To see the other types of publications on this topic, follow the link: Fibre-reinforced polymer (FRP).

Journal articles on the topic 'Fibre-reinforced polymer (FRP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fibre-reinforced polymer (FRP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Qureshi, Jawed. "A Review of Fibre Reinforced Polymer Structures." Fibers 10, no. 3 (March 8, 2022): 27. http://dx.doi.org/10.3390/fib10030027.

Full text
Abstract:
This paper reviews Fibre Reinforced Polymer (FRP) composites in Civil Engineering applications. Three FRP types are used in Structural Engineering: FRP profiles for new construction, FRP rebars and FRP strengthening systems. Basic materials (fibres and resins), manufacturing processes and material properties are discussed. The focus of the paper is on all-FRP new-build structures and their joints. All-FRP structures use pultruded FRP profiles. Their connections and joints use bolting, bonding or a combination of both. For plate-to-pate connections, effects of geometry, fibre direction, type and rate of loading, bolt torque and bolt hole clearance, and washers on failure modes and strength are reviewed. FRP beam-columns joints are also reviewed. The joints are divided into five categories: web cleated, web and flange cleated, high strength, plate bolted and box profile joints. The effect of both static and cyclic loading on joints is studied. The joints’ failure modes are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Nisar, Sumirah. "Fibre Reinforced Polymer in Retrofitting." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 83–87. http://dx.doi.org/10.22214/ijraset.2021.39200.

Full text
Abstract:
Abstract: Retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion etc. Many of the existing reinforced concrete structures throughout the world are in urgent need of rehabilitation, repair or reconstruction because of deterioration due to various factors like corrosion, lack of detailing, failure of bonding between beamcolumn joints etc. Fibre Reinforced Polymer (FRP) composite has been accepted in the construction industry as a promising substitute for repairing and in incrementing the strength of RCC structures. It stabilizes the current structure of buildings and making them earthquake resistant. This paper presents a representative overview of the current state of using FRP materials as a retrofitting technique for the structures not designed to resist seismic action. It summarizes the scopes and uses of FRP materials in seismic strengthening of RCC structures and masonry retrofitting. Keywords: Retrofitting, Rehabilitation, Seismic damage, fibre
APA, Harvard, Vancouver, ISO, and other styles
3

Šlaitas, Justas. "Flexural Reinforced Concrete Elements, Strengthened with Fibre Reinforced Polymer, Bearing Capacity Evaluation According to Limit Crack Depth." Mokslas - Lietuvos ateitis 9, no. 5 (December 27, 2017): 507–19. http://dx.doi.org/10.3846/mla.2017.1079.

Full text
Abstract:
The research was made on condition assessment of flexed reinforced concrete structures, strengthened with fibre reinforced polymers, in fracture stage. Universal bearing capacity calculation method based on limit normal section crack depth was proposed. This paper confirms the hypothesis of triangular concrete’s compressive zone chart usage for flexural strength calculation, without tensile concrete above crack evaluation. There is established connection between crack depth and FRP stress­strain, which allows to decide about structures bearing capacity reserve. The calculation results are confirmed with experimental studies of 73 reinforced concrete beams, strengthened with carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets, plates, strips and rods, taken from different researches. Furthermore, recommended limits of strengthening with FRP were proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

Ebead, U. A., and K. W. Neale. "Mechanics of fibre-reinforced polymer - concrete interfaces." Canadian Journal of Civil Engineering 34, no. 3 (March 1, 2007): 367–77. http://dx.doi.org/10.1139/l06-107.

Full text
Abstract:
A finite element model is developed for analyzing the interfacial behaviour for fibre-reinforced polymer (FRP) laminates externally bonded to concrete prisms and subjected to direct shear. The element sizes of the FRP, adhesive, and concrete at the interface were chosen to be very small (0.25–0.5 mm) so that the debonding behaviour could be properly captured. The behaviour at the interface between the FRP composite and the concrete is modelled using truss elements connecting the FRP laminate to the concrete block. The truss elements incorporate a nonlinear bond stress-slip relationship controlled by several parameters related to the characteristics of the FRP composite, adhesive, and concrete. Results are given in terms of the load capacity of the joint and the stress and strain distributions in the FRP, at the interface, and in the concrete. In addition, the transfer lengths, as well as the force transfer between the FRP laminate and the concrete block, are investigated. Comparisons between the finite element results and available experimental data are presented.Key words: nonlinear finite element analysis, FRP-to-concrete bonded joints, interface elements, debonding, interfacial behaviour, transfer lengths.
APA, Harvard, Vancouver, ISO, and other styles
5

Shehata, Emile, Ryan Morphy, and Sami Rizkalla. "Fibre reinforced polymer shear reinforcement for concrete members: behaviour and design guidelines." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 859–72. http://dx.doi.org/10.1139/l00-004.

Full text
Abstract:
This paper describes an experimental program conducted to examine the structural performance of fibre reinforced polymer (FRP) stirrups as shear reinforcement for concrete structures. A total of ten large-scale reinforced concrete beams were tested to investigate the contribution of the FRP stirrups in a beam mechanism. The ten beams included four beams reinforced with carbon fibre reinforced polymer (CFRP) stirrups, four beams reinforced with glass fibre reinforced polymer (GFRP) stirrups, one beam reinforced with steel stirrups, and one control beam without shear reinforcement. The variables were the material type of stirrups, the material type of the flexural reinforcement, and the stirrup spacing. Due to the unidirectional characteristics of FRP, significant reduction in the strength of the stirrup relative to the tensile strength parallel to the fibres is introduced by bending FRP bars into a stirrup configuration and by the kinking action due to inclination of the diagonal shear crack with respect to the direction of the stirrups. A total of 52 specially designed panel specimens were tested to investigate the bend and kinking effect on the capacity of FRP stirrups, along with two control specimens reinforced with steel stirrups. The variables considered in the panel specimens are the material type of the stirrups, the bar diameter, the bend radius, the configuration of the stirrup anchorage, the tail length beyond the bend portion, and the angle of the stirrups. Based on the findings of this investigation, shear design equations for concrete beams reinforced with FRP, appropriate for the Canadian Standards Association (CSA) code, are proposed. The reliability of the proposed equations is evaluated using test results of 118 beams tested by others.Key words: shear, fibre-reinforced polymers, CFRP, cracks, GFRP, kink, stirrups, bend capacity.
APA, Harvard, Vancouver, ISO, and other styles
6

Deniaud, Christophe, and JJ Roger Cheng. "Review of shear design methods for reinforced concrete beams strengthened with fibre reinforced polymer sheets." Canadian Journal of Civil Engineering 28, no. 2 (April 1, 2001): 271–81. http://dx.doi.org/10.1139/l00-113.

Full text
Abstract:
This paper reviews the different shear design methods found in the literature for reinforced concrete beams strengthened externally with fibre reinforced polymer (FRP) sheets and compares the adequacy of each method by using the test results from the University of Alberta. The FRP shear design methods presented include the effective FRP strain and the bond mechanism criteria, the strut-and-tie model, the modified compression field theory, and a mechanical model based on the strip method with shear friction approach. Sixteen full-scale T-beam test results were used in the evaluation. Two web heights of 250 and 450 mm and two ready mix concrete batches of 29 and 44 MPa were used in the test specimens. Closed stirrups were used with three spacings: 200 mm, 400 mm, and no stirrups. Three types of FRP were used to strengthen externally the web of the T-beams: (i) uniaxial glass fibre, (ii) triaxial (0/60/–60) glass fibre, and (iii) uniaxial carbon fibre. The results showed that the mechanical model using the strip method with shear friction approach evaluates better the FRP shear contribution. The predicted capacities from this mechanical model are also found conservative and in excellent agreement with the test results.Key words: beams, carbon fibres, composite materials, fibre reinforced polymers, glass fibres, rehabilitation, reinforced concrete, shear strength, sheets, tests.
APA, Harvard, Vancouver, ISO, and other styles
7

Mufti, A. A., B. Bakht, N. Banthia, B. Benmokrane, G. Desgagné, R. Eden, M. A. Erki, et al. "New Canadian Highway Bridge Design Code design provisions for fibre-reinforced structures." Canadian Journal of Civil Engineering 34, no. 3 (March 1, 2007): 267–83. http://dx.doi.org/10.1139/l06-137.

