Journal articles on the topic 'Fibre reinforced'

To see the other types of publications on this topic, follow the link: Fibre reinforced.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fibre reinforced.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hasham, Md, V. Reddy Srinivasa, M. V. Seshagiri Rao, and S. Shrihari. "Flexural behaviour of basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars." E3S Web of Conferences 309 (2021): 01055. http://dx.doi.org/10.1051/e3sconf/202130901055.

Full text
Abstract:
In this paper, the flexural behaviour of M30 grade basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars are studied and compared with slabs made with steel rebars. The optimum percentage of basalt is 0.3% for 50mm length basalt fibres. Due to high particle packing density in concrete made with basalt fibre micro cracks are prevented due to enhanced fatigue and stress dissipation capacity. Addition of basalt fibres to enhances the energy absorbtion capacity or toughness thereby enhancing the resistance to local damage and spalling. Addition of basalt fibres controlled the crack growth and crack width. Load at first crack of M30 grade basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars is more than M30 grade conventional concrete slabs made with steel rebars because the with addition of basalt and BFRP bars will make either the interfacial transition zone (ITZ) strong or due to bond strength of concrete slabs made with basalt fibre reinforced polymer rebars. The ultimate strength in M30 grade basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars is more than conventional concrete slabs made with steel rebars. Deflection at the centre of M30 grade basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars is almost double than the conventional concrete slabs made with steel rebars. Toughness indices evaluated for M30 grade basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars indicates that basalt fibre and BFRP bars will enhance the energy absorbtion capacity of slabs.
APA, Harvard, Vancouver, ISO, and other styles
2

Xing, Huai Nian, Xiao Peng Zhang, Zeng Li Liu, and Li Qiang Jin. "Mechanical Property Test Study on Fibre-Reinforced Sandwich Core Board." Advanced Materials Research 550-553 (July 2012): 3384–87. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.3384.

Full text
Abstract:
Some tests including tensile test, bending test and shear test have been done to fibre-reinforced sandwich core boards which are ready applied to high speed train. Fibre laying craftwork is introduced in the paper and the test results show that the uniformity of fibre laying craftwork is good. The laying fibres have effective enhanced axial strength and modulus of fibre-reinforced sandwich core board. The reinforce influence degree to modulus is greater than strength.
APA, Harvard, Vancouver, ISO, and other styles
3

More, Florence More Dattu Shanker, and Senthil Selvan Subramanian. "Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete." Buildings 12, no. 9 (September 13, 2022): 1436. http://dx.doi.org/10.3390/buildings12091436.

Full text
Abstract:
Numerous studies have been conducted recently on fibre reinforced concrete (FRC), a material that is frequently utilized in the building sector. The utilization of FRC has grown in relevance recently due to its enhanced mechanical qualities over normal concrete. Due to increased environmental degradation in recent years, natural fibres were developed and research is underway with the goal of implementing them in the construction industry. In this work, several natural and artificial fibres, including glass, carbon, steel, jute, coir, and sisal fibres are used to experimentally investigate the mechanical and durability properties of fibre-reinforced concrete. The fibres were added to the M40 concrete mix with a volumetric ratio of 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. The compressive strength of the conventional concrete and fibre reinforced concrete with the addition of 1.5% steel, 1.5% carbon, 1.0% glass, 2.0% coir, 1.5% jute and 1.5% sisal fibres were 4.2 N/mm2, 45.7 N/mm2, 41.5 N/mm2, 45.7 N/mm2, 46.6 N/mm2, 45.7 N/mm2 and 45.9 N/mm2, respectively. Comparing steel fibre reinforced concrete to regular concrete results in a 13.69% improvement in compressive strength. Similarly, the compressive strengths were increased by 3.24%, 13.69%, 15.92%, 13.68% and 14.18% for carbon, glass, coir, jute, and sisal fibre reinforced concrete respectively when equated with plain concrete. With the optimum fraction of fibre reinforced concrete, mechanical and durability qualities were experimentally investigated. A variety of durability conditions, including the Rapid Chloride Permeability Test, water absorption, porosity, sorptivity, acid attack, alkali attack, and sulphate attack, were used to study the behaviour of fiber reinforced concrete. When compared to conventional concrete, natural fibre reinforced concrete was found to have higher water absorption and sorptivity. The rate of acid and chloride attacks on concrete reinforced with natural fibres was significantly high. The artificial fibre reinforced concrete was found to be more efficient than the natural fibre reinforced concrete. The load bearing capacity, anchorage and the ductility of the concrete improved with the addition of fibres. According to the experimental findings, artificial fibre reinforced concrete can be employed to increase the structure’s strength and longevity as well as to postpone the propagation of cracks. A microstructural analysis of concrete was conducted to ascertain its morphological characteristics.
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, Jie, Han Shi, Lei Tao, Liangliang Qi, Wei Min, Hui Zhang, Muhuo Yu, and Zeyu Sun. "Effect of Fibres on the Failure Mechanism of Composite Tubes under Low-Velocity Impact." Materials 13, no. 18 (September 17, 2020): 4143. http://dx.doi.org/10.3390/ma13184143.

Full text
Abstract:
Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Xiang Ming, Reza Madanipour, and Seyed Ghaffar. "Impact Properties of Hemp Fibre Reinforced Cementitious Composites." Key Engineering Materials 711 (September 2016): 163–70. http://dx.doi.org/10.4028/www.scientific.net/kem.711.163.

Full text
Abstract:
The construction industry has seen an incredibly fast increase in utilizing natural fibres for making low-cost building materials to achieve sustainable construction. One of such applications is natural fibre-reinforced cementitious materials for either structural or non-structural purpose. Impact properties are engineering properties received increasing attentions from engineering community for structural materials. This research therefore studies impact resistance of hemp fibre reinforced cementitious composites at early ages. Hemp fibre with various lengths, 10 mm and 20 mm, are utilized to reinforce cementitious materials. Hemp fibre reinforced cementitious composite slabs were tested under repeating dropping mass till failure at the age of 7, 14 and 28 days. Cracking behaviour, impact resistance, absorbed impact energy and survived impact blows upon failure are qualitatively/quantitatively analysed. It has been found that 20 mm-long hemp fibre reinforcement leads to higher impact resistance, more absorbed impact energy and survived more impact blows upon failure. Cementitious composite slabs reinforced by 20 mm-long hemp fibres exhibit higher impact crack resistance ratio than those reinforced by 10 mm-long fibres. Longer fibres are more effective in inhibiting the growth of micro-cracks and blunting the propagation of micro-cracks before they join up to form macro cracks leading to ultimate failure.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Fang-Yuan, Liu-Yang Li, Yan Dang, and Pei-Feng Wu. "Study of the Effect of Fibre Orientation on Artificially Directed Steel Fibre-Reinforced Concrete." Advances in Materials Science and Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/8657083.

Full text
Abstract:
The fibre utilization efficiency of directionally distributed fibre-reinforced concrete is better than that of randomly distributed fibre. However, controlling the fibre direction is difficult, which limits its applications. In this paper, a method in which fibres were artificially directed was used to simulate the feasibility of orienting fibres during 3D concrete printing. Based on artificially directed steel fibre-reinforced concrete specimens, the orientation characteristics of directional fibre-reinforced concrete specimens were studied. The differences between the gravity and the boundary effects in ordinary fibre-reinforced concrete and artificially directed fibre-reinforced concrete were compared. The average orientation coefficient in randomly distributed fibre-reinforced concrete was 0.59, whereas this value in directionally distributed fibre-reinforced concrete was over 0.9. This result demonstrated the feasibility of manually orienting the fibres in steel fibre-reinforced concrete in layer-by-layer casting.
APA, Harvard, Vancouver, ISO, and other styles
7

Simon, Seena, Arun Prathap, Sharanya Balki, and R. G. Dhilip Kumar. "An Experimental Investigation on Concrete with Basalt Rock Fibers." Journal of Physics: Conference Series 2070, no. 1 (November 1, 2021): 012196. http://dx.doi.org/10.1088/1742-6596/2070/1/012196.

Full text
Abstract:
Abstract Basalt fibre is formed from basalt rock when melted at a high temperature making it a non-metallic fibre. Basalt fibre reinforced concrete are good fire resistance, strength and light weight. These properties making it highly advantageous in the future to the construction business. There are many applications of basalt fibre like industrial, bridges, residential and highway etc. Fibres of basalt rock are used to make Basalt fibre, is cheaper and have improved physicomechanical properties which is very similar to the fibre glass and the carbon. They can replace many expensive materials resulting in wide range of applications in the field. The raw materials are available in all countries, making their production very simple. The biggest difficulties of the concrete and cement industry’s can be solved by the usage of basalt fibres. It is also used as composite and in the aerospace, automotive industries and fibre proof textile. Basalt fibres have no hazardous reactions with water or air and are explosion-proof and non-combustible. No chemical reaction will be produced that may damage environment or health when in contact with other chemicals. Reinforced plastics and steel maybe replaced by the basalt base composites. One kg of basalt reinforces equals to 9.6 kg of steel. Differences in compressive strength and split tensile test for concrete with and without basalt fibre by using cubes and cylinders are studied in this paper.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Zhi Qiang, Xiao Ning Lu, and Xiao Juan Huang. "Reinforcement of Laminated Veneer Lumber with Ramie Fibre." Advanced Materials Research 332-334 (September 2011): 41–44. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.41.

Full text
Abstract:
This paper describes a preliminary investigation on the use of ramie fibre/ phenol formaldehyde (PF) composite to reinforce laminated veneer lumber (LVL). This research was conducted in two phases. Phase 1 the ramie fibre was treated with KH-550 silane coupling agent. Phase 2 different numbers of sheets ramie fibre/PF were added in different location of LVL to reinforce. The reinforced LVL was hot pressed at one time. A control group of unreinforced LVL was also manufactured. The results showed that the improvement in level shear properties of reinforced LVL was obvious no matter what loading direction was perpendicular or parallel. The improvement in modulus of elasticity (MOE) and modulus of rupture (MOR) of partial reinforced LVL was obvious too. Preliminary results showed that using ramie fibre composite to reinforce LVL was possible. This research will further broaden the application field of natural fibres, and provide a new improvement way for wood based composite.
APA, Harvard, Vancouver, ISO, and other styles
9

Ortega, Raquel, Mario D. Monzón, Zaida C. Ortega, and Eoin Cunningham. "Study and fire test of banana fibre reinforced composites with flame retardance properties." Open Chemistry 18, no. 1 (April 7, 2020): 275–86. http://dx.doi.org/10.1515/chem-2020-0025.

Full text
Abstract:
AbstractThe interest in natural fibre reinforced composites is growing in industrial applications due to natural fibres being an attractive alternative to synthetic fibres. However, it is necessary to improve the fire behaviour of the material because natural fibres have a high combustibility. The objective of this work is to evaluate the fire resistance of polymer composites reinforced with natural fibre fabric, using magnesium hydroxide as flame retardant for the polymeric matrix and alkali treatment for the fibre. The types of fabric are banana, banana with cotton and linen; and long banana fibre has been used for the formation of a nonwoven. The fire test is carried out based on ISO 9773 standard and the effect of the additive has been studied, chemical treatment, type of fabric and number of layers. Through statistical analysis, it is concluded that the flame propagation speed has a decreasing relation with respect to the percentage, but it decreases the mechanical properties considerably. In addition, the number of layers and type of fabric influence the fire properties. Finally, it is concluded that composites reinforced with linen fabric have the best mechanical properties, but banana nonwoven with 60% additive has the best fire behaviour.
APA, Harvard, Vancouver, ISO, and other styles
10

Lie, T. T., and V. K. R. Kodur. "Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures." Canadian Journal of Civil Engineering 23, no. 2 (April 1, 1996): 511–17. http://dx.doi.org/10.1139/l96-055.

Full text
Abstract:
For use in fire resistance calculations, the relevant thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures were determined. These properties included the thermal conductivity, specific heat, thermal expansion, and mass loss, as well as the strength and deformation properties of steel-fibre-reinforced siliceous and carbonate aggregate concretes. The thermal properties are presented in equations that express the values of these properties as a function of temperature in the temperature range between 0 °C and 1000 °C. The mechanical properties are given in the form of stress–strain relationships for the concretes at elevated temperatures. The results indicate that the steel fibres have little influence on the thermal properties of the concretes. The influence on the mechanical properties, however, is relatively greater than the influence on the thermal properties and is expected to be beneficial to the fire resistance of structural elements constructed of fibre-reinforced concrete. Key words: steel fibre, reinforced concrete, thermal properties, mechanical properties, fire resistance.
APA, Harvard, Vancouver, ISO, and other styles
11

Fernando, Gerard F., Balkarransingh Degamber, Liwei Wang, Crispin Doyle, Guillaume Kister, and Brian Ralph. "Self-Sensing Fibre Reinforced Composites." Advanced Composites Letters 13, no. 2 (March 2004): 096369350401300. http://dx.doi.org/10.1177/096369350401300203.

Full text
Abstract:
This paper reports for the first time a demonstration of chemical process monitoring of conventional glass fibre reinforced composites where the reinforcing fibres themselves act as the optical fibre sensors. These fibres were used to study in real-time, the rate of chemical reaction between an epoxy resin and an amine hardener. These reinforcing fibre light guides were also subsequently used to study, in situ, the fracture sequence of the reinforcing fibres. This was achieved by imaging one end of the fibre bundle whilst illuminating the opposite end.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhao, Guanghui, Jijia Zhong, and Y. X. Zhang. "Research Progress on Mechanical Properties of Short Carbon Fibre/Epoxy Composites." Recent Patents on Mechanical Engineering 12, no. 1 (February 20, 2019): 3–13. http://dx.doi.org/10.2174/2212797612666181213091233.

Full text
Abstract:
Background: Short carbon fibre reinforced epoxy composites have many advantages such as high strength-to-weight ratio, corrosion resistance, low cost, short fabrication time and easy manufacturing. Researches on the mechanical performance of the composites are mainly carried out by means of experimental techniques and numerical calculation. Objective: The study aims to report the latest progress in the studies of mechanical properties of short carbon fibre reinforced epoxy composites. Methods: Based on recently published patents and journal papers, the experimental studies of short carbon fibre reinforced epoxy composites are reviewed and the effects of short carbon fibre on the mechanical properties of the composites are discussed. Numerical studies using representative volume element in simulating macroscopic mechanical properties of the short fibre reinforced composites are also reviewed. Finally, future research of short carbon fibre reinforced epoxy composites is proposed. Results: Experimental techniques, experimental results and numerical simulating methods are discussed. Conclusion: Mechanical properties of epoxy can be improved by adding short carbon fibres. Fiber surface treatment and matrix modification are effective in enhancing interfacial adhesion between fiber and matrix, and as a result, better mechanical performance is achieved. Compared to the studies on equivalent mechanical properties of the composites, researches on the micro-mechanism of interaction between fiber and matrix are still in infancy due to the complexity of both the internal structure and reinforcing mechanism.
APA, Harvard, Vancouver, ISO, and other styles
13

Amir, Norlaili, Faiz Ahmad, and Puteri S. M. Megat Yusoff. "Char Strength of Wool Fibre Reinforced Epoxy-Based Intumescent Coatings (FRIC)." Advanced Materials Research 626 (December 2012): 504–8. http://dx.doi.org/10.4028/www.scientific.net/amr.626.504.

Full text
Abstract:
Fire protective intumescent coating cannot insulate a base material effectively if its char lacks mechanical strength. This research therefore, studied the effects of fibre reinforcement to epoxy-based intumescent coatings char strength. The fibres used include glass wool fibre, Rockwool fibre and ceramic wool fibre of 10mm length. The three formulations mechanical performances were compared to both, a famous commercial intumescent coating and a control formulation without fibre. These coatings were fire tested up to 800°C in an electric furnace for an hour. Their chars mechanical properties were evaluated for char resistance test using predetermined weight loads. In the test, masses from 100g to 3600g were loaded continuously on top of the chars where the fibre reinforced intumescent coating (FRIC) has shown better strength and resistance to deformation. As a result, they produced lower percentage of height reduction i.e. 34% - 83% different when compared to unreinforced coating. Control char also ruptured at as low as 4N load. It was deduced that fire insulative wool fibres are effective reinforcement for improved char strength of the FRIC.
APA, Harvard, Vancouver, ISO, and other styles
14

Mathew, Merin, Kamalakanth Shenoy, and Ravishankar K. S. "Evaluation of Porosity and Water Sorption in Conventionally Cured Modified Polymethyl Methacrylate Resin - An In Vitro Study." Journal of Evolution of Medical and Dental Sciences 10, no. 13 (March 29, 2021): 930–34. http://dx.doi.org/10.14260/jemds/2021/201.

Full text
Abstract:
BACKGROUND Dimensional change and porosity in the polymethylmethacrylate based prosthesis affects its clinical performance. Hence, the present study aimed to evaluate the porosity and water sorption present in the modified polymethyl methacrylate polymer composite. METHODS Control group without fibre reinforcement and test groups with fibre reinforcement were prepared for the study. Three different fibres such as boron free-E glass fibre, untreated and plasma-treated polypropylene fibres in varying weight percentage and aspect ratio were considered for reinforcement. The porosity of the fractured surface was observed through a scanning electron microscope (scanning electron microscope) and sorption measured based on international standards organization (ISO) 1567:1999. RESULTS Control group exhibited porous structures, whereas all fibre-reinforced groups did not exhibit porous structure at the fracture surface. There was a significant difference in the sorption rate between control and test group (p < 0.001). Among fibrereinforced test groups, boron free E glass fibre reinforced polymethylmethacrylate exhibited maximum sorption followed by polypropylene fibre reinforced polymer test groups (p < 0.001). However, all samples showed sorption rate within the ISO specification. CONCLUSIONS Fiber reinforcement is an effective method to reduce porosity and water sorption in polymethylmethacrylate based polymer composite regardless of the fibre type. KEY WORDS Polymer Composite, Porosity, Water Sorption, Fiber Reinforcement, Polymethylmethacrylate
APA, Harvard, Vancouver, ISO, and other styles
15

Abdullah, Muhd Afiq Hizami, Mohd Zulham Affandi Mohd Zahid, Badorul Hisham Abu Bakar, Fadzli Mohamed Nazri, and Afizah Ayob. "UHPFRC as Repair Material for Fire-Damaged Reinforced Concrete Structure – A Review." Applied Mechanics and Materials 802 (October 2015): 283–89. http://dx.doi.org/10.4028/www.scientific.net/amm.802.283.

Full text
Abstract:
Exposure of concrete to intense heat will cause deterioration of its strength and durability. Previously, the fire-damaged concrete was repaired using the shotcrete and normal concrete. Recent studies utilize fibre reinforced polymer (FRP) in repairing fire-damaged concrete. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) mostly developed using fine size aggregate, cement, silica fume, super plasticizer and reinforced with steel fibre has an excellent mechanical properties compared to high strength concrete and with an addition of steel fibre in the UHPFRC enhances its ductility behaviour which is not possessed by normal concrete, hence, UHPFRC indicates a promising candidate as repair material to fire-damaged concrete. The aim of this paper is to review on the properties of UHPFRC to be utilized as repair material to fire-damaged concrete structure based on previous research on UHPFRC and fire-damaged structure.
APA, Harvard, Vancouver, ISO, and other styles
16

Silva, Elisabete R., Humberto E. Ferreira, Jorge F. J. Coelho, and João C. Bordado. "Hybrid Fibre-Reinforced Cement Composite." Materials Science Forum 730-732 (November 2012): 343–48. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.343.

Full text
Abstract:
This paper reports the results of a series of experiments carried out to investigate the effectiveness of newly hybrid polyethylene/polypropylene (PP/PE) fibres inclusion in the mechanical performance of cement matrices, with regard to fibres properties and content. The results indicate that, compared with plain cement matrix, the PP/PE fibre-reinforced cement matrices (FRC) revealed improvements on their mechanical performance. Increases of 37 ± 1% on compressive (40.2 MPa) and flexural strengths (8.1 MPa) were obtained for 24 mm fibre length composites containing a rather low fibre’s content (1 wt.%). These mechanical improvements were achieved after optimisation of the mortar workability by the addition of a superplasticizer. FRC mechanical behaviours also evidenced that despite the compressive strengths increasing with fibre length, a flexural strength effect is only noticeable for a 24 mm length fibre-reinforced composite and for fibres volume higher than 2.9 %. Morphological observations showed a strong interaction between fibres and cement matrix, evidenced a crack arrest role (bridge effect) on fibre/cement interfacial zone and revealed a typical multiple fracture cracking mechanism.
APA, Harvard, Vancouver, ISO, and other styles
17

Mercy, J. Lilly, R. Velmurugan, T. Sasipraba, and Chrystella Jacob. "Neurofuzzy modelling of moisture absorption kinetics and its effect on the mechanical properties of pineapple fibre-reinforced polypropylene composite." Journal of Composite Materials 54, no. 7 (August 20, 2019): 899–912. http://dx.doi.org/10.1177/0021998319870581.

Full text
Abstract:
Natural fibres possess low density, less abrasiveness, good strength and sound absorption capacity and its significance lies in being renewable and biodegradable. The mechanical characteristics and moisture absorption of pineapple fibres reinforced with polypropylene resin are focused in this study. Chopped fibres and unidirectional fibre mats of pineapple were reinforced with polypropylene resin to make pineapple fibre/polypropylene composites. The length of the pineapple fibres and the orientation of the layup of the fibre mats are varied to make composite specimens and the mechanical properties are tested. Moisture absorption studies were carried out and it was confirmed to follow Fickian diffusion. A total of 384 samples were tested and it was observed that all the samples reached its saturation in moisture absorption before 720 h and the strength was inversely proportional to the moisture absorbed. Specimens reinforced with unidirectional fibre mats of alternate orientation possessed high strength irrespective of the moisture absorbed when compared to the specimens reinforced with chopped fibres of random orientation. Neuro fuzzy modelling using ANFIS tool box in MATLAB was used to correlate the static mechanical properties of pineapple fibre-reinforced polymer under different moisture conditions, fibre orientations, fibre volume percentage, fibre size, etc.
APA, Harvard, Vancouver, ISO, and other styles
18

Prabakaran, E., D. Vasanth Kumar, A. Jaganathan, P. Ashok Kumar, and M. Veeerapathran. "Analysis on Fiber Reinforced Epoxy Concrete Composite for Industrial Flooring – A Review." Journal of Physics: Conference Series 2272, no. 1 (July 1, 2022): 012026. http://dx.doi.org/10.1088/1742-6596/2272/1/012026.

Full text
Abstract:
Abstract Fiber composites are the having an good scope in construction industry as they are light in weight, durable, economic, and resistant to temperatures. Many researchers concentrate on the composites for the industrial flooring with the fibers. The main objective of this paper is to review the fiber reinforced epoxy for industrial flooring. Epoxy can be used as flooring elements in industries as they deliver good performance. Since, natural and synthetic fibres can be used with filler matrices, which are very much cheaper than the conventional steel fibres reinforced composite concrete flooring and other type of composites here fibre is considered for reinforcing with epoxy or polymer concrete filler matrix. Fibre-polymer and fibre-concrete composite properties has been reviewed for testing procedure for flexural test, bending test, tensile test and based on the results, it is clear that the fibre-polymer concrete composite, which has good mechanical properties and performance than the mentioned composites, can be made for industrial flooring
APA, Harvard, Vancouver, ISO, and other styles
19

Siregar, Januar Parlaungan, Tezara Cionita, Dandi Bachtiar, and Mohd Ruzaimi Mat Rejab. "Tensile Properties of Pineapple Leaf Fibre Reinforced Unsaturated Polyester Composites." Applied Mechanics and Materials 695 (November 2014): 159–62. http://dx.doi.org/10.4028/www.scientific.net/amm.695.159.

Full text
Abstract:
In recent years natural fibres such as sisal, jute, kenaf, pineapple leaf and banana fibres appear to be the outstanding materials which come as the viable and abundant substitute for the expensive and non-renewable synthethic fibre. This paper investigate the effect of fibre length and fibre content on the tensile properties of pineapple leaf fibre (PALF) reinforced unsaturated polyester (UP) composites. PALF as reinforcement agent will be employed with UP to form composite material specimens. The various of fiber length (<0.5, 0.5–1, and 1-2 mm) and fibre content (0, 5, 10 and 15 % by volume) in UP composite have been studied. The fabrication of PALF/UP composites used hand lay-up process, and the specimens for tensile test prepared follow the ASTM D3039. The result obtained from this study show that the 1-2 mm fibre length has higher tensile strength (42 MPa) and tensile modulus (1344 MPa) values compared to fibre length of <0.5 mm (30 MPa and 981 MPa) and 0.5-1 mm (35.40 MPa and 1020 MPa) respectively. Meanwhile, for the effect of various fibre content in study has shown that the increase of fibre content has decreased in tensile strength dan tensile modulus of composites. The increase of fibre content due to poor interfacial bonding and poor wetting of the fibre by unsaturated polyster. The treatment of natural fibre are suggested in order to improve the interfacial adhesion between natural fibre and the unsaturated polyester.
APA, Harvard, Vancouver, ISO, and other styles
20

Goud, E. Giri Prasad, Dinesh Singh, V. Srinivasa Reddy, and Kaveli Jagannath Reddy. "Stress-Strain behaviour of basalt fibre reinforced concrete." E3S Web of Conferences 184 (2020): 01081. http://dx.doi.org/10.1051/e3sconf/202018401081.

Full text
Abstract:
This paper prophesies the stress strain behaviour of M30 grade concrete reinforced with basalt fibres of length 12 mm, 36 mm and 50 mm of amounts 0.4%, 0.4% and 0.3% by volume of concrete respectively. Modulus of elasticity and toughness of M30 grade basalt fibre reinforced concretes are also evaluated. It was found that BFRCC mixes show good resistance to impact and has superior dissipation capacity. The optimal basalt fibre volume fraction is 0.3% and length is 50 mm. For this case, toughness index and energy absorbed at fracture have considerably enhanced. With the volume fraction of basalt fiber exceeding the optimum volume fraction, the mechanical properties of basalt fiber are weakened.
APA, Harvard, Vancouver, ISO, and other styles
21

Naraganti, Srinivasa Rao, Rama Mohan Rao Pannem, and Jagadeesh Putta. "Influence of Hybrid Fibres on Bond Strength of Concrete." International Journal of Mathematical, Engineering and Management Sciences 5, no. 2 (April 1, 2020): 353–62. http://dx.doi.org/10.33889/ijmems.2020.5.2.029.

Full text
Abstract:
Bond strength between embedded bar and concrete plays vital role in the design of various reinforced concrete structural elements. Use of metallic and synthetic fibres has been shown to be an effective method to enhance tensile strength, reduce shrinkage and improve durability properties of concrete. However, making of synthetic fibres will not only deplete the natural hydrocarbon resources, but also add greenhouse pollutants to the environment. Hence, sisal fibre was considered as a potential alternative to polypropylene fibre. An experimental study was conducted to evaluate the influence of sisal fibres as mono-fibre and in combination with steel as hybrid fibre on bond strength of concrete. The performance of steel polypropylene fibre reinforced concrete (SPFRC) is compared with that of steel sisal fibre reinforced concrete (SSiFRC). Bond strength was conducted onM30 grade concrete for curing periods of 7, 28 and 90 days. Fibre dosages of 0.50%, 1.00%, 1.25% and 1.50% by volume of concrete were used. Results indicated that increase in steel fibre dosage improved the bond strength slightly. However, increase in fibre dosage of either PP fibres or sisal fibres resulted decrease in bond strength. Furthermore, sisal fibre reinforced concrete (SiFRC) showed inferior performance in bond strength as compared to polypropylene fibre reinforced concrete (PFRC). A detailed statistical analysis revealed that although no strong correlation between the compressive strength and the bond strength was evident from the experimental study, means of bond strength of both the hybrid groups did not differ significantly. In addition, empirical equations were proposed to predict the bond strength of fibre reinforced concrete (FRC) based on compressive strength.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Xidong, and Adrian R. Russell. "Drained volumetric behaviour and static liquefaction of very loose sand reinforced with synthetic fibres." E3S Web of Conferences 92 (2019): 12001. http://dx.doi.org/10.1051/e3sconf/20199212001.

Full text
Abstract:
Synthetic fibres may be used to reinforce soils. Fibre reinforcement may, for example, improve the mechanical behaviour of very loose sand which is usually susceptible to static liquefaction. In this study, two types of polypropylene fibres are mixed into sand to explore the effect of fibre reinforcement on drained volumetric behaviour and undrained static liquefaction. Drained and undrained stress-controlled triaxial compression tests are conducted on both unreinforced and fibre reinforced samples which are in very loose states. It is observed that, under drained compression, both unreinforced and fibre reinforced samples show volumetric contraction. In undrained compression the excess pore water pressure eventually becomes almost equal to the initial confining stress in all samples. This represents a state of liquefaction in unreinforced samples, and they become fluidised indicating the effective stress has become zero. However, in reinforced samples, the fluidised condition is absent, indicating that a conventional type of liquefaction has not occurred. It is concluded that static liquefaction in very loose sand can be prevented by fibre reinforcement, as the induced tensile stress in fibres makes the effective stress (that is the stress carried by the soil skeleton) remain above zero even when the excess pore water pressure is equal to the confining stress.
APA, Harvard, Vancouver, ISO, and other styles
23

Awoyera, Paul Oluwaseun, John Uduak Effiong, Oladimeji Benedict Olalusi, Krishna Prakash Arunachalam, Afonso R. G. de Azevedo, Flavia R. B. Martinelli, and Sergio Neves Monteiro. "Experimental Findings and Validation on Torsional Behaviour of Fibre-Reinforced Concrete Beams: A Review." Polymers 14, no. 6 (March 15, 2022): 1171. http://dx.doi.org/10.3390/polym14061171.

Full text
Abstract:
Fibres have long been utilized in the construction sector to improve the mechanical qualities of structural elements such as beams, columns, and slabs. This study aims to review the torsional behaviour of various forms of fibre reinforced concrete to identify possible enhancements and the practicability of concrete structural beams. Concrete reinforced steel fibre, synthetic fibre, and hybrid fibre are examples of fibre reinforced concrete. The review found that the mixing, orientation, and volume of fibres, the size of coarse particles, the aspect ratio of fibres, and the stiffness of fibres all affect the torsional strength of fibre reinforced concrete. Nevertheless, the application of fibres to recycled self-consolidating concrete of various forms needs to be explored and studied to ascertain its feasibility to facilitate greener concrete. Thus, with the results compiled in this review paper, it was possible to delimit advances and gaps on the effect of editing reinforcement fibres in relation to the torsion of structural elements.
APA, Harvard, Vancouver, ISO, and other styles
24

Dong, Chensong. "Review of natural fibre-reinforced hybrid composites." Journal of Reinforced Plastics and Composites 37, no. 5 (December 3, 2017): 331–48. http://dx.doi.org/10.1177/0731684417745368.

Full text
Abstract:
Natural fibre-reinforced hybrid composites which contain one or more types of natural reinforcement are gaining increasing research interest. This paper presents a review of natural fibre-reinforced hybrid composites. Both thermoplastic and thermoset composites reinforced by hybrid/synthetic fibres or hybrid/hybrid fibres are reviewed. The properties of natural fibres, the properties and processing of composites are summarised.
APA, Harvard, Vancouver, ISO, and other styles
25

Abbas, Al-Ghazali Noor, Farah Nora Aznieta Abdul Aziz, Khalina Abdan, Noor Azline Mohd Nasir, and Mohd Nurazzi Norizan. "Kenaf Fibre Reinforced Cementitious Composites." Fibers 10, no. 1 (January 4, 2022): 3. http://dx.doi.org/10.3390/fib10010003.

Full text
Abstract:
Increased environmental awareness and the demand for sustainable materials have promoted the use of more renewable and eco-friendly resources like natural fibre as reinforcement in the building industry. Among various types of natural fibres, kenaf has been widely planted in the past few years, however, it hasn’t been extensively used as a construction material. Kenaf bast fibre is a high tensile strength fibre, lightweight and cost-effective, offering a potential alternative for reinforcement in construction applications. To encourage its use, it’s essential to understand how kenaf fibre’s properties affect the performance of cement-based composites. Hence, the effects of KF on the properties of cementitious composites in the fresh and hardened states have been discussed. The current state-of-art of Kenaf Fibre Reinforced Cement Composite (KFRCC) and its different applications are presented for the reader to explore. This review confirmed the improvement of tensile and flexural strengths of cementitious composites with the inclusion of the appropriate content and length of kenaf fibres. However, more studies are necessary to understand the overall impact of kenaf fibres on the compressive strength and durability properties of cementitious composites.
APA, Harvard, Vancouver, ISO, and other styles
26

Tiwari, Pankaj, R. S. Parihar, Abhay Kumar Jha, Barun Kumar, and Rajesh Misra. "To Investigate How Well Industrial Waste Polymer Fibre Performs Physically and Mechanically When Utilised in Concrete Mixtures." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (December 31, 2022): 1641–44. http://dx.doi.org/10.22214/ijraset.2022.48305.

Full text
Abstract:
Abstract: While the density of the fiber-reinforced concrete (FRC) is determined right away after the concrete mix has been prepared, the compressive strength and split tensile strength of the FRC are tested 7 and 28 days after it has been cured. As a result of adding polypropylene fibre, new fiber-reinforced concrete (FRC) has a marginally or barely decreased density from 2397 kg/m3 to 2393 kg/m3, according to the results in laboratory. Waste polypropylene fibre boosts the strength of fibre reinforced concrete for all curing ages up to a particular degree (FRC). After that, there is a rapid decline in the strength of the fiber-reinforced concrete (FRC). It is recommended to add 0.5% of polypropylene fibre for maximum strength and minimal brittleness. The inclusion of 0.5% waste polypropylene fibre raises the split tensile strength and compressive strength of the fiber-reinforced concrete by 16.9908% and 9.988470%, respectively (FRC).
APA, Harvard, Vancouver, ISO, and other styles
27

Rayyaan, Rishad, William Richard Kennon, Prasad Potluri, and Mahmudul Akonda. "Fibre architecture modification to improve the tensile properties of flax-reinforced composites." Journal of Composite Materials 54, no. 3 (July 17, 2019): 379–95. http://dx.doi.org/10.1177/0021998319863156.

Full text
Abstract:
As far as the tensile properties of natural fibres as reinforcements for composites are concerned, flax fibres will stay at the top-end. However, an efficient conversion of fibre properties into their corresponding composite properties has been a challenge, due to the fibre damages through the conventional textile methods utilised to process flax. These techniques impart disadvantageous features onto fibres at both micro- and meso-scale level, which in turn degrade the mechanical performances of flax fibre-reinforced composites (FFRC). Undulation of fibre is one of those detrimental features, which occurs during traditional fibre extraction from plant and fabric manufacturing routes. The undulation or waviness causes micro-compressive defects or ‘kink-bands’ in elementary flax fibres, which significantly undermines the performances of FFRC. Manufacturing flax fabric with minimal undulation could diminish the micro-compressive defects up to a substantial extent. In this research, nonwoven flax tapes of highly aligned flax fibres, blended with a small proportion of polylactic acid have been manufactured deploying a novel technique. Composites reinforced from those nonwoven tapes have been compared with composites reinforced with woven Hopsack fabrics and warp knitted unidirectional fabrics from flax, comprising undulating fibres. The composites reinforced with the highly aligned tapes have shown 33% higher fibre-bundle strength, and 57% higher fibre-bundle stiffness in comparison with the composites reinforced with Hopsack fabric. The results have been discussed in the light of fibre undulation, elementary fibre individualisation, homogeneity of fibre distribution, extent of resin rich areas and impregnation of the fibre lumens.
APA, Harvard, Vancouver, ISO, and other styles
28

Alberti, M. G., A. Enfedaque, J. C. Gálvez, and A. Picazo. "Recent advances in structural fibre-reinforced concrete focused on polyolefin-based macro-synthetic fibres." Materiales de Construcción 70, no. 337 (February 18, 2020): 206. http://dx.doi.org/10.3989/mc.2020.12418.

Full text
Abstract:
Fibre-reinforced concrete (FRC) allows reduction in, or substitution of, steel-bars to reinforce concrete and led to the commonly named structural FRC, with steel fibres being the most widespread. Macro-polymer fibres are an alternative to steel fibres, being the main benefits: chemical stability and lower weight for analogous residual strengths of polyolefin-fibre-reinforced concrete (PFRC). Furthermore, polyolefin fibres offer additional advantages such as safe-handling, low pump-wear, light weight in transport and storage, and an absence of corrosion. Other studies have also revealed environmental benefits. After 30 years of research and practice, there remains a need to review the opportunities that such a type of fibre may provide for structural FRC. This study seeks to show the advances and future challenges of use of these polyolefin fibres and summarise the main properties obtained in both fresh and hardened states of PFRC, focussing on the residual strengths obtained from flexural tensile tests.
APA, Harvard, Vancouver, ISO, and other styles
29

Jagtap, Siddhant Millind, Shailesh Kalidas Rathod, Rohit Umesh Jadhav, Prathamesh Nitin Patil, Atharva Shashikant Patil, Ashwini M. Kadam, and P. G. Chavan. "Fibre Mesh in Reinforced Slabs." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 3539–40. http://dx.doi.org/10.22214/ijraset.2022.42986.

Full text
Abstract:
Abstract: Fiber Reinforced Concrete is gaining attention as an effective way to improve the performance of concrete. Fibers are currently being specified in tunneling, bridge decks, pavements, loading docks, thin unbonded overlays, concrete pads, and concretes slabs. These applications of fiber reinforced concrete are becoming increasingly popular and are exhibiting excellent performance The usefulness of fiber reinforced concrete in various civil engineering applications is indisputable. Fiber reinforced concrete has so far been successfully used in slabs on grade, architectural panels, precast products, offshore structures, structures in seismic regions, thin and thick repairs, crash barriers, footings, hydraulic structures and many other applications. This study presents understanding srength of fibre reinforced conceret. Mechanical properties and durability of fiber reinforced concrete.
APA, Harvard, Vancouver, ISO, and other styles
30

Banthia, N., and A. J. Boyd. "Sprayed fibre-reinforced polymers for repairs." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 907–15. http://dx.doi.org/10.1139/l00-027.

Full text
Abstract:
The use of fibre-reinforced polymers for repair and retrofit is growing at an unprecedented rate. This technique has been used for strengthening and rehabilitation of columns, beams, masonry, joints, etc. and has also found significant suitability for seismic applications. All research to date has focused, however, on wraps and jackets with continuous, unidirectional fibres. Within the auspices of Network of Centers of Excellence on Intelligent Sensing for Innovative Structures (ISIS) program, an entirely new method of fibre reinforced polymer coating is being developed. In this method, the composite with short, randomly distributed fibres is sprayed on the surface of concrete to be repaired. Composite gets pneumatically compacted on the application surface and develops a strong bond with concrete during the hardening process. In this paper, the effectiveness of the spray technique is compared with wraps carrying continuous fibres when applied to concrete cylinders under compression. To assess size effects, a companion test series involving larger cylinders was carried out. It was found that sprayed composites with randomly distributed short fibres performed equally well as or even better than wraps with continuous fibres. Within the continuous fibre wraps, those with a 0-90° fibre orientation are far more effective than those with a ±45° orientation.Key words: concrete, repair, glass fibre, polymer matrix, spray, wraps, deformability, size effects.
APA, Harvard, Vancouver, ISO, and other styles
31

Bamigboye, Gideon, Ben Ngene, Omotolani Aladesuru, Oluwaseun Mark, Dunmininu Adegoke, and Kayode Jolayemi. "Compressive Behaviour of Coconut Fibre (Cocos nucifera) Reinforced Concrete at Elevated Temperatures." Fibers 8, no. 1 (January 1, 2020): 5. http://dx.doi.org/10.3390/fib8010005.

Full text
Abstract:
Fire outbreaks in buildings have been a major concern in the world today. The integrity of concrete is usually questioned due to the fact that after these fire outbreaks the strength of the concrete is reduced considerably. Various methods have been adopted to improve the fire resistance property of concrete. This study focused on the use of coconut fibre to achieve this feat. In this study, varying percentages of treated and untreated coconut fibres were incorporated into concrete and the compressive strength was tested for both before heating and after heating. The percentages of replacement were 0.25, 0.5, 0.75 and 1% fibre content by weight of cement. Concrete cubes that had 0% fibre served as control specimens. After subjecting these concrete cubes to 250 °C and 150 °C for a period of 2 h, the compressive strength increased when compared to the control. The compressive strength increased up to 0.5% replacement by 3.88%. Beyond 0.5% fibre, the compressive strength reduced. Concrete having coconut fibre that had been treated with water also exhibited the highest compressive strength of 28.71 N/mm². It is concluded that coconut fibres are a great material in improving the strength of concrete, even after it was exposed to a certain degree of elevated temperature.
APA, Harvard, Vancouver, ISO, and other styles
32

S.F.K. Sherwani, E.S. Zainudin, S.M. Sapuan, Z. Leman, and A. Khalina. "Recent Development of Natural Fibers Reinforced Polylactic Acid Composites." Journal of Research in Nanoscience and Nanotechnology 5, no. 1 (April 18, 2022): 103–8. http://dx.doi.org/10.37934/jrnn.5.1.103108.

Full text
Abstract:
The current research determines the most recent developments in natural fibres reinforced polylactic acid composites. Polylactic acid (PLA) is derived from renewable resources and is capable of degrading microorganisms, eliminating the pollution caused by petrochemical-based plastic. PLA is the most promising biodegradable material among biodegradable polymers since it is easily attacked by bacteria PLA decomposes easily, releasing H2O, CO2, and humus, the black material found in soil. PLA is a thermoplastic polymer that is widely used in the production of plastic bags, large planting cups, paper coating, fibres, films, packaging, and as a matrix material in composites. This review also discussed the physical and mechanical properties of several natural fibre reinforced polylactic acid composites. Several natural fibres have been used to reinforce PLA as a reinforcement for natural fibre composites in the field of composite manufacturing.
APA, Harvard, Vancouver, ISO, and other styles
33

Bergeret, Anne, and Jean Charles Benezet. "Natural Fibre-Reinforced Biofoams." International Journal of Polymer Science 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/569871.

Full text
Abstract:
Starches and polylactic acids (PLAs) represent the main biobased and biodegradable polymers with potential industrial availability in the next decades for “bio” foams applications. This paper investigates the improvement of their morphology and properties through processing and materials parameters. Starch foams were obtained by melt extrusion in which water is used as blowing agent. The incorporation of natural fibres (hemp, cellulose, cotton linter, sugarcane, coconut) in the starch foam induced a density reduction up to 33%, a decrease in water absorption, and an increase in mechanical properties according to the fibre content and nature. PLA foams were obtained through single-screw extrusion using of a chemical blowing agent that decomposed at the PLA melting temperature. A void content of 48% for PLA and 25% for cellulose fibre-reinforced PLA foams and an improvement in mechanical properties were achieved. The influence of a fibre surface treatment was investigated for both foams.
APA, Harvard, Vancouver, ISO, and other styles
34

Krassowska, Julita, and Marta Kosior-Kazberuk. "Failure mode in shear of steel fiber reinforced concrete beams." MATEC Web of Conferences 163 (2018): 02003. http://dx.doi.org/10.1051/matecconf/201816302003.

Full text
Abstract:
Experimental tests were carried out to assess the failure model of steel fiber reinforced concrete beams. Experimental research was focused on observing changes in the behavior of the tested elements depending on the amount of shear reinforcement and the fiber. Model two-span beams with a cross-section of 80x180 mm and a length of 2000 mm were tested. The beams had varied stirrup spacing. The following amounts of steel fibres in concrete were used: 78.5 kg/m3 (1.0%) i 118 kg/m3 (1.5%). Concrete beams without fibres were examined at the same time. The beams were loaded in a five-point bending test until they were destroyed. Shear or bending capacity of the element was observed. Fibre reinforced concrete beams were not destroyed rapidly, but they kept their shape consistent under load. Larger number of diagonal cracks with a smaller width were observed in fibre reinforced concrete beams. Failure of concrete beams without fibres was rapid, with a characteristic brittle cracking. Steel fibres revealed the ability to transfer significant shear stress after cracking in comparison to plain concrete.
APA, Harvard, Vancouver, ISO, and other styles
35

Singh, Niraj Kumar, and Baboo Rai. "A Review of Fiber Synergy in Hybrid Fiber Reinforced Concrete." Journal of Applied Engineering Sciences 8, no. 2 (December 1, 2018): 41–50. http://dx.doi.org/10.2478/jaes-2018-0017.

Full text
Abstract:
Abstract Fibre reinforced concrete (FRC) presently utilized as a part of special structures subjected to dynamic loads for example airport pavements, expressways overlays, bridge decks and machine foundations. In most cases, FRC contains just a single kind of fibre. The utilization of at least two kinds of fibres in an appropriate mix can possibly improve the mechanical properties of concrete and result in performance synergy. The audit demonstrates that the blend of fibre allows a more powerful control of the dynamic crack development. This review analyses the components for synergistic impacts that gives direction on the fiber and matrix choice.
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Yanzhu, Liang Wang, Ke Cao, and Lei Sun. "Review on the Durability of Polypropylene Fibre-Reinforced Concrete." Advances in Civil Engineering 2021 (June 4, 2021): 1–13. http://dx.doi.org/10.1155/2021/6652077.

Full text
Abstract:
Polypropylene fibre (PPF) is a kind of polymer material with light weight, high strength, and corrosion resistance. The crack resistance of concrete can be improved by adding PPFs. PPF can optimize the pore size distribution of concrete. As a result, the durability of concrete is significantly enhanced since PPF can block the penetration of water or harmful ions in concrete. This paper summarizes the influence of polypropylene fibre on the durability of concrete, including drying shrinkage, creep, water absorption, permeability resistance, chloride ion penetration resistance, sulfate corrosion resistance, freeze-thaw cycle resistance, carbonation resistance, and fire resistance. The authors analysed the effects of fibre content, fibre diameter, and fibre hybrid ratio on these durability indexes. The durability property of concrete can be further improved by combining PPFs and steel fibres. The drawbacks of PPF in application in concrete are the imperfect dispersion in concrete and weak bonding with cement matrix. The methods to overcome these drawbacks are to use fibre modified with nanoactive powder or chemical treatment. At last, the authors give the future research prospects of concrete made with PPFs.
APA, Harvard, Vancouver, ISO, and other styles
37

MAY, P. W., M. HALL, and D. J. SMITH. "DIAMOND-FIBRE REINFORCED PLASTIC COMPOSITES." International Journal of Modern Physics B 16, no. 06n07 (March 20, 2002): 906–11. http://dx.doi.org/10.1142/s0217979202010592.

Full text
Abstract:
Diamond fibre reinforced poly (methylmethacrylate) (PMMA, perspex) composite blocks (100 × 10 × 4 mm) have been fabricated by embedding CVD diamond coated tungsten wires within a perspex matrix. Various volume fractions of diamond have been used, as well as varying positions of the fibres within the composite. We find that even 1% fibre volume fraction can lead to an increase in the Young's modulus of the composite of a factor of 6.
APA, Harvard, Vancouver, ISO, and other styles
38

Razali, M. F., S. A. H. A. Seman, and T. W. Theng. "Effect of Fiber Misalignment on Mechanical and Failure Response of Kenaf Composite under Compressive Loading." Journal of Mechanical Engineering 18, no. 2 (April 15, 2021): 177–91. http://dx.doi.org/10.24191/jmeche.v18i2.15152.

Full text
Abstract:
The use of kenaf fibres has grown unexpectedly in the world as they help to establish green materials in automobile, sports and food packaging industries. Over the past few decades, unidirectional fiber-reinforced composites have been extensively used in industry due to their high specific strength characteristics. During manufacturing process, several defects especially fiber misalignment might exist in the unidirectional composite structure. This kind of deviation from its optimal parallel packing in a unidirectional fibre reinforced composite would influence its overall load-bearing efficiency. Performance data of kenaf composite due to this imperfection, however, is very limited in the literature. In this regard, the effects of fibre misalignments on the unidirectional kenaf composite compressive reaction have been studied. For this reason, pultruded kenaf composite specimens with different fibre alignment from 00 to 20 at 2.1 and 8.4 mm/s strain rates were subjected to a range of compression measures. The findings revealed that, the failure strain seems to be almost constant at value of 0.05 and 0.063 while the failure stress decreases from 140Mpa until 120MP when the fibre alignment increases when loaded within a range of 2.1~8.4s-1. Additionally, under increased fiber misalignment and strain rate, fibre plastic microbuckling, fibre breakage, fibre splitting and fibre matrix debonding was progressively formed on the specimen.
APA, Harvard, Vancouver, ISO, and other styles
39

Kumar, Santosh, and KK Singh. "Tribological behaviour of fibre-reinforced thermoset polymer composites: A review." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234, no. 11 (July 21, 2020): 1439–49. http://dx.doi.org/10.1177/1464420720941554.

Full text
Abstract:
Application of fibre-reinforced polymer composites has increased over the last two decades as compared to conventional materials. This improvement in the application of fibre-reinforced polymer composites is attributed to their unique material properties, such as high strength and stiffness-to-weight ratio, specific modulus and internal vibration damping. However, in most of the industrial applications, composite materials encounter tribological complications. Economic indicators and market dynamics suggested that the market for composite materials is booming and the dominant materials are carbon fibres, glass fibres and thermoset polymer (polyester resin) in resin segments. That is why tribological characteristics are crucial in designing carbon and glass-based fibre-reinforced polymer components. Owing to this importance, the study of tribological behaviour of fibre-reinforced polymer composite materials has expanded significantly. The present study has made an attempt to review the fundamental tribological applications and critical aspects of fibre-reinforced polymers, based on research work, which has been carried out over the past couple of decades. This work has primarily focused on the fibre-reinforced polymer composites, based on carbon and glass fibres with thermosets as the matrix material for probing into tribological behaviours. In the process, the focus has largely been on the most commonly occurring erosive and abrasive mode of wear process.
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Fangyuan, Yunxuan Cui, Chengyuan Cao, and Peifeng Wu. "Experimental study of the tensile and flexural mechanical properties of directionally distributed steel fibre-reinforced concrete." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 9 (June 20, 2018): 1721–32. http://dx.doi.org/10.1177/1464420718782555.

Full text
Abstract:
Directionally distributed steel fibre-reinforced concrete has been proposed as a novel concrete because of its high tensile strength and crack resistance in specific directions. Based on the existing studies of the effect of the fibre direction on the mechanical properties of fibre-reinforced concrete, the authors in this paper performed further studies of the mechanical properties of directionally distributed steel fibre-reinforced concrete by conducting split tensile and bending tests. The split tensile strength of the directionally distributed fibre-reinforced concrete clearly exhibited anisotropy. The split tensile strength perpendicular to the fibre direction was much higher than that parallel to the fibre direction. The split tensile strength perpendicular to the fibre direction was almost twice the tensile strength of plain concrete. The flexural performance of directionally distributed fibre-reinforced concrete in the fibre direction significantly improved compared to that of randomly distributed fibre-reinforced concrete. Specifically, the flexural strength increased by as much as 97%. Gravity resulted in a deviation in the tensile properties of concrete prepared by manually and directionally placing fibres in a layered casting process. The test results can be utilised in subsequent concrete designs. The conclusions reached in this paper provide comprehensive mechanical design parameters for the application of directionally distributed fibre-reinforced concrete.
APA, Harvard, Vancouver, ISO, and other styles
41

Kahanji, C., F. Ali, and A. Nadjai. "Explosive spalling of ultra-high performance fibre reinforced concrete beams under fire." Journal of Structural Fire Engineering 7, no. 4 (December 12, 2016): 328–48. http://dx.doi.org/10.1108/jsfe-12-2016-023.

Full text
Abstract:
Purpose The purpose of the study was to investigate the spalling phenomenon in ultra-high performance fibre reinforced concrete (UHPFRC) beams on exposure to a standard fire curve (ISO 834) under a sustained load. Design/methodology/approach The variables in this study were steel fibre dosage, polypropylene (PP) fibres and loading levels. The research investigated seven beams – three of which contained steel fibres with 2 vol.%, another three had steel fibres with 4 vol.% dosage and the seventh beam had a combination of steel fibres (2 vol.%) and PP fibres (4 kg/m3). The beams were tested for 1 h under three loading levels (20, 40 and 60 per cent) based on the ambient temperature ultimate flexural strength of the beam. Findings Spalling was affected by the loading levels; it exacerbated under the load level of 40 per cent, whereas under the 60 per cent load level, significantly less spalling was recorded. Under similar loading conditions, the beams containing steel fibres with a dosage of 4 vol.% spalled less than the beams with fibre contents of 2 vol.%. This was attributed to the additional tensile strength provided by the excess steel fibres. The presence of PP fibres eliminated spalling completely. Originality/value There is insufficient research into the performance of UHPFRC beams at elevated temperature, as most studies have largely focussed on columns, slabs and smaller elements such as cubes and cylinders. This study provides invaluable information and insights of the influence of parameters such as steel fibre dosage, PP fibres, loading levels on the spalling behaviour and fire endurance of UHPFRC beams.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Y., L. Yan, S. Wang, and M. Xu. "Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete." Materiales de Construcción 69, no. 334 (March 15, 2019): 184. http://dx.doi.org/10.3989/mc.2019.01418.

Full text
Abstract:
The quasi-static and dynamic mechanical behaviours of the concrete reinforced by twisting ultra-high molecular weight polyethylene (UHMWPE) fibre bundles with different volume fractions have been investigated. It was indicated that the improved mixing methodology and fibre geometry guaranteed the uniform distribution of fibres in concrete matrix. The UHMWPE fibres significantly enhanced the splitting tensile strength and residual compressive strength of concrete. The discussions on the key property parameters showed that the UHMWPE fibre reinforced concrete behaved tougher than the plain concrete. Owing to the more uniform distribution of fibres and higher bonding strength at fibre/matrix interface, the UHMWPE fibre with improved geometry enhanced the quasi-static splitting tensile strength and compressive strength of concrete more significantly than the other fibres. The dynamic compression tests demonstrated that the UHMWPE fibre reinforced concrete had considerable strain rate dependency. The bonding between fibres and concrete matrix contributed to the strength enhancement under low strain-rate compression.
APA, Harvard, Vancouver, ISO, and other styles
43

Aslani, Farhad, Yinong Liu, and Yu Wang. "Flexural and toughness properties of NiTi shape memory alloy, polypropylene and steel fibres in self-compacting concrete." Journal of Intelligent Material Systems and Structures 31, no. 1 (October 5, 2019): 3–16. http://dx.doi.org/10.1177/1045389x19880613.

Full text
Abstract:
Self-compacting concrete presents good workability to fill complicated forms without mechanical vibrations. This concrete is often reinforced with fibres to improve the strength and toughness. This study investigated the use of nickel -titanium (NiTi) shape memory alloy fibres in comparison with polypropylene and steel fibres in self-compacting concrete. The performances of the fresh fibre–reinforced self-compacting concrete are explored by slump flow and J-ring experiments. Meanwhile, the static and cyclic flexural tests are conducted to estimate the bending resistance strength performance, residual deformation and recovering capacity of shape memory alloy, polypropylene and steel fibre–reinforced self-compacting concrete. Moreover, the flexural toughness of the shape memory alloy, polypropylene and steel fibre–reinforced self-compacting concrete is calculated using four different codes. The shape memory alloy fibre–reinforced self-compacting concrete with 0.75% volume fraction presents the largest flexural strength, re-centering ability and toughness in comparison with polypropylene and steel fibre–reinforced self-compacting concretes. The experimental results demonstrated the beneficial influence of the shape memory and superelastic properties of NiTi in postponing initial crack formation and restricting the crack widths.
APA, Harvard, Vancouver, ISO, and other styles
44

Srinivasababu, Nadendla, J. Suresh Kumar, and K. Vijaya Kumar Reddy. "Imperata cylindrica / Sacred Grass Long Fibre Reinforced Polyester Composites – An Experimental Determination of Properties." Applied Mechanics and Materials 612 (August 2014): 131–37. http://dx.doi.org/10.4028/www.scientific.net/amm.612.131.

Full text
Abstract:
In the present work a new natural fibre i.e. sacred grass botanically called Imperata Cylindrica is introduced and it belongs to vedic grass family. The fibre is extracted by splitting method and is reinforced into the polyester matrix by hand lay-up technique for the fabrication of tensile, flexural, impact, dielectric test specimens as per ASTM procedures. Highest values of tensile strength (50.96 MPa), modulus (990.86 MPa) are observed for sacred grass fibre reinforced polyester composites at maximum volume fraction of chemically treated fibre. At 14.75 %, 35.89 % sacred grass fibre volume fraction the composites exhibited flexural strength, modulus of 43.19 MPa, 4.81 GPa respectively. Impact strength of 92.53 kJ/m2 is obtained for the composites reinforced with 34.73 % volume fraction of sacred grass fibres. The dielectric strength of the composites varies from 10 to 6.66 kV/mm for composites reinforced with fibres from minimum (6.26 %) to maximum (32.25 %) fibre content.
APA, Harvard, Vancouver, ISO, and other styles
45

Harryson, Peter. "Bond between fibre reinforced concrete and fibre reinforced polymers." Materials and Structures 44, no. 1 (August 26, 2010): 377–89. http://dx.doi.org/10.1617/s11527-010-9633-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Do, Nhi Thi, Hop Quang Tran, Hanh Thi My Diep, and Vi Thi Vi Do. "Study on properties of composites polyurethane foam reinforced by bamboo fiber." Science and Technology Development Journal 19, no. 4 (December 31, 2016): 212–20. http://dx.doi.org/10.32508/stdj.v19i4.693.

Full text
Abstract:
This study focuses on the development and characterization of polyurethane/bamboo fiber composites foams which have the specific properties to participate both in the thermal insulation and regulation of the humidity inside the building. The polyurethane foam reinforced by bamboo fibers (5–20 wt%) were produced to investigate the mechanical test, the morphological characterization and thermal properties. The result from mechanical test showed that the compressive strength was increased at 5 wt % of bamboo fiber. Likewise, the effects of the fibre diameter and nature of bamboo fibers on some properties (compressive test, thermal analyses, surface morphology) of bamboo fibre reinforced rigid polyurethane foam were studied. The bamboo Gai and Luong fibres result in composites with better mechanical strength than the other fiber composites.
APA, Harvard, Vancouver, ISO, and other styles
47

Abousnina, Rajab, Sachindra Premasiri, Vilive Anise, Weena Lokuge, Vanissorn Vimonsatit, Wahid Ferdous, and Omar Alajarmeh. "Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete." Polymers 13, no. 23 (November 25, 2021): 4112. http://dx.doi.org/10.3390/polym13234112.

Full text
Abstract:
Adding fibers to concrete helps enhance its tensile strength and ductility. Synthetic fibres are preferable to steel ones which suffer from corrosion that reduces their functionality with time. More consideration is given to synthetic fibres as they can be sourced from waste plastics and their incorporation in concrete is considered a new recycling pathway. Thus, this work investigates the potential engineering benefits of a pioneering application using extruded macro polyfibres in concrete. Two different fiber dosages, 4 kg/m3 and 6 kg/m3, were used to investigate their influence based on several physical, mechanical and microstructural tests, including workability, compressive strength, modulus of elasticity, splitting-tensile strength, flexural test, CMOD, pull-out test and porosity. The test results revealed a slight decrease in the workability of the fibre-reinforced concrete, while all the mechanical and microstructural properties were enhanced significantly. It was observed that the compressive, splitting tensile and bonding strength of the concrete with 6 kg/m3 fibre dosage increased by 19.4%, 41.9% and 17.8% compared to the plain concrete specimens, respectively. Although there was no impact of the fibres on the modulus of rupture, they significantly increased the toughness, resulting in a progressive type of failure instead of the sudden and brittle type. Moreover, the macroporosity was reduced by the fibre addition, thus increasing the concrete compressive strength. Finally, simplified empirical formulas were developed to predict the mechanical properties of the concrete with fibre addition. The outcome of this study will help to increase the implementation of the recycled plastic waste in concrete mix design and promote a circular economy in the waste industry.
APA, Harvard, Vancouver, ISO, and other styles
48

Ding, Yi Ning, Yue Hua Wang, and Yu Lin Zhang. "Investigation on Toughness of Fibre Cocktail Reinforced Self Consolidating Concrete after High Temperature." Materials Science Forum 650 (May 2010): 67–77. http://dx.doi.org/10.4028/www.scientific.net/msf.650.67.

Full text
Abstract:
The effect of different fibres on the residual load-bearing capacity and the failure pattern of high-performance self consolidating concrete (HPSCC) after exposure to high temperature hass been studied in this work. The polypropylene fibers mitigate the spalling of HPSCC element clearly, but did not show clear effect on the mechanic properties of concrete. The macro steel fiber reinforced HPSCC showed higher flexural toughness and ultimate load before and after high temperatures. The mechanical properties of hybrid fibre reinforced HPSCC (HFHPSCC) after heating were better than that of mono-fibre reinforced HPSCC. The failure mode changed from pull-out of steel fibers at lower temperature to broken down of steel fibers at higher temperature. The use of hybrid fibre can be effective in providing the residual strength and failure pattern, and improving the toughness of HPSCC after high temperature.
APA, Harvard, Vancouver, ISO, and other styles
49

SPENCER, A. J. M. "Fibre-streamline flows of fibre-reinforced viscous fluids." European Journal of Applied Mathematics 8, no. 2 (April 1997): 209–15. http://dx.doi.org/10.1017/s0956792597003045.

Full text
Abstract:
An ideal fibre-reinforced fluid is incompressible and inextensible along a family of material curves that are convected with the fluid. It is a model for continuous fibre-resin systems in the fluid state in which forming processes take place. Like liquid crystals, these fluids have strong directional properties. The kinematic and constitutive theory of ideal fibre-reinforced fluids is described, with particular reference to plane flows. The class of flows in which the fibres are aligned along the streamlines is considered, and an explanation is given for the observed prevalence of this class of flows.
APA, Harvard, Vancouver, ISO, and other styles
50

Hao, Yifei, Xin Huang, and Hong Hao. "Mesoscale modelling of concrete reinforced with spiral steel fibres under dynamic splitting tension." Advances in Structural Engineering 21, no. 8 (October 10, 2017): 1197–210. http://dx.doi.org/10.1177/1369433217734654.

Full text
Abstract:
The addition of discrete steel fibres into concrete has been widely recognised as an effective measure to enhance the ductility, post-cracking resistance and energy absorption of the matrix subjected to impact loads. Despite useful information from experimental studies that investigate the macro-scale performance of steel fibre–reinforced concrete under dynamically applied loadings, results from a series of tests or from tests by different researchers are often found to be scattered. Besides variations in testing conditions, random variations of size, location and orientation of aggregates and fibres in steel fibre–reinforced concrete are deemed the fundamental reason of the scattering test data. High-fidelity modelling of concrete and steel fibre–reinforced concrete in mesoscale has been widely adopted to understand the influence of each component in the composite material. Numerical studies have been published to discuss the behaviour of steel fibre–reinforced concrete under dynamic splitting tension. Different shapes, for example, circles, ovals and polygons, of coarse aggregates were considered in different studies, and different conclusions were drawn. This study investigates the influence of the shape of aggregates on numerical prediction in mesoscale modelling of steel fibre–reinforced concrete materials with spiral fibres under dynamic splitting tension in terms of the strain distribution, cracking pattern and strength. The numerical model is validated by experimental results. It is found that the shape of aggregates in mesoscale modelling of splitting tensile tests has negligible influence. Furthermore, steel fibre–reinforced concrete specimens with different volume fractions of spiral fibres from 0.5% to 3.0% under various loading rates are simulated. Results from parametric simulations indicate the optimal dosage of spiral fibres in steel fibre–reinforced concrete mix with respect to the construction cost and mechanical property control.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography