene regulatory networks. However, several studies have shown that cell fate can be reversed or modified by defined sets of lineage specific Transcription Factors (TFs). The process of direct cellular reprogramming holds promise for the generation of autologous cells for regenerative medicine. In the immunotherapy field, the use of immune modulatory cells enables the manipulation of patients ‘own immune system to target cancer cells. In this context we aim to apply direct cellular reprogramming for the generation of Dendritic Cells (DCs) as ideal antigen-presenting cells to kick-start adaptive immune responses. Here, TF-mediated direct reprogramming approach was established to generate DCs from fibroblasts. First, we employ a combination of literature mining and computational analysis to identify candidate TFs to induce DC fate in vitro. Candidate TFs were selectively expressed in DC populations in both mice and humans and their disruption caused abnormal adaptive immune phenotypes in mice. This analysis generated 19 candidate TFs with key developmental roles in the DC lineage. We have expressed a set of these TFs using a reprogramming proven Doxycycline-inducible lentivirus in mouse embryonic fibroblasts (MEFs). Employing transgenic MEFs harbouring the DC-specific reporter Clec9a-Cre X R26-stop-Tomato, a minimal combination of 4 TFs was identified. This set of 4 TFs activated the DC-specific reporter and generated tdTomato+ cells. TdTomato+ cells acquired DC-like morphology with increased size and complexity. Moreover, a percentage of tdTomato+ cells expressed Major Histocompatibility Complex (MHC) Class II at the cell surface, a critical molecule for antigen presenting function. Finally, overexpression of the 4TFs in Human Dermal Fibroblasts generated cells with DC-like morphology. These morphological changes emerged with similar timing and efficiency in mouse and Human, supporting species conservation of transcriptional regulators underlying DC commitment. Collectively, DC-like cells were generated via a TF-mediated direct reprogramming approach. The results presented in this study highlight the potential of direct reprogramming to a better understanding of transcriptional events underlying lineage specification and to generate immune modulatory cells for immunotherapy.
Tsai, Stephanie, and 蔡迪姍. "Stem Cell Extract Promotes the Reprogramming of Human Gingival Fibroblasts." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/98254481414271105419.
Full text國立臺灣大學
臨床牙醫學研究所
101
Induced pluripotent stem cell (iPS), generated from somatic cells by the four transcription factors, has been startling development of reprogramming technology. Since the integration of vectors is not fully predictable, a flood of studies have been publishing, including protein based-DNA free method. This method required abundant protein extracts, which were often collected by embryonic stem cells or teratocarcinoma, were harder to be applied clinically. Human cord blood has been established as a stable and potential source of mesenchymal stromal cells (cbMSC). Human gingival fibroblasts (GF) characterize as high proliferation rate and friendly collected by dentists. Although GF has recently been proved as a potential source by the traditional four-factor reprogramming via retrovirus, both cbMSC and GF have never been used in any DNA free reprogramming methods. Streptolysin O (SLO), a pore forming endotoxin, is widely used in protein delivery for DNA free reprograming. However, the response of GF treated with low sublytic dose has never been studied as well. Thus, we hypothesize that GF could be reprogrammed by protein extracs, and the research goal of the study is to reprogram GF by cbMSC’s protein extracts. Materials and methods: The questions remained were evaluated as follows: SLO caused cell viability change was evaluated by MTT assay, the membrane permeabiliting efficiency was evaluated by fluorescence stain, and phosphorylation of signal pathways were evaluated by Western Blot. After adding stem cell extracts, the reprogramming effect was examined by RT-PCR and DNA microarray for mRNA level. The differentiation ability was also checked as well. Results: Though SLO showed little effect at the concentration below 1000ng/mL, it caused membrane permeabilization in both GF and SF. Phosphorylation of ERK1/2 and P38 were also induced when SLO was treated. Adding cbMSC extracts in SLO treated GF increased the mRNA expression of OCT4 and NANOG, which were regarded as stem cell markers. Furthermore, these treated cells differentiated better in adipogenic, osteogenic, and neurogenic induction. In conclusion, cbMSC extracts could reprogram SLO treated GF causing changes in genetic level and differentiation ability.
Santos, Ana Raquel Pereira. "The role of LSD1/CoREST during hemogenic reprogramming." Master's thesis, 2018. http://hdl.handle.net/10316/82432.
Full textAs células estaminais hematopoiéticas (HSCs) são capazes de se auto-renovar e diferenciar em todos os tipos de células sanguíneas. Estas características fazem com que a transplantação de HSCs seja o principal tratamento contra doenças hematológicas. A incompatibilidade entre dador-paciente e o número insuficiente de HSCs que são obtidas para transplantação limitam o sucesso deste tipo de terapia celular. De forma a ultrapassar estas limitações, a expansão destas células in vitro seria a solução, mas este processo continua limitado e as HSCs acabam por perder a capacidade de se auto-renovarem. A reprogramação directa de células somáticas, mediada por factores de transcrição, abriu novas portas na área da medicina regenerativa de forma a HSCT mais personalizados. Apesar da baixa eficiência, a sobre-expressão dos factores de transcrição Gata2, Gfi1b e cFos permitiu a conversão de fibroblastos em HSCs estabelecendo um novo método de geração de HSCs indicadas para o paciente. Assim, uma melhor compreensão de como o complexo de reprogramação hematopoiética funciona e as interacções entre estes três factores de transcrição com outros componentes do complexo pode fornecer informação importante que permita o aumento da eficiência deste processo de forma a gerar HSCs com maior potencial de transplantação. Neste trabalho, defini os domínios do Gata2 necessários para interagir com o Gfi1b, cFos e com a LSD1/CoREST1 e mais importante, o papel catalítico do complexo LSD1/CoREST durante a reprogramação. Gata2 regula a expressão do gene Kdm1a, co-immunoprecipitações identificaram os domínios necessários para a interacção do Gata2 com os outros dois factores de transcrição, Gfi1b e cFos, mas também com a LSD1/CoREST1. O domínio que contem a sequência de localização nuclear (NLS) do Gata2 parece essencial na interacção com o Gfi1b, mas também com a LSD1/CoREST1, no núcleo. Os zinc fingers localizados no C-terminal e no N-terminal do Gata2 mostraram-se importantes na interação com a LSD1/CoREST1 e com o cFos, respectivamente. cFos também interage com o domínio transactivador do Gata2 no C-terminal, realçando as múltiplas vias necessárias à formação do complexo hemogénico. Esta cooperação entre os factores de transcrição e a LSD1/CoREST1 levanta a hipótese que este complexo pode ser essencial na reprogramação hematopoiética. LSD1 foi inibida farmacologicamente durante a reprogramação de fibroblastos em HSCs. A inibição com dois inibidores estruturalmente diferentes levou à diminuição drástica do processo de reprogramação demostrando que a LSD1 tem um importante papel catalítico durante este processo. Em suma, este estudo identifica as interacções funcionais entre o Gata2, Gfi1b, cFos e a LSD1/CoREST1 e o papel vital deste regulador epigenético durante a reprogramação hematopoiética e aquisição de HSCs. Mais informação sobre a regulação deste complexo hematopoiético pode aumentar a eficiência do processo aproximando esta tecnologia da translação para a clínica.
Hematopoietic stem cells (HSCs) are able of self-renewal and differentiation into all blood cell lineages. Due to this ability, hematopoietic stem cell transplantation (HSCT) constitutes treatment for a diversity of hematological disorders. Incompatibility between donor and host and the insufficient number of HSCs obtained for transplantation have limited the success of this cellular therapy. To overcome these limitations, expansion of HSCs in vitro has been explored, but this process is a changeling process as HSCs quickly lose stem cell properties upon expansion. Direct reprogramming mediated by transcription factors (TFs) of somatic cells is opening new routes for regenerative medicine and personalized HSCT. Albeit at low efficiency, combined expression of Gata2, Gfi1b and cFos induces reprogramming of fibroblasts into HSC-like cells providing a novel alternative to generate patient-specific HSCs. A better understanding of hemogenic reprogramming and the interactions between these three TFs with each other and with other players will provide valuable information to increase the efficiency of the process and to generate transplantable HSCs that can be used in the clinic. Here, I have defined Gata2 protein domains required to interact with Gfi1b, cFos and LSD1/CoREST1. Gata2 regulates the expression of the Kdm1a gene that encodes LSD1 and co-immunoprecipitations experiments revealed multiple domains required for the interaction of Gata2 with cFos, Gfi1b and LSD1/CoREST1. The nuclear localization sequence of Gata2 is essential for the interaction with Gfi1b but also with LSD1/CoREST1 in the nucleus. C-terminal zinc finger and the N-terminal zinc finger of Gata2 are important for the interaction with LSD1/CoREST1 and cFos, respectively. cFos also interacts with the C-transactivator domain of Gata2, highlighting multiple regulatory pathways involved in the establishment of this “hemogenic complex”. Given this cooperation between TFs and LSD1/CoREST1 I hypothesize that this complex may be essential for the hemogenic reprogramming. LSD1 was pharmacological inhibited during hematopoietic reprogramming into HSC-like cells. Inhibition with two structurally unrelated small molecules led to a drastic decrease of reprogramming efficiency implicating the catalytic function of LSD1/CoREST complex during the hemogenic reprogramming. Overall, this study identified functional interactions between of Gata2, Gfi1b, cFos and LSD1/CoREST1 and the vital role of this epigenetic regulator during hematopoietic reprogramming and acquisition of the HSC fate. This study paves the way for the regulation of this hemogenic complex bringing high-efficiency hemogenic reprogramming one step closer to clinical translation.
Outro - O projecto foi financiado pela Fundação para a Ciência e a Tecnologia, referência PTDC/BIM-MED/0075/2014 designado “Mecanismos da indução hemogénica em fibroblastos humanos”. NOTA: Esta informação foi colocada nesta secção porque o projecto em causa não constava na lista cedida.
Oliveira, Catarina Alexandra Grilo de. "Reprogramming of fibroblasts intoinduced Pluripotent Stem Cells – iPSC : hepatitis C – challenges and progress." Master's thesis, 2013. http://hdl.handle.net/10451/29589.
Full textHepatitis C is a liver disease that results from an infection by the Hepatitis C virus. It can range between severe to moderate illness, with variable time. Today, the most infected people are associate with drugs and injectable material. Until 1992, an individual was mostly infected by blood transfusions or organ transplants. This work reflects, therefore, the attempt to develop different strategies to the detailed study of hepatitis C virus, using a novel cellular strategy. The aim of the study is to obtain the iPSCs from fibroblasts by infected patients with the virus. Subsequently, it will be made differentiate into hepatocytes like cells. This development happens through progressive steps of cellular manipulation with many different conditions, culture mediums and techniques. Then, these cells are used to viral broader study, with results that mimic liver human conditions. In parallel, it was also tested forty five plasma samples from infected patients to comparing infection levels of different HCV genotypes as well as the response to drug therapy. The results were satisfactory once it was accomplished iPSC production, and it was possible to obtain conclusions with the RNA analysis.
A hepatite c é uma doença hepática resultante da infeção provocada pelo vírus da hepatite c. A doença pode variar de severa a ligeira, com duração diversa. Atualmente, a maioria dos indivíduos infetados estão associados ao contacto com drogas e material injetável. Até 1992, um indivíduo era maioritariamente infetado através de transfusões sanguíneas ou transplantes de órgãos. Este trabalho, reflete, por isso, a tentativa de desenvolver diferentes estratégias para o estudo pormenorizado do vírus da Hepatite C, recorrendo a uma estratégia celular inovadora. O estudo pretende obter o desenvolvimento de células iPSC a partir de fibroblastos de pacientes infetados com o vírus. Posteriormente será efetuada a sua diferenciação em hepatocytes like cells. Este desenvolvimento dá-se através de etapas progressivas de manipulação celular, com auxílio de diversas condições, meios de cultura e técnicas. Estas células são depois usadas para um estudo viral mais amplo, com resultados que mimetizam as condições hepáticas humanas. Em paralelo foi também testado o plasma de quarenta e cinco doentes infetados, com o objetivo de comparar níveis de infeção a partir de diferentes genótipos de HCV, assim como a resposta ao tratamento farmacológico. Os resultados foram satisfatórios uma vez ter sido conseguida a obtenção de iPSC, assim como foi possível tirar conclusões em relação às análises de RNA efetuadas.
Project developed under ERASMUS Research training program, at CBH – Centre de Biologie Humane, Hôpital Sud, Université de Picardie Jules Verne. Faculté de Pharmacie. Amiens – France.
LUO, PEI-WEN, and 羅佩玟. "Optogenetic modulation and reprogramming of bacteriorhodopsin-transfected human fibroblasts on self-assembled fullerene C60 nanosheets." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/544u23.
Full text國立臺灣大學
高分子科學與工程學研究所
107
Fullerenes have the unique biocompatibility and photoelectric properties and are candidate materials for biomedical applications. Several cell membrane proteins in nature such as bacteriorhodopsin also have photoelectric properties. Highly expressible bacteriorhodopsin (HEBR) is a novel light-sensitive opsin that has the potential to trigger neural activities through optogenetic modulation. In this study, we delivered HEBR plasmids to human fibroblasts and exposed the cells to C60 fullerene self-assembled two-dimensional nanosheets. Results showed that the above approach combined with light stimulation (3 second duration and three times per day) may promote the reprogramming and differentiation of human fibroblasts into neural-like cells in 7 days without any neural induction medium. The special photoelectric properties of fullerenes as culture substrates and transfected HEBR on cell membrane may provide a new optogenetic platform for regulating the location (C60 nanosheet) and time (frequency of light illumination) for human fibroblasts to become neural-like cells, and may be applied to improve neural regeneration in the future.
Correia, Paula Magda Teixeira. "Exploiting the role of long non-coding RNAs in the direct conversion of fibroblasts into functional cardiomyocytes." Master's thesis, 2020. http://hdl.handle.net/10773/29325.
Full textAs doenças cardíacas são uma das principais causas de mortalidade nos países desenvolvidos. A patologia associada é tipicamente caracterizada pela perda de cardiomiócitos que leva, eventualmente, à insuficiência cardíaca. Atualmente, existem muitas estratégias promissoras para a regeneração cardíaca. A reprogramação cardíaca direta tem se tornado conhecida como uma nova abordagem terapêutica para regeneração cardíaca depois de uma lesão. A reprogramação cardíaca direta é um processo simples e rápido, no entanto os seus mecanismos moleculares e de maturação celular continuam maioritariamente desconhecidos. A reprogramação cardíaca direta é uma abordagem terapêutica com grande potencial para se tornar uma das principais estratégias da medicina regenerativa no combate à insuficiência cardíaca, uma vez que os fibroblastos estão facilmente disponíveis no coração e dividem-se facilmente ao contrário dos cardiomiócitos. Os fibroblastos cardíacos são uma população alargada no coração que, após uma lesão, tornam-se em miofibroblastos ativos contribuindo para a fibrose. Atualmente, sabe-se que uma combinação específica de três fatores de transcrição, Mef2c, Gata4 e Tbx5 (MGT), é suficiente para reprogramar fibroblastos cardíacos de ratinho em cardiomiócitos induzidos. Por outro lado, quando fibroblastos humanos são infetados com MGT apresentam uma pequena percentagem de conversão. Com o retrovírus MGT transfectamos com sucesso: fibroblastos adultos de ratinho (MAFs), Feeders e Gm 03348 (fibroblastos humanos com 10 anos de idade). Através da análise de qPCR, avaliamos a expressão dos lncRNAs: Gm 15856, Mir22hg, Gm 027028 e Gm 28592. O nosso objetivo foi estudar quais os lncRNAs são os melhores candidatos para knockdown, e assim melhorar a eficiência da reprogramação cardíaca direta. Para além disso, estudamos como a manipulação de nutrientes nos meios de cultura pode influenciar a reprogramação cardíaca direta. Verificou-se que meios com níveis mais altos de glucose e glutamina apresentaram maiores taxas de sobrevivência e proliferação celular.
Mestrado em Biologia Molecular e Celular
Hao, Ru [Verfasser]. "Reprogramming of mesenchymal stem cells and adult fibroblasts following nuclear transfer in rabbits / by Ru Hao." 2008. http://d-nb.info/993277586/34.
Full textHo, Lin, and 何琳. "Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/b6n7g4.
Full text國立臺灣大學
高分子科學與工程學研究所
106
3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermoresponsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ~190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration.
Adler, Andrew Frederick. "Non-viral Transfection and Direct Reprogramming of Fibroblasts to Neurons and Glia: Importance of Physical and Chemical Microenvironments." Diss., 2014. http://hdl.handle.net/10161/9048.
Full textThe recent discovery that fibroblasts can be reprogrammed directly to functional neurons with lentivirus has reinvigorated the belief that autologous human cell therapies against many neurodegenerative diseases may be achievable in the near future. To increase the clinical translatability of this approach, we have developed a technique to perform this direct conversion without the use of virus. We transfected fibroblasts with plasmids condensed into non-viral nanoparticulate carriers with a bioerodible peptidomimetic polymer, pCBA-ABOL. Gene delivery with pCBA-ABOL was exceptionally effective and nontoxic, producing high transfection efficiencies and enabling serial dosing of plasmid cocktails. We delivered plasmids encoding neural lineage-instructive transcription factors to primary mouse embryonic fibroblasts (PMEFs), eliciting: drastic morphological changes, activation of endogenous neuronal transcription factor expression, neuronal promoter activity, and the appearance of neuronal proteins. Serial dosing of pCBA-ABOL complexes produced increasingly higher yields of these non-virally induced neurons (NiNs). The majority of NiNs fired action potentials under patch clamp. This is the first description of a method capable of directly inducing functional neuronal cells from fibroblasts without the use of virus.
We then moved on to further increase the yield of NiN generation, in an effort to produce a sufficient quantity of neurons for cell therapies. Informed by neurodevelopmental cues and by precedents set by the induced pluripotent stem cell (iPSC) field, we performed non-viral neuronal reprogramming in the presence of soluble microenvironmental factors that either inhibited GSK-3beta; and SMAD signaling, or induced chronic membrane depolarization. Chronic depolarization doubled the number of cells expressing neuronal markers produced with glutamatergic as well as with dopaminergic transcription factor cocktails. Inhibition of GSK-3beta; and SMAD signaling similarly doubled the yield of glutamatergic NiNs, and enabled induction of neuronal markers and morphological transformation in human fibroblasts.
In addition to soluble microenvironmental factors, the physical microenvironment can also strongly influence various cellular phenotypes. This list includes many phenotypes related to endocytosis - the transit mechanism of nanoparticulate gene carriers entering cells during non-viral transfection. As such, we set out to determine if patterned physical substrate topography could be used to increase non-viral transfection. We employed a high-throughput screen of micropitted substrate topographies, and indeed found that larger, denser micropits could support significantly higher transfection efficiencies in fibroblasts, compared to smooth substrates. The same topographies produced higher reverse transfection efficiencies, and greater siRNA-mediated knockdown of a reporter gene. The control of transfection with substrate topography is a new design parameter that could find broad application in in vitro non-viral reprogramming strategies, as well as in the intelligent design of nucleic acid-eluting scaffolds in vivo.
Encouraged by our success with direct neuronal reprogramming, and armed with a greater understanding of some microenvironmental mediators thereof, we attempted to produce non-virally-induced oligodendroglial progenitor cells (NiOPCs), which has been historically challenging for other investigators. We discovered the fibroblastic intracellular microenvironment is a significant barrier to the function of Olig2 - a master regulator of OPC phenotype - in direct reprogramming. Fibroblasts do not express Olig2 chaperones which are normally expressed in OPCs, causing Olig2 to become sequestered in the cytoplasm of transfected PMEFs. We relieved this barrier through fusion of a strong nuclear localization sequence (NLS) to Olig2, which repartitioned Olig2-NLS from the cytoplasm to the nucleus in transfected fibroblasts. The use of Olig2-NLS in iOPC reprogramming cocktails resulted in a drastic improvement in the yield of OPC-specific marker expression. The improvement associated with Olig2-NLS was insufficient to elicit significant myelin protein expression with the non-viral system, but the yield of virally-induced oligodendrocyte-like cells (iOLs) was improved dramatically. Further enhancements will be required to generate fully-reprogrammed NiOPCs, but the increased efficiency of viral iOPC generation is immediately useful for disease modeling and potentially in cell replacement therapies if human cells can be converted for the first time using this technique. During direct reprogramming, CNS-specific transcription factors are delivered to foreign intracellular contexts as a rule, which may reduce their ability to function effectively; we have shown this can be a critical yet under-appreciated determinant of the success or failure of a direct reprogramming system.
Taken together, the technological and intellectual advancements we describe herein represent significant improvements to non-viral transfection and reprogramming systems. These techniques can find broad appeal to the many researchers and clinicians deploying these systems. More specifically, we present significant steps towards realization of the dream of safe and effective autologous cell therapies against devastating and currently-intractable neurodegenerative diseases.
Dissertation
Carfora, Antonia. "L'eterogeneità dei fibroblasti dermici come fattore in grado di condizionare l'efficacia della riprogrammazione cellulare. Dermal fibroblasts heterogeneity as a major factor influencing the efficiency of cell reprogramming." Tesi di dottorato, 2018. http://www.fedoa.unina.it/12530/1/carfora_antonia_31.pdf.
Full textAzenha, Cláudia de Jesus. "Defining Transcriptional Networks Underlying Dendritic Cell Heterogeneity Using Direct Cellular Reprogramming." Master's thesis, 2018. http://hdl.handle.net/10316/82431.
Full textEstratégias de reprogramação celular têm evidenciado a flexibilidade do destino celulare, através de fatores de transcrição (FTs) específicos dos tipos celulares para converter células somáticas em pluripotentes. A reprogramação direta de um tipo de célula diferenciada em outr,o também foi demonstrada e explorada para elucidar os mecanismos de biologia celular e para fins de medicina regenerativa. Recentemente, demonstrámos que células dendríticas (CDs) apresentadoras de antigénios, podem ser reprogramadas em tipos de células diferentes,através da combinação de FTs. Classicamente, pensa-se que um progenitor específico da linhagem mielóide origina subgrupos de CDs funcionalmente diferentes: CDs convencionais (cCDs) são células apresentadoras de antigénios que desencadeiam respostas imunitárias; CDs plasmocitóides (pDCs) são células que produzem Interferão tipo I durante uma infecção viral. No entanto, os mecanismos exactos que regulam a divergência dos diferentes subtipos celulares durante o desenvolvimento das CDs ainda necessitam de ser estabelecidos. Recentemente identificámos os FTs Irf8, Pu.1 e Batf3 como suficientes e necessários para reprogramar fibroblastos em cCDs do tipo 1. Dado o papel importante dos FTs nas decisões de destino celular das diferentes CDs, o objetivo deste estudo é investigar a heterogeneidade das DCs através da caracterização mínima dos FTs e necessária para induzir DCs a partir de fibroblastos. Combinando a revisão bibliográfica e análise computacional, identificámos 23 TFs candidatos com potencial para originar pCDs, que demonstraram ter um papel importante na especificação de pCDs. Validámos em ratinho o repórter Clec9a que, é expresso em pCDs, através da proteína fluorescente tdTomato tornando este modelo adequado para o rastreamento de pCDs originadas pela sobreexpressão de FTs. Em seguida, fibroblastos embrionários de ratinho (MEFs) com o repórter Clec9a, foram transduzidos com um conjunto de FTs indutores de pCDs, usando um sistema lentiviral induzido por doxiciclina. Através da eliminação individual de cada TF, identificámos Irf8 e TF2 como a combinação mínima necessária para a activação do repórter. A expressão de moléculas de complexo de histocompatibilidade principal (MHC) de classe II, importante para a funcionalidade das DCs, também foi observada como dependente do Irf8 e TF2. Além disso, este estudo destacou o papel do TF1 na especificação das pCDs. Embora não seja intrinsecamente necessário, quando combinado com Irf8 e TF2, o TF1 aumenta a expressão de marcadores de superfície típicos de pCDs, que origina células tdTomato + B220 + Bst2 + pCD-like por reprogramação direta. Em resumo, este estudo fornece evidências de que o Irf8 quando combinado com o TF2 e o TF1 inicia um programa de reprogramação de fibroblastos em pCDs. Estas descobertas fornecem informações valiosas sobre a especificação de pCDs. No futuro, a geração de pCDs por reprogramação direta abre caminhos para a indução de respostas imunes antivirais através de células de engenharia autóloga.
Cellular reprogramming strategies have highlighted the flexibility of cell fates with the possibility to use cell-type-specific transcription factors (TFs) to convert somatic cells into pluripotency. Direct lineage conversions of one differentiated cell-type into another have also been demonstrated and explored for elucidating cell biology mechanisms and for regenerative medicine purposes. Recently, we have demonstrated that antigen presenting Dendritic cells (DCs) can be reprogrammed into unrelated cell-types by a small combination of TFs. Classically, it is thought that a myeloid DC committed progenitor gives rise to the functionally different DC subsets: conventional DCs (cDCs) are professional Antigen Presenting Cells (APC) driving antigen-specific immune responses; plasmacytoid DCs (pDCs) are professional producers of type I interferons during viral infection. However, the timing and exact mechanisms regulating the divergence of the different subsets during DC development is still to be established.We have recently identified Irf8, Pu.1 and Batf3 as sufficient and necessary to induce a cDC type 1 fate in fibroblasts. Given the important role of TFs in cell-fate decisions of the different DC subsets, the aim of this study is to investigate DC heterogeneity by fine-tuning the minimal TF network necessary to induce DC fate in order to program pDCs from fibroblasts.By combining literature review and computational analysis, we have identified 23 pDC-inducing candidate TFs with important roles in pDC specification and restricted pDC expression. We have then validated that in Clec9a reporter mouse, pDCs are labelled with tdTomato fluorescent protein making this model suitable for screening pDC-inducing factor. Then we have transduced Clec9a reporter mouse embryonic fibroblasts (MEFs) with a set of the pDC-inducing TFs using a doxycycline-induced lentiviral system. By sequential individual elimination of each TF, we have identified Irf8 and TF2 as the minimal combination required for reporter activation. Major histocompatibility complex (MHC) class II molecules’ expression important for DC functionality was also observed to be dependent of Irf8 and TF2. Moreover, our study highlighted the role of TF1 for pDC specification. Whilst not being intrinsically required, when combined with Irf8 and TF2, TF1 increases the expression of pDC- typical surface markers with the generation of tdTomato+ B220+ Bst2+ pDC-like cells by direct reprogramming. In summary, we provide evidence that Irf8 when combined with TF2 and TF1 kicks-start a pDC program in fibroblasts. These findings provide valuable insights into pDC specification. In the future, the generation of pDCs by direct reprogramming opens avenues for inducing anti-viral immune responses with autologous-engineered cells.
Liao, Juan-chi, and 廖專琪. "Ultrasound enhances mouse fibroblast Ultrasound enhances mouse fibroblast reprogramming to induced pluripotent stem cells." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/9at43n.
Full text國立高雄大學
生物科技研究所
99
The somatic cell could reprogram to induced pluripotent stem cell (iPSC) by gene transfection vector. The characters of iPS cells are like embryonic stem cells (ESC), they have the same gene expression and life characteristic, include self-renew and differentiate to three germ layers. The preparation of iPSC is by lentiviral vector, but the transfect rate of is only 0.1 to 1%. Ultrasound is a new method of gene transfection. When ultrasound transmits energy in fluid, it could cause cavitations and damage the cell membrane. Therefore, ultrasound could enhance the cell permeability and then increase the gene transfecrion rate. In this study, different sizes of liposomes were used to mimic cells and lentivirus. The permeability of liposomes was increased during insonation. Same phenomena were found for applying sound waves on mouse fibroblast in presence of calcein-liposomes and GFP-lentiviral vectors. Sound waves could enhance the binding of calcein-liposomes and increase the transfection of GFP-lentiviral vectors to fibroblast. The transfection efficiency of GFP-lentivires is 23.81% which 2.27-folds higher than that without ultrasound. Same protocol was employed for the transfection of iPSC. The iPS cellular colonies number is 40% higher than without sound treatment. The expression of iPS cells is then identified by cellular morphology, DNA electrophoresis, immunofluroescence and Raman microscopy. The result showed that ultrasound could enhance lentiviral vector gene transfection and then increase iPS cells colonies.
Kang, Ching-Hsun, and 康景勛. "Reprogramming the adult skin fibroblast cells with embryonic stem cell extract." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/26636879067512663805.
Full text國立成功大學
生物科技研究所碩博士班
94
Nuclear reprogramming is defined as altering the gene activity of differentiated cells to express the characteristics and function of different lineage, even resume their pluripotency. Several researches have demonstrated that nuclear reprogramming is possible. Nuclear transfer with somatic cells had proven to be able to give rise to cloning animals and derivation of embryonic stem cells. Induction of plasticity of adult stem cells could promote somatic cells to trans-differentiate into other cell lineages. After increasing permeability of the plasma membrane and introduction of ES-D3 cell extract, the morphology of somatic cells changed into a ES cell-like shape. Quantitative real-time PCR analysis showed both reprogrammed Dunni cells and HS-68 cells expressed Oct-4, Nanog and Pecam-1 genes which are stage-specific to undifferentiated ES cells. Strong alkaline phosphatase (AP) activity was also observed in reprogrammed cells. Under spontaneous differentiation, reprogrammed somatic cells could trans-differentiate into different lineages of three primary germ layers. According to our results, terminal differentiated human and mouse fibroblasts can be reprogrammed by mouse embryonic stem cell extracts. However, the protocol should be further modified to achieve a better efficiency on reprogramming. In the present study, we found that the cellular characteristics of somatic fibroblast cells derived from mouse skin (Dunni cells) and human foreskin (HS-68) could be reprogrammed by the cell extract of mouse embryonic stem cells (ES-D3).
Huang, Yao-De, and 黃耀德. "Roles of EpCAM and CLDN-7 in reprogramming mouse fibroblast into induced pluripotent stem cells." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/47656085868312770304.
Full text國立臺灣海洋大學
生物科技研究所
98
Epithelial cell adhesion molecule (EpCAM) is a cell adhesion molecule and a potential target for therapeutic antibodies. Recently, EpCAM has been shown to regulate tumor cell proliferation by its nucleocytoplasmic intracellular domain fragment (ICD). EpCAM intracellular domain (EpICD) activates C terminal myelocytomatosis oncogene (c-Myc) in nucleus by Wnt signal pathway. On the other hand, the complex of EpCAM and the tight junction protein claudin-7 (CLDN-7) would promote tumorigenicity and accelerates tumor growth. We observed that EpCAM and CLDN-7 express in both mouse embryonic stem cells and induced poluripotent stem cells. In this study we first discovered that the expressions of EpCAM and CLDN-7 would be activated when reprogramming mouse embryonic fibroblast cells into induced pluripotent stem cells. The efficiency of iPS reprogramming was enhanced by overexpressing EpCAM, CLDN-7 or both. Furthermore, silence of endogenous EpCAM or CLDN-7 resulted in the reduction of iPS reprogramming. However, ectopic expression of EpCAM and CLDN-7 in differential somatic cells such as mouse fibroblast cells had no effect on the activation of pluripotency-associated gene Nanog, Oct4, Sox2, c-Myc and KLF4. Our data show that EpCAM positively regulates iPS reprogramming, yet the detail mechanism remains unclear.
Santana, Miguel Torres. "Enhancing reprogramming and transdifferentiation through long non-coding RNAs." Master's thesis, 2017. http://hdl.handle.net/10451/31607.
Full textFoi recentemente desenvolvido um novo método revolucionário capaz de reprogramar fibroblastos em células pluripotentes induzidas através da expressão de 4 fatores de transcrição (Oct4, Sox2, Klf4 e c-Myc). A reprogramação de fibroblastos em células pluripotentes induzidas (iPSC) foi um grande avanço científico com possíveis aplicações clínicas e fins terapêuticos, no entanto, à medida que as células diferenciadas (células somáticas) vão envelhecendo devido à acumulação de marcas genéticas e epigenéticas, estas tornam-se mais resistentes à sua conversão para um estado pluripotente. Posto isto, um dos principais objetivos deste projeto passava por perceber o impacto que o envelhecimento tem na reprogramação de células humanas em células estaminais pluripotentes induzidas humanas (hiPSCs). De facto, ao reprogramar fibroblastos adultos de ratinho em células pluripotentes induzidas (miPSCs – mouse induced pluripotent stem cells), observou-se que o envelhecimento celular estava a atuar como uma barreira, reduzindo a eficiência da reprogramação celular. Curiosamente, nenhuma correlação entre a eficiência da reprogramação celular e o envelhecimento foi observada na reprogramação de células humanas. Ao realizar a reprogramação celular de fibroblastos embrionários humanos (WI38) e fibroblastos humanos com 3 anos (3yr) com baixa passagem (passage 4), observou-se o mesmo número de células hiPSCs geradas. Sugerindo assim, e ao contrário do esperado e observado em células de ratinho, que a idade das células humanas utilizadas para formar hiPSCs não dificulta de forma significativa a reprogramação celular. Contudo, foi observado que o número de passagens das células em cultura tinha uma contribuição importante na eficiência da reprogramação celular de fibroblastos humanos em hiPSCs. Ao tentar reprogramar fibroblastos humanos com uma baixa passagem (passagem 4) e uma alta passagem (passagem 7), e apesar de as células com passagem 7 expressarem níveis mais elevados de hOCt4, apenas as células humanas com uma baixa passagem reprogramaram. Estes resultados sugerem que o número de passagens celulares tem uma contribuição importante na eficiência da reprogramação celular. De facto, estes resultados podem ser explicados pela simples razão de que cada passagem celular realizada em cultura, aumenta o risco de ocorrer dano no ADN, mutações e ainda alterações nas características celulares originando assim, alterações na morfologia, na resposta a estímulos, na taxa de crescimento, na expressão de proteínas e na eficiência da transfecção celular. De acordo com Leonard Hayflick e Paul Moorhead, as células humanas têm um número limitado de divisões celulares em cultura que poderá variar entre tipos de células. Cada divisão celular pode induzir um encurtamento dos telómeros que poderá resultar em senescência. Podendo esta ser ainda induzida através de dano molecular que ocorre de forma aleatória, pelo stress oxidativo e pela danificação do ADN. A senescência pode ainda ser acumulada em alguns tecidos contribuindo para a disfunção orgânica. Sugere-se portanto, que devido ao número elevado de passagens celulares, os fibroblastos embrionários humanos e os fibroblastos humanos com 3 anos sofreram o encurtamento dos seus telomeros, levando assim, a um fenótipo senescente, reduzindo a eficiência do processo de reprogramação celular em células humanas. Um outro objetivo deste projeto passava por encontrar outras estratégias celulares que ajudem a ultrapassar a limitação do envelhecimento na reprogramação celular de células humanas, através da modulação de RNAs longos não codificantes (lncRNA). No entanto, como os resultados referentes ao envelhecimento demonstraram uma não influência na eficiência da reprogramação de células humanas em hiPSCs, decidiu-se desvendar e entender, qual a função do lncRNA Zeb2NAT na reprogramação celular e qualidade de células humanas. Embora, já reportado anteriormente pelo nosso laboratório, que a supressão do lncRNA Zeb2NAT em células de ratinho, utilizando olignucleótidos contra-senso (anti sense), denominados por LNAs aumentam significativamente a reprogramação celular de fibroblastos de ratinho envelhecidos ajudando assim contornar as barreiras mesenquimais, ainda nada se sabia sobre o impacto que a diminuição do Zeb2 e do Zeb2NAT poderia ter na reprogramação celular de células humanas. Contudo, utilizando a mesma abordagem, acima descrita, em fibroblastos embrionários humanos e em fibroblastos humanos com 3 anos, verificou-se um atraso na formação de hiPSCs das células humanas que sofreram uma desregulação tanto do Zeb2 como do Zeb2NAT, comparativamente às células do controlo e do LNA-controlo (um LNA não específico a nenhuma sequência genómica humana, utilizado como um controlo negativo da transfeção de LNAs). De facto, 14 dias após a primeira transfeção com LNAs em ambas as duas linhas celulares, apenas começaram a formar-se hiPSCs no controlo e no LNA-controlo, tendo o controlo um número maior de hiPSCs formadas em ambas as células, comparativamente à condição com LNA-controlo. No entanto, 19 dias e 35 dias depois da primeira transfeção, as WI38 com a desregulação do Zeb2 e do Zeb2NAT, respetivamente, começaram a reprogramar. Nenhuma formação de hiPSCs nas células humanas de 3 anos com a desregulação do Zeb2 e do Zeb2NAT foi observada. Tendo em consideração que as células de ratinho após diminuição dos níveis do Zeb2 e do Zeb2-NAT começaram a reprogramar de forma mais eficiente que o controlo e o LNA-controlo, estes resultados em células humanas sugerem que a desregulação do Zeb2 e do Zeb2NAT pode estar, de certa maneira, a atrasar e até mesmo a atuar como um bloqueador da reprogramação celular humana. Este bloqueio/atraso que se observou na reprogramação de fibroblastos humanos em hiPSCs poderia ter como principal responsável a transfeção de LNAs, necessária para diminuir a expressão do Zeb2 e do Zeb2NAT. De facto, já foi demonstrado que o uso do reagente de transfeção Lipofectamine ativa algum stress nos genes afetando o ciclo da regulação e/ou a sinalização metabólica nas células. No entanto, as células com a condição do LNA-controlo reprogramaram com a mesma rapidez que o controlo (sem LNAs). E a diferença do número de hiPSCs geradas pelo LNA-controlo, comparativamente ao controlo, acaba por não ser significativamente diferente. Isto sugere, que embora a transfeção de LNAs tenha um impacto na reprogramação celular, diminuindo a eficiência desta, existe um outro fator que está a contribuir para que as células com a diminuição da expressão do Zeb2 e do Zeb2-NAT tenham uma redução na eficiência da reprogramação celular em células humanas. Todavia, ainda é incerto a razão de a desregulação do Zeb2 e do Zeb2NAT terem atrasado e até mesmo bloqueado a reprogramação celular em células humanas. É possível que possa ser devido ao mecanismo que rege o Zeb2 que, de alguma forma, é diferente comparativamente ao mecanismo observado em ratinhos. Outra possibilidade a ter em conta é a necessidade de realizar uma otimização ao protocolo da transfeção de LNAs, de forma a adaptar esta ao protocolo da reprogramação celular. Apesar disto, acreditamos que esta abordagem constitui uma nova estratégia para estudar o impacto dos lncRNAs na reprogramação celular e antecipamos ainda que os resultados produzidos irão gerar contribuições importantes na área de investigação do envelhecimento e da reprogramação celular.
Revolutionary progress has been achieved recently following the discovery of cellular reprogramming by the expression of a combination of 4 transcription factors (Oct4, Sox2, Klf4 and c-Myc). The reprogramming of fibroblasts to induced pluripotent stem cells (iPSC) was a major scientific advance however, as differentiated cells grow old and due to the accumulation of genetic and epigenetic marks, they become more resistant to be converted back to a pluripotent state. In fact, when tried to reprogram mice cells into miPSCs, aging was acting as a barrier, reducing the efficiency of reprogramming aged cells. However, through our recent findings no correlation between cellular reprogramming efficiency and aging was found in human cells. However, we observed that the number of passages had an important contribution in the efficiency of reprogramming human fibroblasts into hiPSCs. Reprogramming experiments with human fibroblasts with lower passage (passage 4) and high passage (passage 7) show that only the human cells with a lower passage, reprogrammed. The higher the number of passages in vitro, the lower the efficiency of cellular reprogramming of human cells. The other main interest of this project converged on cellular strategies to overcome this aging limitation by modulating long noncoding RNAs (lncRNAs). However, as the results showed a non-influence of aging on reprogramming human cells into hiPSCs it was decided to focus on understanding exactly the role of the lncRNA Zeb2NAT on cellular reprogramming of human cells. As previously reported by our lab, the suppression of Zeb2NAT in mice cells significantly increased the reprogramming of aged fibroblasts. However, when tested the same approach in human cells, a delay in generating hiPSCs was observed, suggesting that the knockdown of Zeb2 and Zeb2NAT can be acting as a blocker of cellular reprogramming in human cells, going against what was observed in mice cells. Still, it’s uncertain why downregulation of Zeb2 and Zeb2NAT were delaying and blocking the cellular reprogramming in human cells. It is possible that the mechanisms of Zeb2 in humans are, somehow, different from those observed in mice. Another possibility to take in account can be due the fact the protocol isn´t fully optimized. Despite this, we believe this approach constitutes a novel strategy to study the impact of lncRNAs in cellular reprogramming and we anticipate that the output of this proposal will generate important contributions to the aging and cellular reprogramming research field.
Steward, Melissa Mary. "The Direct Reprogramming of Somatic Cells: Establishment of a Novel System for Photoreceptor Derivation." 2013. http://hdl.handle.net/1805/3455.
Full textPhotoreceptors are a class of sensory neuronal cells that are deleteriously affected in many disorders and injuries of the visual system. Significant injury or loss of these cells often results in a partial or complete loss of vision. While previous studies have determined many necessary components of the gene regulatory network governing the establishment, development, and maintenance of these cells, the necessary and sufficient profile and timecourse of gene expression and/or silencing has yet to be elucidated. Arduous protocols do exist to derive photoreceptors in vitro utilizing pluripotent stem cells, but only recently have been able to yield cells that are disease- and/or patient-specific. The discovery that mammalian somatic cells can be directly reprogrammed to another terminally-differentiated cell phenotype has inspired an explosion of research demonstrating the successful genetic reprogramming of one cell type to another, a process which is typically both more timely and efficient than those used to derive the same cells from pluripotent stem cell sources. Therefore, the emphasis of this study was to establish a novel system to be used to determine a minimal transcriptional network capable of directly reprogramming mouse embryonic fibroblasts (MEFs) to rod photoreceptors. The tools, assays, and experimental design chosen and established herein were designed and characterized to facilitate this determination, and preliminary data demonstrated the utility of this approach for accomplishing this aim.