Full text
Abstract:
This paper presents a synthesis of the design provisions of the second edition of the Canadian Highway Bridge Design Code (CHBDC) for fibre-reinforced structures. New design provisions for applications not covered by the first edition of the CHBDC and the rationale for those that remain unchanged from the first edition are given. Among the new design provisions are those for glass-fibre-reinforced polymer as both primary reinforcement and tendons in concrete; and for the rehabilitation of concrete and timber structures with externally bonded fibre-reinforced-polymer (FRP) systems or near-surface-mounted reinforcement. The provisions for fibre-reinforced concrete deck slabs in the first edition have been reorganized in the second edition to explicitly include deck slabs of both cast-in-place and precast construction and are now referred to as externally restrained deck slabs, whereas deck slabs containing internal FRP reinforcement are referred to as internally restrained deck slabs. Resistance factors in the second edition have been recast from those in the first edition and depend on the condition of use, with a further distinction made between factory- and field-produced FRP. In the second edition, the deformability requirements for FRP-reinforced and FRP-prestressed concrete beams and slabs of the first edition have been split into three subclauses covering the design for deformability, minimum flexural resistance, and crack-control reinforcement. The effect of sustained loads on the strength of FRPs is accounted for in the second edition by limits on stresses in FRP at the serviceability limit state.Key words: beams, bridges, concrete, decks, fibre-reinforced-polymer reinforcement, fibre-reinforced-polymer sheets, prestressing, repair, strengthening, wood.
APA, Harvard, Vancouver, ISO, and other styles
8

Ghali, Amin, Tara Hall, and William Bobey. "Minimum thickness of concrete members reinforced with fibre reinforced polymer bars." Canadian Journal of Civil Engineering 28, no. 4 (August 1, 2001): 583–92. http://dx.doi.org/10.1139/l01-021.

Full text
Abstract:
To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.
APA, Harvard, Vancouver, ISO, and other styles
9

CoDyre, Luke, Kenneth Mak, and Amir Fam. "Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities." Journal of Sandwich Structures & Materials 20, no. 5 (December 5, 2016): 595–616. http://dx.doi.org/10.1177/1099636216667658.

Full text
Abstract:
This study investigates the effect of foam core density on the behaviour of sandwich panels with novel bio-composite unidirectional flax fibre-reinforced polymer skins, along with a comparison to panels of conventional glass-FRP skins. Eighteen 1000 mm long flexural specimens and 18 500 mm long stub column specimens were fabricated and tested. All specimens had a foam core of 100 × 50 mm2 cross-section with symmetrical 100 mm wide skins. The study compares the effect of three separate polyisocyanurate foam cores when used in conjunction with either three layers of flax fibre-reinforced polymer or a single glass-FRP layer for each skin. Flexural specimens were tested in four-point bending and stub columns were tested under axial compression with pin–pin end conditions. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively, for flax fibre-reinforced polymer skinned panels, and comparable increases in glass-FRP skinned panels. Similarly, flax fibre-reinforced polymer-skinned columns showed similar increases in ultimate axial capacity of 85% and 196%, while glass-FRP- skinned columns experienced lower increases when core density was varied. The three-layered flax fibre-reinforced polymer skin, only 17% thicker than the single layer glass-FRP skin, was shown to provide equivalent flexural and axial strengths at all three core densities, within −5 to +13%.
APA, Harvard, Vancouver, ISO, and other styles
10

Azad, Fathima. "Analysis of Columns Strengthened using Fibre Reinforced Cementitious Matrix Jackets." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1795–800. http://dx.doi.org/10.22214/ijraset.2021.38272.

Full text
Abstract:
Abstract: Maintenance, repair and strengthening of existing concrete structures, either reinforced or prestressed,are important activities of civil engineers. Nowadays different techniques are available for the strengthening. Various techniques were adopted for strengthening RC structures, namely, steel plates, external post tensioning, externally bonded Fibre-Reinforced Polymer (FRP), and near- surface-mounted FRP systems to increase shear and flexural capacity. During the last few decades, strengthening of concrete structural elements by fibre-reinforced polymer has become a widely used technique. But it has several disadvantages due to the epoxy resin like debonding of FRP from the concrete structure, unstable nature of the epoxy at higher temperatures etc. To overcome this, an upgraded system was introduced as an alternative for FRP known as Fibre Reinforced Cementitious Matrices (FRCM). The objective of this paper is to investigate the feasibility of Fibre-Reinforced Cementitious-Matrix materials as an alternative external strengthening technique for RC members. Columns with circular geometry were wrapped with different fibre materials using cementitious matrix. The analysis was done using ANSYS software. Keywords: RC columns, FRCM, Strengthening, fibre, ANSYS
APA, Harvard, Vancouver, ISO, and other styles
11

Lathamaheswari, R., R. BalaKeerthana, K. Nandhini, B. Parkavi, and A. Nivedha. "Study on GFRP Reinforced Beams under Flexure." International Journal of Emerging Research in Management and Technology 6, no. 7 (June 29, 2018): 156. http://dx.doi.org/10.23956/ijermt.v6i7.205.

Full text
Abstract:
Acute shortage of raw materials and deterioration of reinforced concrete structural elements lead to implementation of new substitute materials and innovative technologies. Reinforced Cement Concrete structures are usually reinforced with steel bars which are subjected to corrosion at critical temperature and atmospheric conditions. The structures can also be reinforced with other materials like Fibre Reinforced Polymers (FRP). In this line Fibre Reinforced Polymer based reinforcement replacing conventional steel rod for a precast element of a prefabricated structure is considered. The precast member cast out of M25 grade concrete reinforced exclusively with locally produced Glass Fibre Reinforced Polymer (GFRP) bars including GFRP stirrups is designed, cast. Flexural behaviour of rectangular concrete beams reinforced with FRP bars and stirrups is examined with two specimens one with conventional sand as fine aggregate and another with quarry dust as fine aggregate. The load at cracking and ultimate, type of failure and crack patterns are observed and compared with those of conventional cement concrete.
APA, Harvard, Vancouver, ISO, and other styles
12

Köroğlu, Mehmet Alpaslan, and Yunus Dere. "Reinforcing Fibre Reinforced Polymer Bridge Decks with Steel Rods." Key Engineering Materials 708 (September 2016): 64–69. http://dx.doi.org/10.4028/www.scientific.net/kem.708.64.

Full text
Abstract:
Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative and they have offered many advantages and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel was evaluated by means of FE analysis.
APA, Harvard, Vancouver, ISO, and other styles
13

Ahmed, Ehab A., Ehab F. El-Salakawy, and Brahim Benmokrane. "Fibre-reinforced polymer composite shear reinforcement: performance evaluation in concrete beams and code prediction." Canadian Journal of Civil Engineering 37, no. 8 (August 2010): 1057–70. http://dx.doi.org/10.1139/l10-046.

Full text
Abstract:
This paper evaluates the performance of carbon and glass fibre-reinforced polymer (FRP) stirrups and the accuracy of the shear design provisions incorporated in the currently available design codes and guidelines. A total of seven large-scale T-beams were constructed and tested: three reinforced with carbon fibre-reinforced polymer (CFRP) stirrups, three reinforced with glass fibre-reinforced polymer (GFRP) stirrups, and one reinforced with a steel stirrup for comparison, when applicable. The test results revealed that the design strength of the tested beams is not affected by the reduced strength of FRP stirrups at bend locations. Also, the recent CAN/CSA-S6 update is capable of adequately predicting the shear strength of the beam specimens reinforced with FRP stirrups. The software, Response-2000, which is based on the modified compression field theory (MCFT), predicted well the shear strength and the average strain in the stirrups of the tested beams; however, it overestimated the shear crack width.
APA, Harvard, Vancouver, ISO, and other styles
14

Bisby, L. A., V. KR Kodur, and M. F. Green. "Numerical parametric studies on the fire endurance of fibre-reinforced-polymer-confined concrete columns." Canadian Journal of Civil Engineering 31, no. 6 (December 1, 2004): 1090–100. http://dx.doi.org/10.1139/l04-071.

Full text
Abstract:
Confinement of reinforced concrete columns by circumferential fibre reinforced polymer (FRP) wraps is a promising application of FRP materials for structural strengthening and seismic upgrading of deteriorated or under-strength members. However, if this technique is to be used in buildings, parking garages, and industrial structures, then the ability of FRP materials and FRP-wrapped columns to withstand the effects of fire must be demonstrated and evaluated. This paper presents the results of parametric studies conducted using a previously presented and partially validated numerical fire simulation model to investigate the effects of a number of parameters on the fire behaviour of FRP-wrapped reinforced concrete columns. It is demonstrated that appropriately designed and adequately protected FRP-wrapped reinforced concrete columns are capable of achieving fire endurances equivalent to conventionally reinforced concrete columns. Furthermore, this study also suggests that a holistic approach to the fire design of FRP-wrapped members is required, rather than an approach based on the specific performance of the FRP materials. Design recommendations for the fire-safe design of FRP-wrapped concrete columns are presented and discussed.Key words: reinforced concrete, rehabilitation, strengthening, fibre reinforced polymer, fire endurance, fire insulation, numerical modelling.
APA, Harvard, Vancouver, ISO, and other styles
15

Ismail*, Mohd Fadzli, and Aidah Jumahat. "Impact Properties of Hybrid Fibre Reinforced Polymer Composite Laminates." International Journal of Innovative Technology and Exploring Engineering 9, no. 3 (January 30, 2020): 2763–66. http://dx.doi.org/10.35940/ijitee.c9206.019320.

Full text
Abstract:
The increasing demand for high-strength light-weight fibre reinforced polymer (FRP) composite materials has driven the researchers to further innovate and introduce hybrid reinforcement materials. The usage of hybrid FRP composite laminates in structural industries is still new and limited research has been reported in this area. Thus, this research is aimed to determine the impact properties of hybrid FRP composite laminate. The impact tests were carried out on three types of FRP composite laminates, i.e. Carbon, Glass and Hybrid, in order to determine the impact properties of the materials. The composite laminates were prepared using hot pressing method. It was found that the hybrid FRP composite laminate exhibited better impact properties with 13% higher specific energy absorption when compared to the neat carbon FRP composite laminate. The impact test on hybrid FRP composite laminate recorded higher peak force, deflection at peak force and energy absorbed values of 109%, 71% and 25% respectively, when compared to the neat CFRP composite laminate.
APA, Harvard, Vancouver, ISO, and other styles
16

El-Mogy, Mostafa, Amr El-Ragaby, and Ehab El-Salakawy. "Experimental testing and finite element modeling on continuous concrete beams reinforced with fibre reinforced polymer bars and stirrups." Canadian Journal of Civil Engineering 40, no. 11 (November 2013): 1091–102. http://dx.doi.org/10.1139/cjce-2012-0509.

Full text
Abstract:
Continuous concrete beams are common elements in structures such as parking garages and overpasses, which might be exposed to extreme weather. Using the non-corrodible fibre reinforced polymer (FRP) bars is a viable alternative to avoid steel corrosion problems. Due to the linear-elastic behaviour of FRP materials, the possibility of moment redistribution in FRP-reinforced beams is questionable. In this paper, the experimental results of ten full-scale continuous concrete beams are summarized followed by a finite element parametric study using ANSYS software. Steel, glass fibre reinforced polymer, and carbon fibre reinforced polymer bars were used in different combinations as longitudinal and transverse reinforcement. The main investigated parameters were the ratio and type of longitudinal and transverse reinforcement. Results showed that moment redistribution in such beams is possible if the reinforcement configuration is chosen properly. The developed finite element model predicted the response of tested beams with a reasonable degree of accuracy and was used to expand the range of investigated parameters.
APA, Harvard, Vancouver, ISO, and other styles
17

Shahidi, F., L. D. Wegner, and B. F. Sparling. "Investigation of bond between fibre-reinforced polymer bars and concrete under sustained loads." Canadian Journal of Civil Engineering 33, no. 11 (November 1, 2006): 1426–37. http://dx.doi.org/10.1139/l06-070.

Full text
Abstract:
Although the use of fibre-reinforced polymer (FRP) bars to replace steel in reinforced concrete is becoming more common, uncertainty remains concerning the long-term performance of FRP, including the effect of a sustained load on the bond between the FRP bars and the concrete. An experimental study was therefore undertaken to investigate the long-term durability of the bond for various types of bars embedded in concrete: one type of glass FRP, two types of carbon FRP, and conventional steel reinforcing bars. Pullout specimens were tested both statically to failure and under sustained loads for periods of up to 1 year while free-end slip was monitored. Results revealed lower short-term bond strengths for FRP bars relative to steel and significant variability in long-term bond-slip performance among FRP bars of different types. Post-testing investigations revealed damage to bar surfaces at the macroscopic level, as well as broken longitudinal fibres and damage to the surface coatings at the microscopic level.Key words: reinforced concrete, fibre-reinforced polymer (FRP), bond, creep, pullout, sustained loads.
APA, Harvard, Vancouver, ISO, and other styles
18

Green, Mark F., Aaron J. S. Dent, and Luke A. Bisby. "Effect of freeze–thaw cycling on the behaviour of reinforced concrete beams strengthened in flexure with fibre reinforced polymer sheets." Canadian Journal of Civil Engineering 30, no. 6 (December 1, 2003): 1081–88. http://dx.doi.org/10.1139/l03-059.

Full text
Abstract:
Externally bonded fibre reinforced polymer (FRP) plates and sheets for strengthening and rehabilitating existing reinforced concrete structures have recently received a great deal of attention within the civil engineering community. Many tests have shown the benefits of FRP, but more information is required on their behaviour in cold regions. Twenty-seven small-scale concrete beams (100 mm × 150 mm × 1220 mm) were strengthened with FRP in flexure (and in some cases also in shear), subjected to up to 200 freeze–thaw cycles, and tested to failure in four-point bending. Test results were compared with those predicted by theoretical models and reasonable agreement between the tests and the models was obtained. Current design guidelines for FRP-strengthened beams were compared against the test data and were found to be adequate for the artificially aged beams. The test data also indicated that no significant damage to the glass or carbon FRP-strengthened concrete beams had occurred because of freeze–thaw cycling.Key words: concrete, rehabilitation, fibre reinforced polymers, FRP, beams, freeze–thaw, cold region engineering, flexure, external strengthening.
APA, Harvard, Vancouver, ISO, and other styles
19

Hassan, T., A. Abdelrahman, G. Tadros, and S. Rizkalla. "Fibre reinforced polymer reinforcing bars for bridge decks." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 839–49. http://dx.doi.org/10.1139/l99-098.

Full text
Abstract:
This paper describes the behaviour of two full-scale models of a portion of highway bridge slab reinforced with fibre reinforced polymer (FRP) reinforcement. The first slab was reinforced totally with carbon FRP (CFRP), and the second slab was reinforced with hybrid glass FRP (GFRP) and steel reinforcement. The models were tested under static loading up to failure using a concentrated load acting on each span of the continuous slab and the two cantilevers to simulate the effect of a truck wheel load. Load-deflection behaviour, crack patterns, strain distribution, and failure mode are reported. The measured values are compared to values calculated using nonlinear finite element analysis model. The accuracy of the nonlinear finite element analysis is demonstrated using independent test results conducted by others. The analytical model is used to examine the influence of various parameters, including the type of reinforcement, boundary conditions, and reinforcement ratio. Based on serviceability and ultimate capacity requirements, reinforcement ratios for using CFRP and GFRP reinforcement for typical bridge deck slabs are recommended.Key words: bridges, deflection, FRP, reinforcement, concrete, punching, slabs, shear, finite element model, strain.
APA, Harvard, Vancouver, ISO, and other styles
20

Leung, Hau Yan. "FLEXURAL CAPACITY OF CONCRETE BEAMS REINFORCED WITH STEEL AND FIBRE‐REINFORCED POLYMER (FRP) BARS." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 10, no. 3 (September 30, 2004): 209–15. http://dx.doi.org/10.3846/13923730.2004.9636308.

Full text
Abstract:
Although much research on concrete beams reinforced with fibre‐reinforced polymer (FRP) rods has been conducted in recent years, their use still does not receive the attention it deserves from practicising engineers. This is attributed to the fact that FRP is brittle in nature and the collapse of FRP‐reinforced concrete member may be catastrophic. A rational beam design can incorporate a hybrid use of FRP rods and steel rods. Current design codes only deal with steel‐reinforced or FRP‐reinforced concrete members. Therefore in this study some design charts and equations for concrete beam sections reinforced with FRP rods and steel rebars were generated. Results from the theoretical derivations agreed well with experimental data.
APA, Harvard, Vancouver, ISO, and other styles
21

Raja, R. Satheesh, K. Manisekar, and V. Manikandan. "Effect of Carbon Black and Fly Ash Fillers on Tensile Properties of Composites." Key Engineering Materials 471-472 (February 2011): 26–30. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.26.

Full text
Abstract:
Fibre reinforced polymer composites play an incredible role in almost all spheres of day to day life and the field of carbon composites is one of the prime research area in recent decade. Polymers are mostly reinforced with fibre or fillers to obtain better mechanical properties. The properties of the polymer composites can be improved largely by varying the type of filler/fibre materials and its volume percentage. Composites properties depend on the size, shape and other physical properties of the reinforcements. A relative easy way to improve the mechanical properties of a polymer is the addition of filler materials. In all particulate filled systems, the adhesion between the matrix and filler plays a significant role in determining the key properties such as strength and toughness. The mechanical properties of composites are also influenced by the filler’s nature, size and distribution profile, aspect ratio, volume fraction, the intrinsic adhesion between the surfaces of filler and polymer. In this paper, the effect of filler material on mechanical properties of E-Glass fibre reinforced polymer has been studied out by varying filler materials. For these study three different types of specimens were prepared, viz FRP without filler material, the FRP with 10 volume percentages of carbon black and the FRP with 10 volume percentage of Fly ash as filler material. The polyester composites were fabricated by hand-layup method. Mechanical properties of the specimens are analyzed using computerized Universal Testing Machine as per ASTM D 638 standards. The resulting behavioral patterns of the FRP with filler material are listed and compared to those of the FRP without filler material. Mechanical properties such as ultimate tensile strength, percentage of elongation, yield strength, Poisson’s ratio and percentage reduction in area were found out.
APA, Harvard, Vancouver, ISO, and other styles
22

Barris, Cristina, Lluís Torres, Cristina Miàs, and Irene Vilanova. "DESIGN OF FRP REINFORCED CONCRETE BEAMS FOR SERVICEABILITY REQUIREMENTS." Journal of Civil Engineering and Management 18, no. 6 (November 20, 2012): 843–57. http://dx.doi.org/10.3846/13923730.2012.720934.

Full text
Abstract:
Serviceability Limit States (SLS) may govern the design of concrete elements internally reinforced with Fibre Reinforced Polymer (FRP) bars because of the mechanical properties of FRP materials. This paper investigates the design of Fibre Reinforced Polymer reinforced concrete (FRP RC) beams under the SLS of cracking, stresses in materials, and deflections. A formulation to calculate the bending condition at which crack width and stresses in materials requirements are fulfilled is presented based on principles of equilibrium, strain compatibility and linear elastic behaviour of materials. The slenderness limits to comply with the deflection limitation are redefined and a methodology to calculate the optimal height of an FRP RC beam to satisfy all of these serviceability requirements is proposed. This procedure allows optimising the dimensions of an FRP RC beam taking into account the specific characteristics of the element, such as the mechanical properties of materials and the geometric and loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
23

Benmokrane, Brahim, Burong Zhang, Adil Chennouf, and Radhouane Masmoudi. "Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 1031–45. http://dx.doi.org/10.1139/l00-090.

Full text
Abstract:
This paper presents the tension and bond properties of commercially available Aramid fibre reinforced polymer (AFRP) and carbon fibre reinforced polymer (CFRP) rods and their uplift and sustained loading behaviour as ground anchor tendons. Variables for the tests were tendon type and constituent, grout type, and bond or fixed anchor length. Test results indicated that the tension properties of fibre reinforced polymer (FRP) rods were close to the reported data. The surface geometry of FRP rods and the properties of filling grouts influenced the pullout behaviour and bond strength of grouted FRP rods. CFRP Carbon Fiber Composite Cable and Leadline anchors had a higher uplift capacity but lower creep displacement than AFRP Arapree and Technora anchors. The tested CFRP monorod and FRP multirod anchors with a 1000 mm fixed anchor length exhibited an acceptable uplift behaviour according to existing codes. Creep behaviour appeared to control the long-term uplift capacity of prestressed FRP ground anchors. The recommended working load for post-tensioned FRP ground anchors is 0.40 fpu for AFRP rods and 0.50fpu for CFRP rods, where fpu is the ultimate load or strength of the anchor tendon.Key words: FRP, tendon, bond stress, anchorage, grouted anchor, fixed anchor length, free anchor length, slip, creep.
APA, Harvard, Vancouver, ISO, and other styles
24

Bakay, Ryan, Ezzeldin Yazeed Sayed-Ahmed, and Nigel Graham Shrive. "Interfacial debonding failure for reinforced concrete beams strengthened with carbon-fibre-reinforced polymer strips." Canadian Journal of Civil Engineering 36, no. 1 (January 2009): 103–21. http://dx.doi.org/10.1139/l08-096.

Full text
Abstract:
Rehabilitation of structures using fibre-reinforced polymers (FRPs) has become a preferred strengthening technique. Crack-induced debonding failure has been repeatedly recorded when using fibre-reinforced polymer (FRP) laminates to strengthen reinforced concrete (RC) beams and (or) slabs in flexure. A testing programme has been performed to determine the effect of the concrete compressive strength and the amount of shear reinforcement on the interfacial debonding. The ultimate strain at failure in the bonded laminates (usage efficiency) and the strain compatibility between the laminates and the concrete sections have been investigated. The current design methods for reinforced concrete members strengthened with FRP do not explicitly consider the interfacial debonding failure; using the results of the experimental programme, the applicability and limitations of these design methods are identified. New design procedures are proposed and compared with the experimental programme results and the currently adopted procedures.
APA, Harvard, Vancouver, ISO, and other styles
25

Hakim, S. J. S., M. A. H. Mohd Rodzi, S. S. Ayop, S. Shahidan, S. N. Mokhatar, and N. Salleh. "Shear Strengthening of Reinforced Concrete Beams Using Fibre Reinforced Polymer: A Critical Review." IOP Conference Series: Materials Science and Engineering 1200, no. 1 (November 1, 2021): 012015. http://dx.doi.org/10.1088/1757-899x/1200/1/012015.

Full text
Abstract:
Abstract The primary purpose of reinforcing bar stirrups in a reinforced concrete beam is to improve shear strength. The FRP system may significantly improve a concrete beam’s ultimate shear strength, serviceability, and ductility. The application of FRP for the repair and reinforcement of the structures has become very popular due to its low weight, high tensile strength, and simplicity of installation on uneven surfaces. FRP material outperforms other traditional materials in strengthening applications due to its high strength-to-weight and stiffness-to-weight ratios, resistance to corrosion, and ease of handling. The overall objective of this research is to investigate and improve the understanding of the recent research in the area of shear FRP strengthening of reinforced concrete beams. In this paper, recent publications were reviewed to see how different anchoring procedures, different factors that affect FRP performance and different failure scenarios affect the shear strengthening of concrete beams. The benefits and limits of FRP systems, as well as some current research trends are discussed in this project. From the research, it can be stated that type of anchorage technique and different parameter give a different impact to failure mode of the beam.
APA, Harvard, Vancouver, ISO, and other styles
26

Lu, Yi, Hossam Abuel-Naga, Hussein A. Shaia, and Zhi Shang. "Preliminary Study on the Behaviour of Fibre-Reinforced Polymer Piles in Sandy Soils." Buildings 12, no. 8 (August 1, 2022): 1144. http://dx.doi.org/10.3390/buildings12081144.

Full text
Abstract:
Fibre-reinforced polymer (FRP) is a type of composite material used to provide resistance to corrosion when incorporated into piles. However, there is a gap in knowledge in terms of the behaviour of FRP piles under axial or lateral loading in soils. Thus, the aim of this experimental study is to assess the factors that influence the behaviour of FRPs under axial and lateral load in sandy soil. CFRP (carbon-fibre-reinforced polymer) and GFRP (glass-fibre-reinforced polymer) piles were tested in this experiment based on a special pressure chamber. The results show that the surface roughness (Rt), confined pressure (σc), and relative density (Dr) determined the shearing resistance of the soils and subsequently affected the bearing capacity of the FRP piles under an axial load. The flexural stiffness of the FRP piles was determined by the FRP type, pile dimeter, and aging in the environment, which were affected under the lateral load. In addition, an alkaline environment was more aggressive to the FRP piles than those aged in an acidic environment. The numerical modelling results show that the sand types, in terms of the dilation angle and Young’s modulus, also had a great influence on the behaviour. This feature should be considered more carefully in future studies.
APA, Harvard, Vancouver, ISO, and other styles
27

Leung, H. Y., and R. V. Balendran. "Flexural behaviour of concrete beams internally reinforced with GFRP rods and steel rebars." Structural Survey 21, no. 4 (October 1, 2003): 146–57. http://dx.doi.org/10.1108/02630800310507159.

Full text
Abstract:
Use of fibre‐reinforced polymer (FRP) composite rods, in lieu of steel rebars, as the main flexural reinforcements in reinforced concrete (RC) beams have recently been suggested by many researchers. However, the development of FRP RC beam design is still stagnant in the construction industry and this may be attributed to a number of reasons such as the high cost of FRP rods compared to steel rebars and the reduced member ductility due to the brittleness of FRP rods. To resolve these problems, one of the possible methods is to adopt both FRP rods and steel rebars to internally reinforce the concrete members. The effectiveness of this new reinforcing system remains problematic and continued research in this area is needed. An experimental study on the load‐deflection behaviour of concrete beams internally reinforced with glass fibre‐reinforced polymer (GFRP) rods and steel rebars was therefore conducted and some important findings are summarized in this paper.
APA, Harvard, Vancouver, ISO, and other styles
28

S. Syed Ibrahim, S. Eswari, and T. Sundararajan. "Experimental Investigation on FRC Beams Strengthened with GFRP Laminates." Electronic Journal of Structural Engineering 15 (June 1, 2015): 55–59. http://dx.doi.org/10.56748/ejse.15202.

Full text
Abstract:
The external bonding of fibre reinforced polymer (FRP) to reinforced concrete (RC) members has become a popular method of retrofitting/strengthening concrete structures in recent years. Extensive research has been conducted pertaining to RC beams strengthened with FRP laminates. However, the experimental studies on fibre reinforced concrete (FRC) beams strengthened using externally bonded FRP system are limited. The purpose of this research is to investigate the behaviour of steel fibre reinforced concrete (SFRC) beams strengthened with glass fibre reinforced polymer (GFRP) laminates. The beam specimens were incorporated with 1.0% volume fraction of short-steel fibres randomly distributed throughout the section. The beam cross-section was 150 mm wide and 250 mm deep and to a length of 3000 mm. All the beams were tested until failure. The study parameters of this investigation included service load, ultimate load, ductility, crack width and failure modes. Beams tested for this investigation consisted of reference (RC) beam, GFRP laminated RC beam, SFRC beam, and GFRP laminated SFRC beam. The test results showed that the SFRC beams strengthened with GFRP laminates exhibited better performance.
APA, Harvard, Vancouver, ISO, and other styles
29

Benmokrane, Brahim, Habib Rahman, Phalguni Mukhopadhyaya, Radhouane Masmoudi, Mohammed Chekired, Jean-François Nicole, and Adel El-Safty. "Use of fibre reinforced polymer reinforcement integrated with fibre optic sensors for concrete bridge deck slab construction." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 928–40. http://dx.doi.org/10.1139/l00-029.

Full text
Abstract:
The use of corrosion free fibre reinforced polymer (FRP) composites as reinforcement to concrete is currently being seen as a promising option to generate durable concrete structures. However, there exists very little credible information about its field application and performance. This paper describes the Joffre Bridge project, in Sherbrooke (Québec, Canada), over the St-François River, where Carbon Fibre Reinforced Polymer (CFRP) was used as reinforcement for a portion of the concrete deck slab. The bridge consists of five longitudinal spans with lengths varying from 26 to 37 m. Each span has a concrete deck supported by five steel girders at 3.7 m. A part of the concrete deck slab (7.3 × 11.5 m) and a portion of the traffic barrier and the sidewalk were reinforced with Carbon (CFRP) and Glass Fibre Reinforced Polymer (GFRP) reinforcement. The bridge was extensively instrumented with many different types of gauges, including integrated fibre optic sensors (FOS) into FRP reinforcement. The performance of the bridge had been assessed under static and dynamic loading using calibrated heavy trucks. Moreover, structural design and construction details of the bridge and instrumentation were performed. The results from calibrated field tests on the bridge are presented in this paper.Key words: concrete bridge deck, FRP reinforcement, fibre optic sensors (FOS), field calibrated tests, performance monitoring.
APA, Harvard, Vancouver, ISO, and other styles
30

Ostrowski, Krzysztof Adam, Carlos Chastre, Kazimierz Furtak, and Seweryn Malazdrewicz. "Consideration of Critical Parameters for Improving the Efficiency of Concrete Structures Reinforced with FRP." Materials 15, no. 8 (April 9, 2022): 2774. http://dx.doi.org/10.3390/ma15082774.

Full text
Abstract:
Fibre-reinforced polymer materials (FRP) are increasingly used to reinforce structural elements. Due to this, it is possible to increase the load-bearing capacity of polymer, wooden, concrete, and metal structures. In this article, the authors collected all the crucial aspects that influence the behaviour of concrete elements reinforced with FRP. The main types of FRP, their characterization, and their impact on the load-carrying capacity of a composite structure are discussed. The most significant aspects, such as type, number of FRP layers including fibre orientation, type of matrix, reinforcement of concrete columns, preparation of a concrete surface, fire-resistance aspects, recommended conditions for the lamination process, FRP laying methods, and design aspects were considered. Attention and special emphasis were focused on the description of the current research results related to various types of concrete reinforced with FRP composites. To understand which aspects should be taken into account when designing concrete reinforcement with composite materials, the main guidelines are presented in tabular form.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Tai Feng, Xiao Hua Yang, Wen Sheng Sun, and Zeng Jie Cai. "A Two-Parameter Model of FRP Laminates Stiffness Reduction." Advanced Materials Research 236-238 (May 2011): 1187–94. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.1187.

Full text
Abstract:
Matrix crack and fibre breakage are the main damage models of the fibre reinforced polymer (FRP) laminates under cyclic loading. In this paper, meso-mechanical analysis is used and a two-parameter model is developed to describe the stiffness reduction. Based on the probability distribution function of fiber strength, the evolution of fibre breakage is deduced. Then with the help of the damage evolution, the stiffness reduction of laminates can be predicted. As an example, the stiffness reduction of grass fibre reinforced polymer (GFRP) laminate is made and the simulation results show that the proposed model has good capacity to describe the stiffness reduction of FRP laminates resulted in the combination of matrix crack and fibre breakage.
APA, Harvard, Vancouver, ISO, and other styles
32

Sen, Tara, and H. N. Jagannatha Reddy. "Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure." Advances in Materials Science and Engineering 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/128158.

Full text
Abstract:
Environmental awareness motivates researchers worldwide to perform studies of natural fibre reinforced polymer composites, as they come with many advantages and are primarily sustainable. The present study aims at evaluating the mechanical characteristics of natural woven jute fibre reinforced polymer (FRP) composite subjected to three different pretreatments, alkali, benzyl chloride, and lastly heat treatment. It was concluded that heat treatment is one of the most suitable treatment methods for enhancing mechanical properties of jute FRP. Durability studies on Jute FRP pertaining to some common environmental conditions were also carried out such as effect of normal water and thermal aging on the tensile strength of jute FRP followed by fire flow test. The heat treated woven jute FRP composites were subsequently used for flexural strengthening of reinforced concrete beams in full and strip wrapping configurations. The study includes the effect of flexural strengthening provided by woven jute FRP, study of different failure modes, load deflection behavior, effect on the first crack load, and ultimate flexural strength of concrete beams strengthened using woven jute FRP subjected to bending loads. The study concludes that woven jute FRP is a suitable material which can be used for flexural upgradation of reinforced concrete beams.
APA, Harvard, Vancouver, ISO, and other styles
33

Kostiha, Vojtech, Frantisek Girgle, Ondřej Janus, Ivana Švaříčková, and Petr Štěpánek. "GFRP Reinforcement Behaviour under Multi-Axial Stress - Experimental Study." Solid State Phenomena 309 (August 2020): 80–86. http://dx.doi.org/10.4028/www.scientific.net/ssp.309.80.

Full text
Abstract:
This paper is focused on the design of concrete structures reinforced with modern composite material – Fibre Reinforced Polymer (FRP) reinforcement. It presents actual results from the testing of FRP rods under a simultaneous tensile and shear loading. The results were experimentally obtained on specimens of Glass Fibre Reinforced Polymer (GFRP) reinforcement. The text also points out that the widely used fib Bulletin no. 40 technical report does not provide sufficiently reliable formulas and may overestimate the load-bearing capacity of the element. Therefore, the conclusions formulated are primarily concerned with their practical use in the design of this modern material.
APA, Harvard, Vancouver, ISO, and other styles
34

Xiao, Yi, Jiaxin Lv, and P.-Y. Ben Jar. "A stress-relaxation approach to determine onset of delamination in angle ply laminates." Journal of Composite Materials 54, no. 19 (January 9, 2020): 2521–27. http://dx.doi.org/10.1177/0021998319899131.

Full text
Abstract:
A new test method, named multi-relaxation test, is proposed for detecting on-set of delamination in fibre-reinforced polymers. Multi-relaxation test is based on the principle that uses change of stress relaxation behaviour of fibre-reinforced polymer to detect the occurrence of delamination. In this study, angle-ply laminated fibre-reinforced polymer (APL-FRP) is used to demonstrate and evaluate multi-relaxation test for detection of the delamination occurrence. The stress relaxation behaviour is characterized using a standard, three-element viscoelastic model in which the Eyring’s law is used to govern the time-dependent stress response to deformation. Results suggest a high possibility of using the trend line change of viscous stress at the beginning of stress relaxation to determine the critical stroke for the onset of delamination. The results also suggest that value for the corresponding static stress is very close to the value reported in the literature for APL-FRP of the same fibre lay-up. The major advantage of multi-relaxation test over other tests for the same purpose is that multi-relaxation test is able to detect delamination without relying on ancillary information such as acoustic signals. Therefore, multi-relaxation test can be used to characterize critical loading and deformation in fibre-reinforced polymer structures of any size and geometry, even when subjected to a loading mode that mimics the in-service loading.
APA, Harvard, Vancouver, ISO, and other styles
35

Sciarretta, Francesca, Salvatore Russo, and Carlo Casalegno. "Experimental Analysis of Failure Mechanisms in Masonry-PFRP Profiles Connections." Advances in Civil Engineering 2018 (October 21, 2018): 1–11. http://dx.doi.org/10.1155/2018/5475347.

Full text
Abstract:
Fibre-reinforced polymer (FRP) profiles, with their low density, high durability, and ease of construction, are particularly suitable for the retrofit of traditional masonry structures, particularly historic constructions in seismic zones. However, a critical aspect of this new technology application is the connection between FRP profiles and masonry walls. So far, no research studies are available on this subject. The authors carried out a preliminary experimental campaign on different connection systems between masonry and pultruded glass-fibre-reinforced polymer (GFRP) profiles. The note presents the immediate results of this study, focusing on the performance and collapse mechanisms; the study may contribute to the development of an effective connection system between masonry and FRP profiles to be adopted in the retrofitting of existing building with juxtaposed FRP frames.
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Wenjie, Zonglai Mo, Yunpeng Zhang, and Nawawi Chouw. "Dynamic Splitting Tensile Behaviour of Concrete Confined by Natural Flax and Glass FRP." Polymers 14, no. 20 (October 19, 2022): 4424. http://dx.doi.org/10.3390/polym14204424.

Full text
Abstract:
Flax fibre has been used to reinforce concrete composite, but its dynamic properties have not been thoroughly studied. This study investigates the dynamic splitting tensile properties of plain concrete (PC) confined by flax-fibre-reinforced polymer (FFRP) and glass-fibre-reinforced polymer (GFRP). The dynamic splitting tensile tests were carried out on PC, FFRP-PC, and GFRP-PC cylinder specimens by the high-speed servo-hydraulic machine, with the impact-induced strain rates ranging from 0.1 to 58 s⁻1. The effect of the FRP confinement, FRP thickness and strain rate on the dynamic splitting tensile behaviour were assessed. The results indicated that similar confinement effectiveness of FFRP and GFRP is observed. The dynamic tensile strength of 1- and 2-layer FFRP-PC increased by 29% and 67%, and the one- and two-layer GFRP-PC increased by 32% and 84%, respectively. FFRP-PC and GFRP-PC cylinders showed less sensitivity to the strain rate compared with PC. The empirical relationship between the tensile DIF and strain rate for PC, FFRP-PC and GFRP-PC was proposed based on experimental data. The proposed model was developed to predict the dynamic splitting tensile strength. The results suggested the potential of FFRP composites applied into concrete structures under extreme dynamic loadings.
APA, Harvard, Vancouver, ISO, and other styles
37

Sharifianjazi, Fariborz, Parham Zeydi, Milad Bazli, Amirhossein Esmaeilkhanian, Roozbeh Rahmani, Leila Bazli, and Samad Khaksar. "Fibre-Reinforced Polymer Reinforced Concrete Members under Elevated Temperatures: A Review on Structural Performance." Polymers 14, no. 3 (January 25, 2022): 472. http://dx.doi.org/10.3390/polym14030472.

Full text
Abstract:
Several experimental and numerical studies have been conducted to address the structural performance of FRP-reinforced/strengthened concrete structures under and after exposure to elevated temperatures. The present paper reviews over 100 research studies focused on the structural responses of different FRP-reinforced/strengthened concrete structures after exposure to elevated temperatures, ranging from ambient temperatures to flame. Different structural systems were considered, including FRP laminate bonded to concrete, FRP-reinforced concrete, FRP-wrapped concrete, and concrete-filled FRP tubes. According to the reported data, it is generally accepted that, in the case of insignificant resin in the post curing process, as the temperature increases, the ultimate strength, bond strength, and structure stiffness reduce, especially when the glass transition temperature Tg of the resin is approached and exceeded. However, in the case of post curing, resin appears to preserve its mechanical properties at high temperatures, which results in the appropriate structural performance of FRP-reinforced/strengthened members at high temperatures that are below the resin decomposition temperature Td. Given the research gaps, recommendations for future studies have been presented. The discussions, findings, and comparisons presented in this review paper will help designers and researchers to better understand the performance of concrete structures that are reinforced/strengthened with FRPs under elevated temperatures and consider appropriate approaches when designing such structures.
APA, Harvard, Vancouver, ISO, and other styles
38

Kaura, JM. "OPTIMISATION OF THICKNESS OF FIBRE REINFORCED POLYMER SHEETS FOR STRENGTHENING REINFORCED CONCRETE BEAMS WITH FLEXURAL DEFICIENCY." Nigerian Journal of Technology 36, no. 1 (December 28, 2016): 45–49. http://dx.doi.org/10.4314/njt.v36i1.7.

Full text
Abstract:
The use of Fiber Reinforced Polymer (FRP) is becoming a widely accepted solution for repairing and strengthening of deteriorated reinforced concrete members, to restore their load carrying capacities. One of the major concerns in the use of FRP is its cost. This therefore calls for the use of efficient and cost effective design approach. Design efficiency in terms of cost can be achieved through optimisation. In the present paper, Generalized Reduced Gradient (GRG) optimisation technique was employed to optimize the strengthening cost of a simply supported reinforced concrete beam strengthened with Fibre Reinforced Polymer (FRP). Optimum design charts for the considered problem were presented. The results showed that considerable savings in thickness can be achieved using FRP of high modulus of elasticity. For example at very high capacity reduction say 70% (kc = 0.3), the required FRP thicknesses for FRP with elastic moduli of 25GPa, 50GPa, 75GPa, 100GPa, 125GPa and 150GPa are respectively equal to 2.5mm, 1.75mm, 0.75mm, 0.6mm, 0.5mm and 0.4mm. http://dx.doi.org/10.4314/njt.v36i1.7
APA, Harvard, Vancouver, ISO, and other styles
39

Atefatdoost, Gholam Reza, Behtash JavidSharifi, and Mohammad Ali Khani. "REINFORCED CONCRETE FLAT SLABS WITH COMMON ARRANGEMENTS OF FIBRE REINFORCED POLYMER SHEETS." NED University Journal of Research XIX, no. 1 (January 17, 2022): 1–17. http://dx.doi.org/10.35453/nedjr-stmech-2019-0001r3.

Full text
Abstract:
Retrofitting of reinforced concrete (RC) flat slabs using fibre reinforced polymer (FRP) composites has become common in recent years. Flexural retrofitting of one-way and two-way RC flat slabs using five common arrays of carbon FRP (CFRP) strips has been investigated in this paper. A comparison of the obtained results provided optimum scheme. Finite element method has been used to conduct the study using a commercial computer program. Results from the numerical analyses suggest that the use of CFRP sheets leads to improved load bearing capacities of slabs, which depends on both the type of array and the widths of FRP strips. The most optimal array of the retrofitting material (considering the effects on both strength and deflection) is the cross-like condition, which increases the capacities for one- and two-way slabs, respectively, by thirty-four percent and thirty percent while decreasing their maximum deflection by ten percent and four percent, respectively.
APA, Harvard, Vancouver, ISO, and other styles
40

Cunha, Rafael, Kevin Oliveira, Antônio Brito, Camila Vieira, and David Amorim. "Evaluation of the behaviour of reinforced concrete beams repaired with glass fibre reinforced polymer (GFRP) using a damage variable." Frattura ed Integrità Strutturale 15, no. 57 (June 22, 2021): 82–92. http://dx.doi.org/10.3221/igf-esis.57.08.

Full text
Abstract:
The use of fibre reinforced polymers (FRP) for increasing the strength of RC structures became a usual method. FRP presents easy application and demands low space and provide significant strength increase. Usually, the decision for FRP use is made in terms of applied loads and deflections. However, such quantities can vary significantly depending on the characteristics of the structural element e.g. span, effective depth and concrete resistance. Therefore, this paper aims to present an alternative control variable to analyse the behaviour of RC beams repaired with glass fibre reinforced polymer (GFRP), called damage. Such damage variable accounts for concrete cracking and it was experimentally measured before and after the application of GFRP. Note that the application of GFRP increased the ultimate load for all repaired beams. The damage values of such beams also increased when collapse was reached. Furthermore, it was observed that the collapse mechanism shifted to shear and did not occurred the failure of the GFRP.
APA, Harvard, Vancouver, ISO, and other styles
41

Qureshi, Jawed. "A Review of Recycling Methods for Fibre Reinforced Polymer Composites." Sustainability 14, no. 24 (December 15, 2022): 16855. http://dx.doi.org/10.3390/su142416855.

Full text
Abstract:
This paper presents a review of waste disposal methods for fibre reinforced polymer (FRP) materials. The methods range from waste minimisation, repurposing, reusing, recycling, incineration, and co-processing in a cement plant to dumping in a landfill. Their strength, limitations, and key points of attention are discussed. Both glass and carbon fibre reinforced polymer (GFRP and CFRP) waste management strategies are critically reviewed. The energy demand and cost of FRP waste disposal routes are also discussed. Landfill and co-incineration are the most common and cheapest techniques to discard FRP scrap. Three main recycling pathways, including mechanical, thermal, and chemical recycling, are reviewed. Chemical recycling is the most energy-intensive and costly route. Mechanical recycling is only suitable for GFRP waste, and it has actually been used at an industrial scale by GFRP manufacturers. Chemical and thermal recycling routes are more appropriate for reclaiming carbon fibres from CFRP, where the value of reclaimed fibres is more than the cost of the recycling process. Discarding FRP waste in a sustainable manner presents a major challenge in a circular economy. With strict legislation on landfill and other environmental limits, recycling, reusing, and repurposing FRP composites will be at the forefront of sustainable waste-management strategies in the future.
APA, Harvard, Vancouver, ISO, and other styles
42

Luke, Sam. "Editorial – Advances in Fibre-reinforced Polymer (FRP) Composites." Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 162, no. 3 (September 2009): 101–2. http://dx.doi.org/10.1680/eacm.2009.162.3.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Garcia, Reyes, Maurizio Guadagnini, Kypros Pilakoutas, and Luis A. Pech Poot. "Fibre-reinforced polymer strengthening of substandard lap-spliced reinforced concrete members: A comprehensive survey." Advances in Structural Engineering 20, no. 6 (September 19, 2016): 976–1001. http://dx.doi.org/10.1177/1369433216668362.

Full text
Abstract:
Externally bonded Fibre Reinforced Polymer (FRP) confinement is extensively used to improve the bond strength of substandard lap spliced steel bars embedded in reinforced concrete (RC) components. However, the test results from bond tests on such bond-deficient components are not fully conclusive, which is reflected in the few design guidelines available for FRP strengthening. For the first time, this article presents a comprehensive survey on FRP strengthening of substandard lap-spliced RC members, with emphasis on the adopted experimental methodologies and analytical approaches developed to assess the effectiveness of FRP in controlling bond-splitting failures. The main findings and shortcomings of previous investigations are critically discussed and further research needs are identified. This review contributes towards the harmonisation of testing procedures so as to facilitate the development of more accurate predictive models, thus leading to more cost-effective strengthening interventions.
APA, Harvard, Vancouver, ISO, and other styles
44

Bakhtiyari, Saeed, Leila Taghi Akbari, and Masoud Jamali Ashtiani. "An investigation on fire hazard and smoke toxicity of epoxy FRP composites." International Journal of Disaster Resilience in the Built Environment 8, no. 3 (June 12, 2017): 230–37. http://dx.doi.org/10.1108/ijdrbe-07-2016-0030.

Full text
Abstract:
PurposeThe purpose of this study is assessment of fire and smoke hazards of some fiber reinforced polymers (FRP). The use of FRP strengthening strips has been found rapid growth in construction industry of Iran and many other countries. However, the fire and smoke hazards of these materials in both construction and use phases need to be determined and the appropriated measures against fire should be taken. Design/methodology/approachThe fire hazards of two types of fibre-reinforced epoxy composites (graphite fibre-reinforced polymer and carbon fibre-reinforced polymer) were investigated in bench-scale using cone calorimeter test method. Time to ignition, heat release rate, total heat release, smoke release and carbon monoxide production were measured and analysed. Time to flashover of an assumed room lined with the tested FRP was analysed with Conetools software. Smoke production and toxicity of the considered composites were also analysed and discussed, using the fractional effective dose parameter. FindingsThe results showed that the tested FRP products had a high fire hazard and a potential high contribution to fire growth. The tests also proved that the used epoxy resin had a low glass transition temperature, around 50°C; therefore, the mechanical strength of the product could be drastically reduced at first stages of a probable fire incident. This also showed that a regular thermal barrier, typically used for protection of plastic foams against fire, could not be sufficient for the protection of strengthening FRP composites. Originality/valueThis research was carried out for the first time for the materials used in construction industry of Iran. The results and achievements were very useful for safe use and development of proper details of application of the system.
APA, Harvard, Vancouver, ISO, and other styles
45

Green, Mark F., Luke A. Bisby, Yves Beaudoin, and Pierre Labossière. "Effect of freeze-thaw cycles on the bond durability between fibre reinforced polymer plate reinforcement and concrete." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 949–59. http://dx.doi.org/10.1139/l00-031.

Full text
Abstract:
Deterioration of infrastructure is one of the most pressing concerns facing today's civil engineering community. As a result, new rehabilitation techniques, such as the external bonding of fibre reinforced polymer (FRP) plates and sheets, are being developed. To apply these rehabilitation methods in Canada, the durability of the rehabilitated structures in cold regions must be assessed. This paper examines the effects of freeze-thaw cycling on the bond between FRP and concrete. An experimental investigation was conducted using both single lap pull-off and bond beam specimens. Only uniaxial carbon FRP strips were considered. The specimens were exposed to up to 300 freeze-thaw cycles consisting of 16 h of freezing and 8 h of thawing in a water bath. After exposure, the specimens were tested to failure. The development of strain along the bond length and the failure mode are presented for both types of specimens. Load deflection curves are presented for the beam specimens. The results indicate that the bond between carbon FRP strips and concrete is not significantly damaged by up to 300 freeze-thaw cycles.Key words: reinforced concrete, repair, rehabilitation, strengthening, fibre reinforced polymers, freeze-thaw, bond damage.
APA, Harvard, Vancouver, ISO, and other styles
46

Kalamkarov, Alexander L., Anastasis V. Georgiades, Douglas O. MacDonald, and Stephen B. Fitzgerald. "Pultruded fibre reinforced polymer reinforcements with embedded fibre optic sensors." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 972–84. http://dx.doi.org/10.1139/l00-034.

Full text
Abstract:
The use of the pultrusion process for the manufacture of fibre reinforced polymer (FRP) composites with embedded fibre optic sensors is discussed. The specific application is the use of smart composite reinforcements for strain monitoring in innovative concrete bridges and structures. The Bragg grating and Fabry-Perot fibre optic sensors are embedded during the pultrusion of FRP rods and the process-induced residual strains are evaluated using these sensors. The behaviour of optic sensors during pultrusion is assessed, and the effect of the embeddment of optical fibres and their surface coatings on the mechanical properties of the composite material is investigated. To verify the operation of the optic sensors embedded in the smart pultruded rods, mechanical tests were conducted and the output of the fibre optic sensors was compared to that of an extensometer. These mechanical tests were performed at room temperature as well as under conditions of low and high temperature extremes. The reliability assessment of the fibre optic sensors further entailed the study of their fatigue and creep behaviour as well as their performance when the rods in which they are embedded are placed in a severe environment (e.g., alkaline solutions) that may simulate conditions encountered in concrete structures wherein the composite rods will be used as prestressing tendons or rebars.Key words: smart composite reinforcements, fibre optic sensors, pultrusion, residual strain, fatigue and creep behaviour, reliability assessment.
APA, Harvard, Vancouver, ISO, and other styles
47

Szmigiera, E. D., K. Protchenko, M. Urbański, and A. Garbacz. "Mechanical Properties of Hybrid FRP Bars and Nano-Hybrid FRP Bars." Archives of Civil Engineering 65, no. 1 (March 1, 2019): 97–110. http://dx.doi.org/10.2478/ace-2019-0007.

Full text
Abstract:
AbstractThe paper describes the recent developments of Hybrid Fibre-Reinforced Polymer (HFRP) and nano-Hybrid Fibre-Reinforced Polymer (nHFRP) bars. Hybridization of less expensive basalt fibres with carbon fibres leads to more sustainable alternative to Basalt-FRP (BFRP) bars and more economically-efficient alternative to Carbon-FRP (CFRP) bars. The New-Developed HFRP bars were subjected to tensile axial loading to investigate its structural behaviour. The effect of hybridization on tensile properties of HFRP bars was verified experimentally by comparing the results of tensile test of HFRP bars with non-hybrid BFRP bars. It is worth to mention that the difference in obtained strength characteristics between analytical and numerical considerations was very small, however the obtained results were much higher than results obtained experimentally. Authors suggested that lower results obtained experimentally can be explained by imperfect interphase development and therefore attempted to improve the chemical cohesion between constituents by adding nanosilica particles to matrix consistency.
APA, Harvard, Vancouver, ISO, and other styles
48

Rosfadzlin Hanna, Z. A., Taufik, Sivaraos, S. Mohd Ghazali, J. Rosidah, and M. A. Mohd Amran. "Design Simulation on Fatigue Life of Fiber Reinforced Polymer Composites." Applied Mechanics and Materials 761 (May 2015): 47–51. http://dx.doi.org/10.4028/www.scientific.net/amm.761.47.

Full text
Abstract:
Fibre reinforced polymer composites have been widely used in automotive industries due to its high tensile strength, lightweight and potential resistance towards environmental conditions. This paper presents a study on the fatigue life prediction of fibre-reinforced polymer (FRP) and the application of FRP composite in manufacturing engineering industries. Four designs of I-beam with different thickness and fillet were studied. The analyses of fatigue life of the designs were done using ANSYS software. Results from the analysis showed that the combination of glass/polyester and the design of I-beam with a fillet of 10mm and thickness of 20mm was the best combination in terms of its good fatigue life, factor of safety and stronger top surface.
APA, Harvard, Vancouver, ISO, and other styles
49

El-Salakawy, Ehab, Brahim Benmokrane, and Gérard Desgagné. "Fibre-reinforced polymer composite bars for the concrete deck slab of Wotton Bridge." Canadian Journal of Civil Engineering 30, no. 5 (October 1, 2003): 861–70. http://dx.doi.org/10.1139/l03-055.

Full text
Abstract:
A new concrete bridge in the Municipality of Wotton, Quebec, Canada, was constructed using fibre-reinforced polymer (FRP) bars as reinforcement for the deck slab. The new bridge is a girder type with four main girders simply supported over a span of 30.60 m. One half of the concrete deck slab was reinforced with carbon and glass FRP bars, and the other half with conventional steel bars. The design of the reinforced concrete deck slab was made according to sections 8 and 16 of the new Canadian Highway Bridge Design Code. The bridge was well instrumented at critical locations for long-term internal temperature and strain data collection using fibre optic sensors. The construction of the bridge was completed and the bridge opened for traffic in October 2001. The bridge was then tested for service performance using standard truckloads. Design, construction details, and the results of the field test and 1 year of remote monitoring are discussed. Under the same real service and environmental conditions, very similar behaviour was obtained from the FRP (glass and carbon) and steel bars.Key words: concrete bridges, deck slabs, FRP bars, field test, fibre optic sensors, remote monitoring, serviceability.
APA, Harvard, Vancouver, ISO, and other styles
50

Newhook, John, Amin Ghali, and Gamil Tadros. "Concrete flexural members reinforced with fiber reinforced polymer: design for cracking and deformability." Canadian Journal of Civil Engineering 29, no. 1 (February 1, 2002): 125–34. http://dx.doi.org/10.1139/l01-085.

Full text
Abstract:
Fiber reinforced polymer (FRP) bars have lower modulus of elasticity than steel bars. For this reason when FRP bars are used as flexural nonprestressed reinforcement in concrete sections, the stress in the FRP is limited to a relatively small fraction of its tensile strength. This limit, necessary to control width of cracks at service, governs design of the required cross-sectional area of the FRP. Parametric studies on rectangular and T-sections are presented to show that the design based on allowable strain in the FRP results in sections that exhibit large deformation before failure. The concept of deformability, given in the Canadian Highway Bridge Design Code, as a requirement in the design of sections is discussed and modifications suggested. Using the new definition, it is shown that when, in addition to the crack control requirement, an upper limit is imposed on the cross-sectional area of the FRP, no calculations will be necessary to check the deformability.Key words: fibre reinforced polymer, reinforcement, concrete, design, deformability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography