Dissertations / Theses on the topic 'Fibrillation cardiaque – Modèles mathématiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 dissertations / theses for your research on the topic 'Fibrillation cardiaque – Modèles mathématiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Khaddoumi, Balkine. "Analyse et modélisation d'électrocardiogrammes dans le cas de pathologies ventriculaires." Nice, 2005. http://www.theses.fr/2005NICE4021.
Full textLe travail s’inscrit dans l’analyse des troubles du rythme cardiaque, et plus particulièrement ceux issus de disfonctionnements des ventricules. Deux problèmes ont été abordés : le premier concerne l’étude d’épisodes de Fibrillation Ventriculaire (VF) obtenus chez l’homme par des enregistrements endocavitaires. Deux hypothèses ont été proposées : signal modélisé par un fondamental et des harmoniques stables ou dépendant du temps. On montre que l’on peut mettre en évidence sur des épisodes courts (5 à 15 secondes) des fluctuations significatives du fondamental grâce à des algorithmes adaptatifs ou évolutifs. Un résultat pratique, établi pour la première fois chez l’homme, est la corrélation entre le fondamental de l’épisode de FV et la période réfractaire. Le second problème concerne des enregistrements de l’ECG à l’aide d’un système à 64 électrodes. L’idée originale est de proposer une mesure de la dispersion spatiale des formes des ondes ECG. La pertinence de la mesure est prouvée en comparant un groupie de sujets ayant eu un infarctus du myocarde avec un groupe témoin sain. Pour chaque colonne d’électrodes les différences de forme sont calculées par rapport à un signal de référence obtenue par l’algorithme : Integral Shape Averaging (ISA). On peut attribuer à cette référence une position moyenne sur le thorax permettant de définir « un chemin moyen ». Ce chemin s’avère être un invariant, indépendant du type d’onde ECG,. Ainsi que du sujet sain ou pathologique. Les retombées pratiques de ce travail se trouvent dans l’aide au diagnostic et la modélisation de l’électrophysiologie cardiaque
Nati, Poltri Simone. "Modélisation mathématique de la réponse du tissu cardiaque après ablation par champs pulsés." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0322.
Full textCardiac arrhythmias are irregularities in the normal rhythm of the heart, caused by anomalies in the electrical activity of the myocardium. Among the many ablation strategies used to isolate these pathologies, Pulsed electric Field Ablation (PFA) has emerged as a novel non-thermal technique that takes advantage of short and high-voltage electrical pulses to kill cardiac cells, by ensuring the precise targeting of the abnormal tissue and the preservation of the tissue scaffold. The aim of this thesis is to propose a mathematical model to study the long-term effects of PFA on the cardiac tissue, in the context of two different pathologies: Atrial Fibrillation (AF) - a common atrial arrhythmia that mostly starts from pulmonary veins - and Ventricular Tachycardia (VT), a rapid and irregular heartbeat that originates from tissue heterogeneity in the ventricles. While for AF the ablated area is thin compared to the left atrium domain, for VT the ablated region is not negligible. To describe the electrical activity of the heart we start from the bidomain model - a standard parabolic degenerate semilinear model that describes the electrophysiology of the heart - and we modify it depending on the pathology of interest. In the context of AF we introduce inside the ablated area a small parameter ε - proportional to the thickness of the region - that also rescales the intra-cellular conductivity. We analyze the static version of the modified bidomain system in the semilinear context, and we perform a formal asymptotic analysis to determine the approximate transmission conditions at the interface between the ablated area and the healthy region, as ε approaches zero. The asymptotic expansion at any order is proven and numerically validated. We also propose numerical simulations (obtained using FreeFem++, a finite element library) in a dynamic context. By considering a synthetic geometry of a left atrium, we simulate the isolation of a pulmonary vein from which AF is supposed to trigger. Non-overlapping Schwarz methods are studied and adopted to numerically impose well-designed conditions at the interface. The results are compared with another technique, radio-frequency ablation (RFA), known to burn cardiac tissue through heat transfer and then to destroy the tissue scaffold. Our objective is to numerically predict the success or failure of the two ablation procedures. Then, we validate our approaches in a real heart data from sheep. Our collaborators at IHU Liryc first induced VT in different sheep by creating two cardiac scars separated by a slow conduction channel, and then performed a PFA procedure to treat the induced VT. In the context of VT, our model proposed for AF is not applicable, since the hypothesis regarding the small size of the ablated region is no longer valid. Moreover, VT is a more complex pathology to model as it is caused by tissue heterogeneity. We modify the bidomain model by introducing a parameter ε - that in this case stands for the ablation level - inside the ablated area and we use it to rescale the intra-cellular conductivity. Simulations are performed to reproduce VT in a sheep ventricle geometry thanks to a signal reentry placed nearby the channel. We also propose simulations of PFA and we compare them with RFA to numerically predict the success or failure of the two ablation procedures. The numerical results are also compared with the activation endocardium map built before the PFA intervention. To conclude, this work provides a first numerical study of the mathematical descriptions of PFA in both AF and VT context, opening perspectives towards clinical applications
Khaddoumi, Balkine. "Analyse et modèlisation de l'activité électrique du coeur dans le cas de pathologies ventriculaires." Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00192273.
Full textGerard, Antoine. "Modèles numériques personnalisés de la fibrillation auriculaire." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0120/document.
Full textAtrial arrhythmias are a major pathology in cardiology, and their study is alarge research topic. To study them, many mathematical models of the actionpotential propagation in atria have been developed. Most of those generic models can be used to reproduce typical activation sequences of the atria. Such models may have an experimental or even clinical interest, for example in helping the location of arrhythmic foci or in the analysis of treatment failures for these arrhythmias. Nevertheless, to achieve this goal, it isnecessary to be able to adjust the model at best, based on experimental orclinical data. Data assimilation, a mathematical discipline in which we seek to optimally combine theory and observations, is then a good candidate for the customization of action potential propagation models.In this thesis, we propose to study different data assimilation methods-- sequential and variational -- in order to adjust action potential propagation model on electroanatomical data. More precisely, we are interested in two possible applications of data assimilation: state estimation and parameter estimation.First, we study a state observer which is able to correct the simulatedpropagation front localization based on the observed front localization. Thisobserver is then used to complete an activation map obtained during a clinical procedure.Then, this observer is combined with a reduced order Kalman filterin order to estimate the conductivity parameters of the action potentialpropagation model. A study of the joint state-parameter estimationstrategy is then realized to see how the method behaves faced with modelingerrors. The method is then tested on a clinically acquired dataset.Then, we look at variational data assimilation methods that allow the estimation of spatially distributed parameters. Several minimization problems, allowing to estimate a conductivity parameter distributed in space, are then introduced and analyzed. We then show that the discretization of these minimization problems, in order to obtain numerical methods of resolution, can be complex. A numerical method is then implemented for one of the studied minimization problems, and three 1D test cases are analyzed.Finally, we demonstrate the existence of a minimum for one of the studiedobjective function based on functional analysis results from theliterature
Kourdourli-Cherif, Ouafiya. "Arythmies auriculaires et ventriculaires du rat : rôle du système nerveux autonome, rôle de la pathologie." Montpellier 1, 2004. http://www.theses.fr/2004MON1T019.
Full textRoux, Sébastien. "Modèles dynamiques en tomographie - Application à l'imagerie cardiaque." Phd thesis, Grenoble 1, 2004. http://tel.archives-ouvertes.fr/tel-00007803.
Full textLe, Quang Khai. "Troubles du rythme cardiaque dans les modèles murins transgéniques." Thèse, Nantes, 2010. https://archive.bu.univ-nantes.fr/pollux/show/show?id=77640043-d85a-4ffa-b817-17b1b0c76068.
Full textCardiovascular disease is the leading cause of death in the world each year. If no action is taken to improve cardiovascular health and current trends continue, WHO estimates that 25% more healthy life years will be lost to cardiovascular disease globally by 2020. Cardiac hypertrophy is the consequence of an excessive workload of the heart muscle leading to cardiac remodeling process. As the workload increases, the ventricular walls grow thicker, lose elasticity and eventually may fail to pump with as much force as a healthy heart. Furthermore, hypertrophied myocardium is not physiologically normal and may confer a predisposition to potentially fatal arrhythmias. Generally, the causal mechanism is ventricular fibrillation, a cardiac rhythm disorder which is irreversible but the pathophysiological mechanisms are complex and poorly understood. The functional consequences of mutations or ionic remodeling are relatively simple to study in vitro, but their role in the pathophysiology of arrhythmias in vivo is more difficult to grasp. Among the different animal models developed in cardiac arrhythmias research, the mouse is increasingly used because of our ability to mutate, knock-out or over-express genes of interest. The objective of my thesis was to study the role of ion channels in physiology as well as cardiac pathophysiology, particularly in the involvement of the occurrence of cardiac arrhythmias in vivo. This thesis will improve our understanding of the role of genetic abnormalities involving ionic remodeling in the pathogenesis of the heart and may also open new therapeutic perspectives in the treatment of cardiac remodeling as well as sudden cardiac death
Le, Quang Khai. "Troubles du rythme cardiaque dans les modèles murins transgéniques." Thèse, Nantes, 2010. http://hdl.handle.net/1866/4903.
Full textCardiovascular disease is the leading cause of death in the world each year. If no action is taken to improve cardiovascular health and current trends continue, WHO estimates that 25% more healthy life years will be lost to cardiovascular disease globally by 2020. Cardiac hypertrophy is the consequence of an excessive workload of the heart muscle leading to cardiac remodeling process. As the workload increases, the ventricular walls grow thicker, lose elasticity and eventually may fail to pump with as much force as a healthy heart. Furthermore, hypertrophied myocardium is not physiologically normal and may confer a predisposition to potentially fatal arrhythmias. Generally, the causal mechanism is ventricular fibrillation, a cardiac rhythm disorder which is irreversible but the pathophysiological mechanisms are complex and poorly understood. The functional consequences of mutations or ionic remodeling are relatively simple to study in vitro, but their role in the pathophysiology of arrhythmias in vivo is more difficult to grasp. Among the different animal models developed in cardiac arrhythmias research, the mouse is increasingly used because of our ability to mutate, knock-out or over-express genes of interest. The objective of my thesis was to study the role of ion channels in physiology as well as cardiac pathophysiology, particularly in the involvement of the occurrence of cardiac arrhythmias in vivo. This thesis will improve our understanding of the role of genetic abnormalities involving ionic remodeling in the pathogenesis of the heart and may also open new therapeutic perspectives in the treatment of cardiac remodeling as well as sudden cardiac death.
Thèse en cotutelle avec Université de Nantes - Pays de La Loire - France (2005-2010)
Marchesseau, Stéphanie. "Simulation de modèles personnalisés du coeur pour la prédiction de thérapies cardiaques." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00820082.
Full textMoreau-Villéger, Valérie. "Méthodes variationnelles et séquentielles pour l'étude de la contraction cardiaque." Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00634169.
Full textImpériale, Alexandre. "Méthode d'assimilation de données de la donnée image pour la personnalisation de modèles mécaniques : application à la mécanique cardiaque et aux images de marquage tissulaire." Paris 6, 2013. http://www.theses.fr/2013PA066622.
Full textThis thesis aims at incorporating complex data derived from images into a data assimilation strategy available for mechanical systems. Our work relies on some recent developments that propose a sequential data assimilation method made of a Luenberger filter for the state space and an optimal filter reduced to the remaining parameter space. We aim at performing parameter identification for a biomechanical model of the heart and, within the scope of this application, we formalize the construction of shape discrepancy measurements for two types of data sets: first, the data expected of a processing step of tagged Magnetic Resonance Imaging (tagged-MRI) and, second, more standard data composed by the contours of the object. Initially based on simple distance measurements we enrich these discrepancy measures by incorporating the formalism of currents which enables to embed the contours of the object within the dual of an appropriate space of test functions. For each discrepancy operators we analyze its impact on the observability of the system and, in the case of tagged-MRI, we prove that they are equivalent to a direct measurement of the displacement. From a numerical standpoint, taking into account these complex data sets is a great challenge that motivates the creation of new numerical schemes that provide a more flexible management of the various observation operators. We assess these new means of extracting the rich information contained in the image by identifying in realistic cases the position and the intensity of an infarct in the heart tissue
Le, Rolle Virginie. "Modélisation multiformalisme du système cardiovasculaire associant Bond Graph, équations différentielles et modèles discrets." Rennes 1, 2006. https://tel.archives-ouvertes.fr/tel-00285883.
Full textDefontaine, Antoine. "Modélisation multirésolution et multiformalisme de l'activité électrique cardiaque." Phd thesis, Université Rennes 1, 2006. http://tel.archives-ouvertes.fr/tel-00121024.
Full textLes notions de cardiologie et d'électrophysiologie ainsi qu'une synthèse de modèles du système cardiovasculaire sont présentées dans la partie 1.
La partie 2 reprend les contributions du travail qui concernent:
– la proposition d'un cadre formel à la modélisation prenant en compte les exigences de la multirésolution et une volonté de structuration des outils utilisés pour une meilleure portabilité;
– la proposition d'une librairie générique de modélisation et simulation multiformalisme développée sous forme objet et permettant une définition standardisée des modèles et simulateurs;
– l'intérêt de la librairie est illustré sur des applications physiologiques et cliniques.
Un chapitre prospectif et présentant une réflexion pour une considération multirésolution clôt ce mémoire et ouvre des perspectives intéressantes.
Kerfourn, Adrien. "Modélisation du système cardio-respiratoire : remodelage cardiaque et interactions patient-ventilateur." Rouen, 2015. http://www.theses.fr/2015ROUES051.
Full textRespiratory failure is defined as the inability of the respiratory system to ensure the organism’s needs in oxygen. This condition may be the consequence of various diseases and implies a treatment by ventilatory support. In noninvasive ventilation, “pressure support” mode is a ventilatory mode that is commonly used. This mode necessitates a good synchronization between the patient’s inspiratory efforts and the ventilator pressure cycles, one of the objectives being to reduce the patient’s work of breathing. Furthermore, noninvasive ventilation is known to have effects on the cardiovascular system, even if the underlying mechanisms remain poorly understood. First, we will focus on the modeling of the cardiovascular dynamics to assess the mechanisms leading to cardiac remodeling. This model allows to reproduce and explain the origin of the two phases of pulmonary arterial hypertension. A second part was devoted to patient-ventilator interactions in order to understand the emergence of the asynchrony events that can be observed in clinics. We built a dynamical model able to reproduce the global behavior of some ventilators available on the market. This work therefore represents a first theoretical approach allowing to improve the understanding of various interactions related to the cardiorespiratory system
Billet, Florence. "Assimilation de données images pour la personnalisation d'un modèle électromécanique du coeur." Phd thesis, Université de Nice Sophia-Antipolis, 2010. http://tel.archives-ouvertes.fr/tel-00639921.
Full textGariah, Asven. "Réduction de modèles complexes pour la simulation et l'estimation : application à la modélisation cardiaque." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00824615.
Full textFarah, Ahcène. "Contribution à la modélisation mathématique de la biomécanique de la pompe cardiaque : application à l'analyse des déformations pathologiques du ventricule gauche." Vandoeuvre-les-Nancy, INPL, 1989. http://www.theses.fr/1989NAN10405.
Full textDecoin, Raphaël. "Impact de la stéatohépatite non alcoolique sur le remodelage myocardique et sur les complications cardiovasculaires." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2023/2023ULILS066.pdf.
Full textCardiac remodeling is a pathophysiological phenomenon during which the cardiac muscle undergoes structural alterations at both tissue and cellular levels, leading to functional changes. The clinical implications are diverse, including the development of atrial fibrillation and heart failure. Among the numerous risk factors identified, Non-Alcoholic Fatty Liver Diseases (NAFLD) have an emerging role. This liver disease, characterized by steatosis, inflammation, and fibrosis, is associated with the development of myocardial pathologies.In this study, we hypothesize that NAFLD specifically triggers characteristic cardiac remodeling at both histological and functional levels. To explore this hypothesis, we employ a translational approach using various cohorts from the Lille University Hospital, as well as a murine model of NAFLD. Three distinct objectives have been defined: 1) demonstrate an association between atrial remodeling and NAFLD in patients; 2) propose an early diagnostic method for cardiac remodeling; 3) propose mechanistic hypotheses for the liver-heart connection through a translational methodology. Firstly, we characterized atrial cardiac remodeling in a cohort of patients indicated for atrial fibrillation ablation. Among these patients, we observed a positive association between the progression of hepatic pathology (assessed through clinical-biological scores) and, on one hand, dilation and impaired contractility of the left atrium as estimated by echocardiography, and on the other hand, the presence of areas with low extracellular voltages. This remodeling profile was also linked to a poor prognosis of ablation. In a second cohort of patients scheduled for cardiac surgery (POMI-AF), we demonstrated greater fibrosis in the atrial myocardium of patients with a high-risk NAFLD-related fibrosis compared to those without NAFLD. Next, using the same POMI-AF cohort, we showed that quantifying myocardial fat (intracardiomyocytic lipid droplets) using VARPRO MRI sequence is a robust, reliable, and feasible analysis in NAFLD-affected patients. Lastly, in a murine model of NAFLD developed in the laboratory (high-fat, sucrose, and cholesterol diet for 24 weeks), we described the presence of cardiac remodeling. Mice subjected to the NAFLD-inducing diet developed diastolic dysfunction with preserved ejection fraction, assessed by echocardiography, in comparison to the control diet group. This loss of function was associated with concentric left ventricular hypertrophy. Histologically, this hypertrophy was explained by an increase in the cross-sectional diameter of cardiomyocytes, which was also associated with diffuse interstitial fibrosisstarting from a vascular point. These observations were more pronounced with higher hepatic involvement, reinforcing the initial hypothesis. Total ventricular mRNA sequencing revealed a significantly altered transcriptional profile in NAFLD-affected mice, indicating impaired energy metabolism and a profound immune signature. Subsequently, flow cytometry analysis of immune populations revealed macrophage and dendritic cell infiltration in the myocardium, similar to what is observed in NAFLD liver. This macrophage infiltration was also evident in human biopsies from patients with advanced NAFLD.In conclusion, we demonstrate that NAFLD-associated cardiac remodeling affects both the left atrium and the left ventricle. Additionally, we have shown that quantifying cardiac lipid droplet accumulation is feasible using MRI. Finally, the myeloid infiltration observed in the myocardium of NAFLD patients and in our murine model suggests a potential link between hepatic dysimmunity and cardiac remodeling
Djabella, Karima. "Modélisation de l’activité électrique du coeur et de sa régulation par le système nerveux autonome." Paris 11, 2008. http://www.theses.fr/2008PA112083.
Full textWe developed a cellular cardiac electrical activity model which is less complex, without affecting the essential characteristics (action potential, principal ionic currents, restitution curve). Besides, we used the same model’s structure in order to represent the electrical activity of various types of cardiac cells. This will allow the determining of cardiac regions in a parametric manner and will make easier the parametric identification in the numerical models of heart. Otherwise, the bifurcation analysis allowed us to determine the origin of oscillator regime in the pacemaker case, and to introduce a background calcium current that plays the role of a control input of the autonomic nervous system that allows him to modify the heart rate. On the other hand, it is not possible any more to simplify the model using singular perturbations method because it is not any more a Tikhonov's system. The model allows the implementation of the closed loop taking into account the control of the cardiovascular system by the baroreflex and the excitation-contraction coupling taking into account the effect of the frequency on the contractility. After having shown the non-existence of periodic solutions in the reduced two ionic currents model of Mitchell-Schaeffer, we introduced a variant of this last and thus we have extended its excitability properties. The oscillator regime is obtained, either through a sub or super critical Hopf bifurcation, or through a saddle-node bifurcation on invariant circle. This reduced model is usable in ECG signal processing applications
Laouini, Ghailen. "Analyse et modélisation du rythme cardio-respiratoire au repos et à l'effort." Nice, 2012. http://www.theses.fr/2012NICE4043.
Full textIn this thesis, we focus on the modelling of heart rate variability (HRV) during exercise. The objective of this thesis is to study HRV during exercise, while taking respiration into account. The IPFM model helps to explain the mechanism used by the automatic nervous system to control the heartbeat. With peaks generated by this model, we study the relationship between the heart period, which is the difference between two successive RR peaks, and the modulation signal. We suggest the TVIPFM model with three different approaches (A, B, C), as an alternative of the IPFM model to estimate the modulation of the autonomic nervous system, adapted to the exercise. The TVIPFM model then allows for correction of the heart rate variability. This variability will be filtered around the frequency band of respiration in the time-frequency domain, using different methods of time-frequency-representations. This is explained by the fact that the signal being observed is not stationary. We present different time-frequency representations for the linear and quadratic filtering and justify their use. The EMD is also addressed because of its decomposition property in “monocomponent” signals. A simulation allowing us to select the best IPFM correction and the best time-frequency representation for filtering, a real application range is proposed. In it, we show that using this process, correlation between age of transplantation and heart rate variability indeed exists
Seigneuric, Renaud. "Étude d'hétérogénéités simulées et in vitro du tissu cardiaque et de leurs rôles dans les tachycardies ventriculaires par réentrée." Grenoble 1, 2000. http://www.theses.fr/2000GRE19003.
Full textImperiale, Alexandre. "Méthodes d'assimilation de la donnée image pour la personnalisation de modèles mécaniques - Application à la mécanique cardiaque et aux images de marquage tissulaire." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00936027.
Full textBecue, Pierre-Elliott. "Modélisation et simulation de l'électrophysiologie cardiaque à l'échelle microscopique." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0352/document.
Full textDuring the last decades, studies regarding the prospective impact of the alterations at the microscopic scale of the heart tissue in the appearance of arrhythmias (Brugada's syndrome, atrial fibrillation, early repolarization syndrome...) have been more numerous. The amount of experimental data regarding the behaviors and regulations that occur at a cellular and a subcellular (gap junctions, role of specific ionic channels) is increasing and these data provide an adapted frame for the computational mathematicians to develop or improve models and confirm their behaviour. In this thesis, we developed and studied a ``microscopic'' model taking into account the individual geometry of the cells and the gap junctions between them. This model is designed to enhance our understanding of the action potential propagation in a network of cells. We extracted this model using a study of the ions movements in the cells. These movements, described by various microscopic physics equations (electrostatic...), and some dimensional analysis, including an asymptotic study, allow us to derive the model. We then show that the problem described by such a model has a solution, via a semi-implicit time discretization process and compacity arguments. Afterwards, we offer numerous simulations in order to enhance our understanding of the action potential propagation between the cells of various networks. We specifically customize the gap junction models we use (a geometric one, a linear one and a non-linear one) to enhance our comprehension. This thesis introduces many questions. On the short-term, on the comparison between experimental data observed on mice cells and our results. On the long-term regarding the mechanisms regulating the action potential propagation, and their impact on the alterations of the cardiac rhythm
Xu, Binbin. "Étude de la Dynamique des Ondes Spirales à l'Échelle Cellulaire par Modèles Expérimental et Numérique." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00955873.
Full textChabiniok, Radomir. "Modélisation biomécanique personnalisée du cœur et applications cliniques." Phd thesis, Paris 6, 2011. http://www.theses.fr/2011PA066014.
Full textThe objective of this thesis is the assessment of a biomechanical heart model using experimental data, and the investigation of clinical applications with patient-specific modeling. At the 1D level we aimed at reproducing physiological experiments with myocardial fiber contraction. For the 3D validation we performed in co-operation with a clinical partner an experiment with animals (pigs) in order to obtain data in the healthy stage and after creating a myocardial infarct. We showed that our model can reproduce the pressures and motion of a healthy heart and that the infarct can be represented by changing only the parameters directly related to the pathology. The objective of the first clinical application was to predict the short-term effect of the Cardiac Resynchronization Therapy (CRT) by means of an increase of ‘max LV dp/dt’. The model personalization was performed using patients MRI and pressure data in the baseline condition – prior to CRT. Then we fixed the values of all parameters and applied electrical activation patterns according to the pacing modes considered. We obtained a very good prediction of max LV dp/dt using various pacing patterns in 3 clinical cases. This preliminary clinical validation shows that the modeling of CRT is a very promising approach as an assistance to therapy planning. The second application is based on the adaptation of data assimilation methods developed in the MACS team at INRIA. We performed joint state-parameter estimation with real image data. We showed the effectiveness of these algorithms in automatic model personalization and that the estimated contractility values can serve as an indicator of the local heart function
Milpied, Paola. "Discrimination des rythmes cardiaques dans un défibrillateur implantable de type simple chambre par des méthodes d'apprentissage statistique." Phd thesis, Paris 6, 2011. http://pastel.archives-ouvertes.fr/pastel-00565844.
Full textRavon, Gwladys. "Problèmes inverses pour la cartographie optique cardiaque." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0118/document.
Full textSince the 80's optical mapping has become an important tool for the study and the understanding of cardiac arythmias. This experiment allows the visualization of fluorescence fluxes through tissue surface. The fluorescence is directly related to the transmembrane potential. Information about its three-dimension distribution is hidden in the data on the surfaces. Our aim is to exploit this surface measurements to reconstruct the depolarization front in the thickness. For that purpose we developed a method based on the resolution of an inverse problem. The forward problem is made of two diffusion equations and the parametrization of the wavefront. The inverse problem resolution enables the identification of the front characteristics. The method has been tested on in silico data with different ways to parameter the front (expanding sphere, eikonal equation). The obtained results are very satisfying, and compared to a method derived by Khait et al. [1]. Moving to experimental data put in light an incoherence in the model. We detail the possible causes we explored to improve the model : constant illumination, optical parameters, accuracy of the diffusion approximation. Several inverse problems are considered in this manuscript, that involves several cost functions and associated gradients. For each case, the calculation of the gradient is explicit, often with the gradient method. The presented method was also applied on data other than cardiac optical mapping
Grosgeorge, Damien. "Segmentation par coupes de graphe avec a priori de forme Application à l'IRM cardiaque." Phd thesis, Université de Rouen, 2014. http://tel.archives-ouvertes.fr/tel-01006467.
Full textMolléro, Roch. "Personnalisation robuste de modèles 3D électromécaniques du cœur. Application à des bases de données cliniques hétérogènes et longitudinales." Thesis, Côte d'Azur, 2017. http://www.theses.fr/2017AZUR4106/document.
Full textPersonalised cardiac modeling consists in creating virtual 3D simulations of real clinical cases to help clinicians predict the behaviour of the heart, or better understand some pathologies from the estimated values of biophysical parameters. In this work we first motivate the need for a consistent parameter estimation framework, from a case study were uncertainty in myocardial fibre orientation leads to an uncertainty in estimated parameters which is extremely large compared to their physiological variability. To build a consistent approach to parameter estimation, we then tackle the computational complexity of 3D models. We introduce an original multiscale 0D/3D approach for cardiac models, based on a multiscale coupling to approximate outputs of a 3D model with a reduced "0D" version of the same model. Then we derive from this coupling an efficient multifidelity optimisation algorithm for the 3D model. In a second step, we build more than 140 personalised 3D simulations, in the context of two studies involving the longitudinal analysis of the cardiac function: on one hand the analysis of long-term evolution of cardiomyopathies under therapy, on the other hand the modeling of short-term cardiovascular changes during digestion. Finally we present an algorithm to automatically detect and select observable directions in the parameter space from a set of measurements, and compute consistent population-based priors probabilities in these directions, which can be used to constrain parameter estimation for cases where measurements are missing. This enables consistent parameter estimations in a large databases of 811 cases with the 0D model, and 137 cases of the 3D model
Collin, Annabelle. "Analyse asymptotique en électrophysiologie cardiaque : applications à la modélisation et à l'assimilation de données." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066198/document.
Full textThis thesis aims at developing innovative mathematical tools to improve cardiac electrophysiological modeling. A detailed presentation of the bidomain model - a system of reaction-diffusion equations - with a fixed domain is given based on the literature and we mathematically justify the homogenization process using the 2-scale convergence. Then, a study of the impact of the mechanical deformations in the conservation laws is performed using the mixture theory.As the atria walls are very thin and generally appear as thick surfaces in medical imaging, a dimensional reduction of the bidomain model in a thin domain to a surface-based formulation is studied. The challenge is crucial in terms of computational efficiency. Following similar strategies used in shell mechanical modeling, an asymptotic analysis of the diffusion terms is done with assumptions of strong anisotropy through the thickness, as in the atria. Simulations in 2D and 3D illustrate these results. Then, a complete modeling of the heart - with the asymptotic model for the atria and the volume model for the ventricles - allow the simulation of full electrocardiogram cycles. Furthermore, the asymptotic methods are used to obtain strong convergence results for the 3D-shell models.Finally, a specific data assimilation method is proposed in order to «personalize» the electrophysiological models. The medical data assimilated in the model - using a Luenberger-like state filter specially designed - are the maps of electrical activation. The proposed methods can be used in other application fields where models (reaction-diffusion) and data (front position) are very similar, as for fire propagation or tumor growth
Chabiniok, Radomir. "Modélisation biomécanique personnalisée du cœur et applications cliniques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00839929.
Full textThurieau, Nicolas. "Sur la modélisation du tissu cardiaque comme un milieu à microdilatation : une investigation numérique." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0018/document.
Full textBackground: A soft biological tissue is subjected to numerous exchange phenomena and has an extremely complex structural organization. The knowledge of its mechanical behavior is required in many applications ranging from clinical diagnostic to tissue engineering. To achieve this goal, more or less satisfactory approaches are developed. They all seek to take into account in a more or less systematic manner the microstructure of the medium. Assuming that the biological tissue is a particular micromorphic medium (micropolar medium) leads to good results in the case bone tissue. It is therefore likely that the results of this kind will be obtained for other tissues. Our interest is on the heart tissue and the problem of ischemic heart attack. In this context, it seemed that the most appropriate behavior particularization is that of a microdilatation medium. Work done: The work presented in this thesis is essentially numerical. It aims to highlight the features of the response of microdilatation medium to an external mechanical load. This step is essential for the analysis of the experimental results to be conducted in the future. The work also aims to investigate the potentialities of the model with respect to the heart tissue regarding heart attack and the associated loss of the ability to eject sufficient blood volume. The numerical tools for the analysis of such media are in increasing development. We had to develop our own tool based on the LPI-BEM (Local Point Interpolation - Boundary Element Method). Because of the similarity of the associated field equations, the validity of the numerical strategy is assessed in the case of a piezoelectric material. This choice is not innocent because the piezoelectric medium with microdilatation will allow analyzing the case of an electrical solicitation of the tissue. The details of this original numerical approach are given in Chapter 2 of the thesis. Chapter 3 is devoted to the analysis of the robustness of the method and to the peculiarities of the response of a microdilatation medium. The fourth chapter is devoted to the application to the cardiac tissue. By limiting the study to the case of small strains, it is shown that the model is well suited to the representation of the behavior of cardiac tissue. Indeed, considering the left ventricle as a tubular structure, the left ventricle ejection fraction (clinical criterion of the heart failure) is greatly reduced in the presence of an infarcted area. The latter is modeled as a zone with diffuse boundary where the material points have lost their ability to "breath". These results are promising and encourage further investigations in this direction by taking into account the anisotropic nature of the tissue in a geometrically nonlinear context
Davidović, Andjela. "Modélisation mathématique multi-échelle des hétérogénéités structurelles en électrophysiologie cardiaque." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0448/document.
Full textIn this thesis we addressed two problems in mathematical modelling of propagation of electrical signals in the heart: tissue scale propagation with presence of tissue heterogeneities and cell scale propagation with non-linear gap junctions. Diffusive inclusions. The standard model used in cardiac electrophysiology is the bidomain model. It is an averaged model derived from the microscopic properties of the tissue.The bidomain model assumes that the electrically active myocytes are present uniformly everywhere in the heart. While this is a reasonable assumption for healthy hearts, it fails insome pathological cases where significant changes in the tissue structure occur, for examplein ischaemic and rheumatic heart disease, inflammation, hypertrophy, or infarction. These tissue heterogeneities are often taken into account through an ad-hoc tuning of model parameters. The first aim of this thesis consisted in generalizing the bidomain equations to the case of structural heart diseases.We assumed a periodic alternation of healthy (bidomain model) and altered (diffusive inclusion) tissue patches. Such a model may be simulated directly, at the high computational cost of a very fine discretisation. Instead we derived a homogenized model at the macroscopic scale, using a rigorous two-scale analysis. We recovered a bidomain-type model with modified conductivity coefficients, and performed a 2D numerical verificationof the convergence of the microscopic model towards the homogenized one.In the second part we quantified the effects of different shapes and sizes of diffusive inclusions on the effective conductivity coefficients and their anisotropy ratios in 2D and3D. Additionally, we ran simulations on 2D patches of tissue with modified conductivity coefficients. We observed changes in the propagation velocity as well as in the shape of the depolarization wave-front.In the third part, based on high-resolution MR images of a rat heart we simulated 3D propagations with the homogenized model. Using image analysis software tools we assessed the structural properties of the tissue, that we used afterwards as parameters inthe homogenized model. Non-linear gap junctions. In the last part of this thesis, we studied the effects of nonlineargap junction channels on the signal propagation at the cell scale. In existing models, the gap junction channels, if modelled, are assumed to have a linear behaviour, while from experimental data we know that they have a time- and voltage-dependent non-linear behaviour. Firstly, we stated a non-linear 0D model for the gap junctional current, and secondly fitted the model to available experimental data. Finally, we proposed a 2D mathematical model that describes the electrical interaction of cardiac myocytes on the cell scale. It accounts for the gap junctional current as "the direct link" between the adjacent cells
Abdulhay, Enas. "Une nouvelle méthode non-invasive d'estimation cycle à cycle du volume d'éjection cardiaque dans le signal de plethysmographie respiratoire par inductance : algorithme de "double décomposition empirique"." Université Joseph Fourier (Grenoble ; 1971-2015), 2009. http://www.theses.fr/2009GRE10220.
Full textThe main objective that guides the signal processing approaches ofthis thesis is the development of a tool that oould be part of an integrative physiology approach where, at each scale, the model of signais may be different We seek here the restriction of asstnnptions a priori to a set: of rules goveming the physiological interactions between physiological functions in the absence of fannal and mathematical assumptions. We applied this approach to the problem of cardiac waves detection and estimation of cycle-to-cycle stroke volume in the RIP signal (Respiratory Inductive Plethysmography). The empirical decomposition approach seems to be particularly adapted to our logic. We propose here the first version of an algorithm based on RIP double decomposition. The method and its COITeSpül1ding tools have been tested on two types of data, simulated signais and real signais recorded at healthy volunteers. Our aim is also therefore to develop a cardio-respiratory model that can serve as a tool for ventilatory, cardiac and RIP signals simulation along with the simulation of the effect of each system on the other. The results show that the proposed method is suitable for RIP signal analysis and for stroke volume estimation
Benferhat, Djamel. "Conception d'un système de communication tolérant la connectivité intermittente pour capteurs mobiles biométriques - Application à la supervision médicale de l'activité cardiaque de marathoniens." Phd thesis, Université de Bretagne Sud, 2013. http://tel.archives-ouvertes.fr/tel-00904627.
Full textMichoux, Nicolas. "Applications de la théorie des systèmes dynamiques non linéaires à la caractérisation de signaux biomédicaux et à leur modélisation." Rouen, 2000. http://www.theses.fr/2000ROUES009.
Full textEcherradi, Insaf. "Modèle rapide de plasticité cristalline dans les polycristaux pour la fatigue à grand nombre de cycles." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0038.
Full textThis thesis concerns the study of the reliability of structures working in fatigue. One of the most important subjects is the understanding and modelling of fatigue phenomena in both normal and accidental situations. In polycrystals, these phenomena are of a probabilistic nature: for the same cyclic loading, two macroscopically identical specimens have different lifetimes. This is because the microstructures exhibit a certain variability. The traditional approach is to establish S-N curves experimentally. Due to the random nature of the fatigue phenomena, this experimental procedure must be repeated a large number of times to be statistically representative. It is generally considered that the safe prediction of service life for a given loading level is the average number of cycles to failure minus twice the standard deviation. This approach is extremely cumbersome in terms of experimental effort, but also inadequate from the point of view of risk analysis.The main objective of this work is to develop a polycrystalline evolution model integrating plasticity and fracture, sufficiently fast in calculation time to allow probabilistic analysis and applicable on the scale of an entire structure. The proposed model is based on the principle of minimising incremental energy and targets low-amplitude loading, for which plasticity is confined to a few critical grains that are assumed to be distant from one another and loaded according to a single sliding system. Initially, we assume isotropic and linear kinematic strain hardening, neglecting elastic interactions between critical grains. The plastic slip increment in each critical grain is then obtained as an explicit function of the material parameters, the loading, and a localization tensor determined entirely by the grain geometry and its elastic moduli. For ellipsoidal grains, this location tensor is identified with the Eshelby tensor. The validity of the model is studied by comparison with finite element calculations. The model is then extended to take into account the dominant effects of elastic interaction between grains. Based on an analysis of dislocations, a non-linear strain-hardening law is also proposed, showing the effect of grain size. An extension of the polycrystalline model to this type of law is presented.For cyclic loading, the proposed approach makes it possible to calculate the incremental evolution of a polycrystal using analytical recurrence formulae, without requiring any spatial discretisation. In the simplest situation, where elastic interactions are neglected, direct formulae are obtained giving the stabilized state reached after a large number of cycles. This polycrystalline model is used to analyse the sensitivity of fatigue life to microstructural parameters such as grain size, morphological and crystallographic textures. The influence of the stress gradient is also discussed. Finally, the applicability of the model to real structures is illustrated by the study of stents, small biomedical devices that are subjected to cyclic loading due to heartbeats and for which fatigue life is crucial
Labarthe, Simon. "Modélisation de l'activité électrique des oreillettes et des veines pulmonaires." Phd thesis, Université Victor Segalen - Bordeaux II, 2013. http://tel.archives-ouvertes.fr/tel-00925253.
Full textBoilevin-Kayl, Ludovic. "Modeling and numerical simulation of implantable cardiovascular devices." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS039.
Full textThis thesis, taking place in the context of the Mivana project, is devoted to the modeling and to the numerical simulation of implantable cardiovascular devices. This project is led by the start-up companies Kephalios and Epygon, conceptors of minimally invasive surgical solutions for the treatment of mitral regurgitation. The design and the simulation of such devices call for efficient and accurate numerical methods able to correctly compute cardiac hemodynamics. This is the main purpose of this thesis. In the first part, we describe the cardiovascular system and the cardiac valves before presenting some standard material for the mathematical modeling of cardiac hemodynamics. Based on the degree of complexity adopted for the modeling of the valve leaflets, two approaches are identified: the resistive immersed surfaces model and the complete fluidstructure interaction model. In the second part, we investigate the first approach which consists in combining a reduced modeling of the valves dynamics with a kinematic uncoupling of cardiac hemodynamics and electromechanics. We enhance it with external physiological data for the correct simulation of isovolumetric phases, cornerstones of the heartbeat, resulting in a relatively accurate model which avoids the complexity of fully coupled problems. Then, a series of numerical tests on 3D physiological geometries, involving mitral regurgitation and several configurations of immersed valves, illustrates the performance of the proposed model. In the third and final part, complete fluid-structure interaction models are considered. This type of modeling is necessary when investigating more complex problems where the previous approach is no longer satisfactory, such as mitral valve prolapse or the closing of a mechanical valve. From the numerical point of view, the development of accurate and efficient methods is mandatory to be able to compute such physiological cases. We then consider a complete numerical study in which several unfitted meshes methods are compared. Next, we present a new explicit coupling scheme in the context of the fictitious domain method for which the unconditional stability in the energy norm is proved. Several 2D numerical examples are provided to illustrate the properties and the performance of this scheme. Last, this method is finally used for 2D and 3D numerical simulation of implantable cardiovascular devices in a complete fluid-structure interaction framework
Cabrera, Lozoya Rocío. "Planification de l’ablation radiofréquence des arythmies cardiaques en combinant modélisation et apprentissage automatique." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4059/document.
Full textCardiac arrhythmias are heart rhythm disruptions which can lead to sudden cardiac death. They require a deeper understanding for appropriate treatment planning. In this thesis, we integrate personalized structural and functional data into a 3D tetrahedral mesh of the biventricular myocardium. Next, the Mitchell-Schaeffer (MS) simplified biophysical model is used to study the spatial heterogeneity of electrophysiological (EP) tissue properties and their role in arrhythmogenesis. Radiofrequency ablation (RFA) with the elimination of local abnormal ventricular activities (LAVA) has recently arisen as a potentially curative treatment for ventricular tachycardia but the EP studies required to locate LAVA are lengthy and invasive. LAVA are commonly found within the heterogeneous scar, which can be imaged non-invasively with 3D delayed enhanced magnetic resonance imaging (DE-MRI). We evaluate the use of advanced image features in a random forest machine learning framework to identify areas of LAVA-inducing tissue. Furthermore, we detail the dataset’s inherent error sources and their formal integration in the training process. Finally, we construct MRI-based structural patient-specific heart models and couple them with the MS model. We model a recording catheter using a dipole approach and generate distinct normal and LAVA-like electrograms at locations where they have been found in clinics. This enriches our predictions of the locations of LAVA-inducing tissue obtained through image-based learning. Confidence maps can be generated and analyzed prior to RFA to guide the intervention. These contributions have led to promising results and proofs of concepts
Ojeda, Avellaneda David. "Multi-resolution physiological modeling for the analysis of cardiovascular pathologies." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-01056825.
Full text