Academic literature on the topic 'Fibre-reinforced polymer (FRP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fibre-reinforced polymer (FRP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fibre-reinforced polymer (FRP)"

1

Qureshi, Jawed. "A Review of Fibre Reinforced Polymer Structures." Fibers 10, no. 3 (March 8, 2022): 27. http://dx.doi.org/10.3390/fib10030027.

Full text
Abstract:
This paper reviews Fibre Reinforced Polymer (FRP) composites in Civil Engineering applications. Three FRP types are used in Structural Engineering: FRP profiles for new construction, FRP rebars and FRP strengthening systems. Basic materials (fibres and resins), manufacturing processes and material properties are discussed. The focus of the paper is on all-FRP new-build structures and their joints. All-FRP structures use pultruded FRP profiles. Their connections and joints use bolting, bonding or a combination of both. For plate-to-pate connections, effects of geometry, fibre direction, type and rate of loading, bolt torque and bolt hole clearance, and washers on failure modes and strength are reviewed. FRP beam-columns joints are also reviewed. The joints are divided into five categories: web cleated, web and flange cleated, high strength, plate bolted and box profile joints. The effect of both static and cyclic loading on joints is studied. The joints’ failure modes are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Nisar, Sumirah. "Fibre Reinforced Polymer in Retrofitting." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 83–87. http://dx.doi.org/10.22214/ijraset.2021.39200.

Full text
Abstract:
Abstract: Retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion etc. Many of the existing reinforced concrete structures throughout the world are in urgent need of rehabilitation, repair or reconstruction because of deterioration due to various factors like corrosion, lack of detailing, failure of bonding between beamcolumn joints etc. Fibre Reinforced Polymer (FRP) composite has been accepted in the construction industry as a promising substitute for repairing and in incrementing the strength of RCC structures. It stabilizes the current structure of buildings and making them earthquake resistant. This paper presents a representative overview of the current state of using FRP materials as a retrofitting technique for the structures not designed to resist seismic action. It summarizes the scopes and uses of FRP materials in seismic strengthening of RCC structures and masonry retrofitting. Keywords: Retrofitting, Rehabilitation, Seismic damage, fibre
APA, Harvard, Vancouver, ISO, and other styles
3

Šlaitas, Justas. "Flexural Reinforced Concrete Elements, Strengthened with Fibre Reinforced Polymer, Bearing Capacity Evaluation According to Limit Crack Depth." Mokslas - Lietuvos ateitis 9, no. 5 (December 27, 2017): 507–19. http://dx.doi.org/10.3846/mla.2017.1079.

Full text
Abstract:
The research was made on condition assessment of flexed reinforced concrete structures, strengthened with fibre reinforced polymers, in fracture stage. Universal bearing capacity calculation method based on limit normal section crack depth was proposed. This paper confirms the hypothesis of triangular concrete’s compressive zone chart usage for flexural strength calculation, without tensile concrete above crack evaluation. There is established connection between crack depth and FRP stress­strain, which allows to decide about structures bearing capacity reserve. The calculation results are confirmed with experimental studies of 73 reinforced concrete beams, strengthened with carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets, plates, strips and rods, taken from different researches. Furthermore, recommended limits of strengthening with FRP were proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

Ebead, U. A., and K. W. Neale. "Mechanics of fibre-reinforced polymer - concrete interfaces." Canadian Journal of Civil Engineering 34, no. 3 (March 1, 2007): 367–77. http://dx.doi.org/10.1139/l06-107.

Full text
Abstract:
A finite element model is developed for analyzing the interfacial behaviour for fibre-reinforced polymer (FRP) laminates externally bonded to concrete prisms and subjected to direct shear. The element sizes of the FRP, adhesive, and concrete at the interface were chosen to be very small (0.25–0.5 mm) so that the debonding behaviour could be properly captured. The behaviour at the interface between the FRP composite and the concrete is modelled using truss elements connecting the FRP laminate to the concrete block. The truss elements incorporate a nonlinear bond stress-slip relationship controlled by several parameters related to the characteristics of the FRP composite, adhesive, and concrete. Results are given in terms of the load capacity of the joint and the stress and strain distributions in the FRP, at the interface, and in the concrete. In addition, the transfer lengths, as well as the force transfer between the FRP laminate and the concrete block, are investigated. Comparisons between the finite element results and available experimental data are presented.Key words: nonlinear finite element analysis, FRP-to-concrete bonded joints, interface elements, debonding, interfacial behaviour, transfer lengths.
APA, Harvard, Vancouver, ISO, and other styles
5

Shehata, Emile, Ryan Morphy, and Sami Rizkalla. "Fibre reinforced polymer shear reinforcement for concrete members: behaviour and design guidelines." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 859–72. http://dx.doi.org/10.1139/l00-004.

Full text
Abstract:
This paper describes an experimental program conducted to examine the structural performance of fibre reinforced polymer (FRP) stirrups as shear reinforcement for concrete structures. A total of ten large-scale reinforced concrete beams were tested to investigate the contribution of the FRP stirrups in a beam mechanism. The ten beams included four beams reinforced with carbon fibre reinforced polymer (CFRP) stirrups, four beams reinforced with glass fibre reinforced polymer (GFRP) stirrups, one beam reinforced with steel stirrups, and one control beam without shear reinforcement. The variables were the material type of stirrups, the material type of the flexural reinforcement, and the stirrup spacing. Due to the unidirectional characteristics of FRP, significant reduction in the strength of the stirrup relative to the tensile strength parallel to the fibres is introduced by bending FRP bars into a stirrup configuration and by the kinking action due to inclination of the diagonal shear crack with respect to the direction of the stirrups. A total of 52 specially designed panel specimens were tested to investigate the bend and kinking effect on the capacity of FRP stirrups, along with two control specimens reinforced with steel stirrups. The variables considered in the panel specimens are the material type of the stirrups, the bar diameter, the bend radius, the configuration of the stirrup anchorage, the tail length beyond the bend portion, and the angle of the stirrups. Based on the findings of this investigation, shear design equations for concrete beams reinforced with FRP, appropriate for the Canadian Standards Association (CSA) code, are proposed. The reliability of the proposed equations is evaluated using test results of 118 beams tested by others.Key words: shear, fibre-reinforced polymers, CFRP, cracks, GFRP, kink, stirrups, bend capacity.
APA, Harvard, Vancouver, ISO, and other styles
6

Deniaud, Christophe, and JJ Roger Cheng. "Review of shear design methods for reinforced concrete beams strengthened with fibre reinforced polymer sheets." Canadian Journal of Civil Engineering 28, no. 2 (April 1, 2001): 271–81. http://dx.doi.org/10.1139/l00-113.

Full text
Abstract:
This paper reviews the different shear design methods found in the literature for reinforced concrete beams strengthened externally with fibre reinforced polymer (FRP) sheets and compares the adequacy of each method by using the test results from the University of Alberta. The FRP shear design methods presented include the effective FRP strain and the bond mechanism criteria, the strut-and-tie model, the modified compression field theory, and a mechanical model based on the strip method with shear friction approach. Sixteen full-scale T-beam test results were used in the evaluation. Two web heights of 250 and 450 mm and two ready mix concrete batches of 29 and 44 MPa were used in the test specimens. Closed stirrups were used with three spacings: 200 mm, 400 mm, and no stirrups. Three types of FRP were used to strengthen externally the web of the T-beams: (i) uniaxial glass fibre, (ii) triaxial (0/60/–60) glass fibre, and (iii) uniaxial carbon fibre. The results showed that the mechanical model using the strip method with shear friction approach evaluates better the FRP shear contribution. The predicted capacities from this mechanical model are also found conservative and in excellent agreement with the test results.Key words: beams, carbon fibres, composite materials, fibre reinforced polymers, glass fibres, rehabilitation, reinforced concrete, shear strength, sheets, tests.
APA, Harvard, Vancouver, ISO, and other styles
7

Mufti, A. A., B. Bakht, N. Banthia, B. Benmokrane, G. Desgagné, R. Eden, M. A. Erki, et al. "New Canadian Highway Bridge Design Code design provisions for fibre-reinforced structures." Canadian Journal of Civil Engineering 34, no. 3 (March 1, 2007): 267–83. http://dx.doi.org/10.1139/l06-137.

Full text
Abstract:
This paper presents a synthesis of the design provisions of the second edition of the Canadian Highway Bridge Design Code (CHBDC) for fibre-reinforced structures. New design provisions for applications not covered by the first edition of the CHBDC and the rationale for those that remain unchanged from the first edition are given. Among the new design provisions are those for glass-fibre-reinforced polymer as both primary reinforcement and tendons in concrete; and for the rehabilitation of concrete and timber structures with externally bonded fibre-reinforced-polymer (FRP) systems or near-surface-mounted reinforcement. The provisions for fibre-reinforced concrete deck slabs in the first edition have been reorganized in the second edition to explicitly include deck slabs of both cast-in-place and precast construction and are now referred to as externally restrained deck slabs, whereas deck slabs containing internal FRP reinforcement are referred to as internally restrained deck slabs. Resistance factors in the second edition have been recast from those in the first edition and depend on the condition of use, with a further distinction made between factory- and field-produced FRP. In the second edition, the deformability requirements for FRP-reinforced and FRP-prestressed concrete beams and slabs of the first edition have been split into three subclauses covering the design for deformability, minimum flexural resistance, and crack-control reinforcement. The effect of sustained loads on the strength of FRPs is accounted for in the second edition by limits on stresses in FRP at the serviceability limit state.Key words: beams, bridges, concrete, decks, fibre-reinforced-polymer reinforcement, fibre-reinforced-polymer sheets, prestressing, repair, strengthening, wood.
APA, Harvard, Vancouver, ISO, and other styles
8

Ghali, Amin, Tara Hall, and William Bobey. "Minimum thickness of concrete members reinforced with fibre reinforced polymer bars." Canadian Journal of Civil Engineering 28, no. 4 (August 1, 2001): 583–92. http://dx.doi.org/10.1139/l01-021.

Full text
Abstract:
To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.
APA, Harvard, Vancouver, ISO, and other styles
9

CoDyre, Luke, Kenneth Mak, and Amir Fam. "Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities." Journal of Sandwich Structures & Materials 20, no. 5 (December 5, 2016): 595–616. http://dx.doi.org/10.1177/1099636216667658.

Full text
Abstract:
This study investigates the effect of foam core density on the behaviour of sandwich panels with novel bio-composite unidirectional flax fibre-reinforced polymer skins, along with a comparison to panels of conventional glass-FRP skins. Eighteen 1000 mm long flexural specimens and 18 500 mm long stub column specimens were fabricated and tested. All specimens had a foam core of 100 × 50 mm2 cross-section with symmetrical 100 mm wide skins. The study compares the effect of three separate polyisocyanurate foam cores when used in conjunction with either three layers of flax fibre-reinforced polymer or a single glass-FRP layer for each skin. Flexural specimens were tested in four-point bending and stub columns were tested under axial compression with pin–pin end conditions. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively, for flax fibre-reinforced polymer skinned panels, and comparable increases in glass-FRP skinned panels. Similarly, flax fibre-reinforced polymer-skinned columns showed similar increases in ultimate axial capacity of 85% and 196%, while glass-FRP- skinned columns experienced lower increases when core density was varied. The three-layered flax fibre-reinforced polymer skin, only 17% thicker than the single layer glass-FRP skin, was shown to provide equivalent flexural and axial strengths at all three core densities, within −5 to +13%.
APA, Harvard, Vancouver, ISO, and other styles
10

Azad, Fathima. "Analysis of Columns Strengthened using Fibre Reinforced Cementitious Matrix Jackets." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1795–800. http://dx.doi.org/10.22214/ijraset.2021.38272.

Full text
Abstract:
Abstract: Maintenance, repair and strengthening of existing concrete structures, either reinforced or prestressed,are important activities of civil engineers. Nowadays different techniques are available for the strengthening. Various techniques were adopted for strengthening RC structures, namely, steel plates, external post tensioning, externally bonded Fibre-Reinforced Polymer (FRP), and near- surface-mounted FRP systems to increase shear and flexural capacity. During the last few decades, strengthening of concrete structural elements by fibre-reinforced polymer has become a widely used technique. But it has several disadvantages due to the epoxy resin like debonding of FRP from the concrete structure, unstable nature of the epoxy at higher temperatures etc. To overcome this, an upgraded system was introduced as an alternative for FRP known as Fibre Reinforced Cementitious Matrices (FRCM). The objective of this paper is to investigate the feasibility of Fibre-Reinforced Cementitious-Matrix materials as an alternative external strengthening technique for RC members. Columns with circular geometry were wrapped with different fibre materials using cementitious matrix. The analysis was done using ANSYS software. Keywords: RC columns, FRCM, Strengthening, fibre, ANSYS
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fibre-reinforced polymer (FRP)"

1

Tao, Yi. "Fibre reinforced polymer (FRP) strengthened masonry arch structures." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7743.

Full text
Abstract:
Masonry arch bridges have played a significant role in the road and rail transportation network in the world for centuries. They are exposed to damage due to overloading and deterioration caused by environmental actions. In order to reestablish their performance and to prevent their collapse in various hazardous conditions, many of them require strengthening. Fibre reinforced polymer (FRP) systems are increasingly used for repair and strengthening of structures, with particularly widespread application to concrete structures. However, the application of FRP composites to masonry structures is less well established due to the complexity of masonry caused by the material discontinuity. FRP strengthening masonry arch bridges has been even less studied due to the additional complexity arising from the co-existence of the normal interfacial stress and the shear interfacial stress at the curved FRP-to-masonry bondline. This thesis presents an extensive study investigating the behaviour of FRP strengthened masonry bridges. The study started with a laboratory test of a two span masonry arch bridge with sand backfill. A single ring arch bridge was first tested to near failure, and then repaired by bonding FRP into their intrados and tested to failure. It was found that the FRP strengthening not only improved the loading capacity and stiffness of bridge, but also significantly restrained the opening of cracks in the masonry. Shear and peeling debonding of FRP was observed. There have been two common strategies in finite element (FE) modelling of FRP strengthened structures in meso-scale: direct model and interface model. The former is necessary when investigating the detailed bond behaviour but challenges remain due to the difficulties in concrete modelling. A new concrete damage model based on the plastic degradation theory has been developed in this study to study the bond behaviour of FRP strengthened concrete structure. This robust model can successfully capture this bond behaviour and simulate the entire debonding process. A numerical study of masonry arch bridges including the backfill was conducted to study the behaviour of masonry arch bridge. A total of four modelling strategies were examined and compared. Although they all can successfully predict the behaviour of arch, a detailed solid model newly developed in this study is more suitable for modelling both plain masonry and FRP strengthened structures. Finally, a numerical study of bond behaviour and structural response of FRP strengthened masonry arch structures with sand backfill was conducted. In addition to the masonry and backfill, the mixed mode interfacial behaviour was modelled by the aforementioned interface model strategy and investigated in detail to achieve a deeper understanding of the behaviour of FRP strengthened masonry arch structures. The results are in close agreement with test results, and highlight the influence of the key parameters in the structural response to failure and revealed the mechanisms on how the load is transmitted through this complex multi-component structural system.
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Tara Stephanie. "Deflections of concrete members reinforced with fibre reinforced polymer, FRP, bars." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/MQ49676.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmed, Ehab Abdul-Mageed. "Shear behaviour of concrete beams reinforced with fibre-reinforced polymer (FRP) stirrups." Thèse, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/1903.

Full text
Abstract:
Corrosion of steel reinforcement is a major cause of deterioration in reinforced concrete structures especially those exposed to harsh environmental conditions such as bridges, concrete pavements, and parking garages. The climatic conditions may have a hand in accelerating the corrosion process when large amounts of salts are used for ice removal during winter season. These conditions normally accelerate the need of costly repairs and may lead, ultimately, to catastrophic failure. Therefore, using the non-corrodible fibre-reinforced polymer (FRP) materials as an alternative reinforcement in prestressed and reinforced concrete structures is becoming a more accepted practice in structural members subjected to severe environmental exposure. This, in turn, eliminates the potential of corrosion and the associated deterioration. Stirrups for shear reinforcement normally enclose the longitudinal reinforcement and are thus the closest reinforcement to the outer concrete surface. Consequently, they are more susceptible to severe environmental conditions and may be subjected to related deterioration, which reduces the service life of the structure. Thus, replacing the conventional stirrups with the non-corrodible FRP ones is a promising aspect to provide more protection for structural members subjected to severe environmental exposure. However, from the design point of view, the direct replacement of steel with FRP bars is not possible due to various differences in the mechanical and physical properties of the FRP materials compared to steel. These differences include higher tensile strength, lower modulus of elasticity, different bond characteristics, and absence of a yielding plateau in the stress-strain relationships of FRP materials. Moreover, the use of FRP as shear reinforcement (stirrups) for concrete members has not been sufficiently explored to provide a rational model and satisfactory guidelines to predict the shear strength of concrete members reinforced with such type of stirrups. An experimental program to investigate the structural performance of FRP stirrups as shear reinforcement for concrete beams was conducted. The experimental program included seven large-scale T-beams reinforced with FRP and steel stirrups. Three beams were reinforced with CFRP stirrups, three beams reinforced with GFRP stirrups, and one beam reinforced with steel stirrups. The geometry of the T-beam was selected to simulate the New England Bulb Tee Beam (NEBT) that is being used by the Ministry of Transportation of Québec (MTQ), Canada. The beams were 7.0 m long with a T-shaped cross section measuring a total height of 700 mm, web width of 180 mm, flange width of 750 mm, and flange thickness of 85 mm. The large-scale T-beams were constructed using normal-strength concrete and tested in four-point bending over a clear span of 6.0 m till failure to investigate the modes of failure and the ultimate capacity of the FRP stirrups in beam action. The test variables considered in this investigation were the material of the stirrups, shear reinforcement ratio, and stirrup spacing. The specimens were designed to fail in shear to utilize the full capacity of the FRP stirrups. Six beams failed in shear due to FRP (carbon and glass) stirrup rupture or steel stirrup yielding. The seventh beam, reinforced with CFRP stirrups spaced at d /4, failed in flexure due to yielding of the longitudinal reinforcement followed by crushing of concrete. The effects of the different test parameters on the shear behaviour of the concrete beams reinforced with FRP stirrups were presented and discussed. The test results contributed to amending the shear provisions incorporated in the Canadian Highway Bridge Design Code (CAN/CSA-S6) and the updated provisions were approved in the CSA-S6-Addendum (CSA 2009). An analytical investigation was conducted to evaluate the validity and accuracy of available FRP codes and guidelines in Japan, Europe, and North America. The predictions of the codes and the guidelines were verified against the results of the tested beams as well as 24 other beams reinforced with FRP stirrups from the literature. The tested beams were also analysed using various shear theories including the modified compression field theory (MCFT), the shear friction model (SFM), and the unified shear strength model (USSM). A simple equation for predicting the shear crack width in concrete beams reinforced with FRP stirrups is proposed and verified against the experimentally measured values.
APA, Harvard, Vancouver, ISO, and other styles
4

Shehata, Emile F. G. "Fibre-reinforced polymer (FRP) for shear reinforcement in concrete structures." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/NQ41626.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quayyum, Shahriar. "Bond behaviour of fibre reinforced polymer (FRP) rebars in concrete." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/26242.

Full text
Abstract:
Recently, fibre reinforced polymer (FRP) rebars have been extensively used in construction instead of steel rebars due to their non-corrosive nature and high tensile strength. Bond between FRP rebars and concrete is a critical design parameter that controls the performance of reinforced concrete members at serviceability and ultimate limit states. In order to prevent a bond failure, an adequate anchorage length should be provided. The anchorage length is derived using a bond stress-slip ( ) constitutive law. The objective of this study is to investigate the effect of different parameters such as the type of fibre, the rebar surface and the confinement provided by the transverse reinforcement on the bond behaviour of FRP rebars in concrete. Based on the analysis, a generalized bond stress-slip relationship will be developed and a new design equation for the required anchorage length of FRP rebar in concrete will be derived. A database was created on the bond stress-slip behaviour of FRP rebars in concrete from the available literature up to 2009. The data was statistically analyzed to investigate the effect of the different parameters on the bond performance of FRP rebars. It was observed that an increase in the confinement provided by the transverse reinforcement increased the bond strength of FRP rebars in concrete. This signifies that the presence of transverse reinforcement affects the bond behaviour of FRP rebars in concrete and hence, it should be taken into consideration while developing design equations for FRP rebars. Type of fibre and rebar surface does not affect the bond stress, but the latter affects the slip corresponding to the peak bond stress. Based on the results, a nonlinear regression analysis was performed to develop the bond stress-slip model for splitting mode of failure and a design equation for determining the development length of the FRP rebars in concrete was derived. The proposed development length equation can save about 10%-15% of the development length than that required by different code equations. This can save a considerable amount of FRP materials, which will eventually reduce the overall cost of construction and thereby, encourage the use of FRP reinforcing bars in the construction of concrete structures.
APA, Harvard, Vancouver, ISO, and other styles
6

Sudarisman. "Flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix composites." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/2110.

Full text
Abstract:
The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been investigated. The main objectives of this study were to: (i) improve the flexural properties of the parent composite materials, i.e. E-glass/epoxy and TR50S carbon fibre/epoxy composites, through substitution of stronger fibres, i.e. S2-glass and IM7 carbon fibres, for the fibres of the parent composite materials, and (ii) determine the optimum stacking configurations that produced the maximum increase in flexural properties of the resulting hybrid composites. In addition to these, two secondary objectives related to the preliminary investigation of determining the optimum stacking configurations have also been established. The two secondary objectives were to: (i) determine the optimum values of the processing parameters of the composites under investigation, and (ii) determine the compressive strength and compressive modulus of the parent materials.The investigation was carried out experimentally, thus data presented and analysed were obtained from laboratory work. Optimum values of five processing parameters, i.e. (i) the concentration of matrix precursor within the solvent solution utilised to wet the fibres, (ii) the compressive pressure applied during hotpress curing, (iii) the vacuum pressure of the atmosphere inside the curing chamber, (iv) the dwell time during hot-press curing, and (v) the holding temperature during hot-press curing, have been established. The criteria for determining the optimum values of these parameters were optimum fibre content, minimum void content, and optimum flexural properties. Compressive strength and compressive modulus of the parent composite materials have also been determined.Specimens were cut from flat composite plates using a diamond-tipped circular blade saw. The longitudinal edges of the specimens were carefully polished to remove any possible edge damage due to cutting. The composite plates were produced from preforms comprised of a number of glass fibre/epoxy prepregs, carbon fibre/epoxy prepregs or a combination of these. All the fabrication procedures were carried out using manual techniques. Whilst the compressive tests were conducted in accordance with the ASTM D3410-03 standard, flexural tests were carried out according to Procedure A of the ASTM D790-07 standard. Span-to depth ratios, S/d, of 16, 32, and 64 were selected for flexural testing in order to determine the minimum value of S/d required to ensure flexural failure rather than shear failure. Fibre and void contents were evaluated from optical micrograph images of the slices perpendicular to the fibre direction of the samples.It was concluded that the optimum values of the five processing parameters under investigations were: (i) epoxy concentration, C[subscript]e ~ 50 wt%, (ii) compressive pressure, p[subscript]c ~ 1.00 MPa, (iii) vacuum pressure, p[subscript]v ~ 0.035 MPa, (iv) dwell time, t ~ 30 minutes, and (v) holding temperature, T ~ 120 °C. Compressive tests revealed that the order of compressive strength for the parent composite materials were arranged as follows: S2-glass fibre/epoxy (476 MPa), E-glass fibre/epoxy (430 MPa), IM7 carbon fibre/epoxy (426 MPa), and TR50S carbon fibre/epoxy (384 MPa). The compressive modulus of these parent composite materials were found to be ordered as follows: IM7 carbon fibre/epoxy (67.9 GPa), TR50S carbon fibre/epoxy (61.8 GPa), S2-glass fibre/epoxy (45.1 GPa), and E-glass fibre/epoxy (32.9 GPa). After considering these compressive properties, three different hybrid combinations, as mentioned earlier, were manufactured and evaluated with the prepreg layers of the fibre composites possessing higher compressive strength being placed at the compressively loaded side of the flexural specimens.Shorter beam specimens (S/d = 16) of the three hybrid systems exhibited increased flexural strength as the amount of stronger fibre content was increased, but no hybrid effect was noted. The increase appeared to follow the rule of mixtures and this was attributed to their failure mode being shear failure. For beams tested at S/d = 32 and S/d = 64, the three hybrid systems demonstrated three different trends. The S2-glass fibre/E-glass fibre/epoxy hybrid system, where the S2-glass fibre (substituted at the compressive loading face) was slightly stronger and stiffer compared to the E-glass fibre at the tensile side, demonstrated increases in flexural strength together with the presence of a hybrid effect following partial substitution of the S2-glass fibre for E-glass fibres at the compressive side. The IM7 carbon fibre/TR50S carbon fibre/epoxy hybrid system, where the IM7 carbon fibre (substituted at the compressive side) was slightly stronger but significantly stiffer in compression compared to the TR50S fibre at the tensile side, exhibited a slight increase in flexural strength that appeared to obey the rule of mixtures.This result was attributed to the strength increase in the compressive side introduced by the substituted fibres not being sufficient to suppress the increase of internal compressive stress due to the increase in compressive modulus of the substituted fibres. The E-glass fibre/TR50S carbon fibre/epoxy hybrid system, where the E-glass fibre (substituted at the compressive side) was found to be slightly stronger but significantly less stiff in compression compared to the TR50S fibre at the tensile side, demonstrated a significant increase in flexural modulus and also exhibited a significant hybrid effect. The decrease in internal compressive stresses generated at the compressive side due to the decreased compressive modulus of the substituted fibre, when combined with the increase in compressive strength of the substituted fibre, was thought to led to the significant increase of flexural strength for this hybrid system.General trends observed in flexural modulus for the three hybrid systems were reasonably similar with any change in flexural modulus appearing to obey the rule of mixtures. Whilst an increase in flexural modulus was noted for higher contents of stronger fibre in the case of the S2-glass fibre/E-glass fibre/epoxy hybrid system and IM7 carbon fibre/TR50S carbon fibre/epoxy hybrid system, a decrease in flexural modulus with increased quantities of stronger fibre was exhibited by the E-glass fibre/TR50S carbon fibre/epoxy hybrid system. The increase or decrease in flexural modulus was attributed to the relative stiffness in compression of the substituted fibre when compared to that of the respective parent composite materials.Unlike the S2-glass fibre/E-glass fibre/epoxy hybrid system and IM7 carbon fibre/TR50S carbon fibre/epoxy hybrid system that did not exhibit any significant trend with regards the effect of the substitution of stronger fibre at the compressive side, the E-glass fibre/TR50S carbon fibre hybrid system demonstrated a significant increase in the energy stored to maximum stress with increasing content of the stronger fibre. This increase was mainly attributed to the increased strain–to-maximum stress of the hybrid system with respect to that of the parent composite material.In addition, for the three hybrid systems under investigation, the most significant change in flexural properties was noticed following substitution of the first layer at the compressive face. The relative position with respect to the neutral plane of the substituted layer was thought to be the reason for this phenomenon. It was also noted that flexural properties increased with the increase in S/d. A change in failure morphology was noted with the change of S/d from 16 to 32. It was thus determined that a S/d ratio of at least 32 was required in order to promote flexural failure (as opposed to shear failure). For the S2-glass fibre/E-glass fibre/epoxy hybrid system, this change appeared more obvious in comparison with that the other two hybrid systems with this change being accompanied by a significant increase in flexural strength.The main general conclusions that could be drawn from this investigation were that, although the flexural modulus appeared to obey the rule of mixture, an increase in flexural strength together with the presence of a hybrid effect, would most probably be observed when the fibre substituted at the compressive side possessed a significantly lower modulus combined with significantly higher compressive strength as demonstrated by the hybrid TR50S carbon - E-glass FRP composites. The most significant change in properties was exhibited by the first layer substitution whilst increasing the value of S/d resulted in an increase of flexural strength, with S/d = 32 being determined to be sufficient in order to promote flexural failure as opposed to shear failure.
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Da. "Structural behaviour of two-way fibre reinforced composite slabs." University of Southern Queensland, Faculty of Engineering and Surveying, 2004. http://eprints.usq.edu.au/archive/00001450/.

Full text
Abstract:
Innovative new flooring systems utilising lightweight fibre reinforced polymer composite materials may have the significant potential to offer both economic and performance benefits for infrastructure asset owners compared to conventional concrete and steel systems. Over recent years, a range of prototype floor systems using fibre reinforced polymer composites have been developed by researchers at the University of Southern Queensland. However before such structural systems can be widely adopted by industries, fundamental understanding of their behaviour must be improved. Such work will allow for the development of new design and analysis procedures which will enable engineers to efficiently and accurately design and analyse such structures. This dissertation presents an investigation into a new two-way fibre reinforced composite floor slab system. The proposed new two-way slab system is, in essence, a sandwich structure with an innovative hollow core made from a castable particulate filled resin system. The key focus of this dissertation is the development of a new analysis tool to analyse the two-way fibre reinforced composite slab and facilitate subsequent parametric studies into slab configurations for concept refinement. The detailed 3D finite element analyses and experimental investigations are performed to verify the new analysis tool, and provide more detailed insight into the structural behaviour of this new two-way fibre reinforced composite slab. Comparisons with detailed 3D FEA and experiments illustrate that the simplified analysis tool is capable of providing sufficient accuracy for the preliminary analysis of a slab structure. Moreover, the 3D finite element analyses agree well with the experiments, and it is concluded that the behavioural responses of the proposed new slab structure can be reliably predicted. The experimental results show that this new slab concept exhibits quite a robust static behaviour and is likely to have a robust fatigue performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Shiqing. "FRP rupture strains in FRP wrapped columns." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6246.

Full text
Abstract:
Applying lateral confinement to concrete columns using fibre-reinforced polymer (FRP) composites is a very promising technique. FRP rupture is the typical failure mode of FRP wrapped columns under axial compression. numerous experiments have shown that the FRP rupture strain in an FRP wrapped circular column is significantly lower than the FRP ultimate rupture strain determined from flat coupon test of FRP. Despite a large number of studies on the application of FRP confined columns, the mechanisms and level of lower-than-apparent FRP rupture strain still remain unclear. This thesis presents theoretical, Numerical and experimental studies aiming at developing a deeper understanding of the fundamental mechanisms of this phenomenon. A comprehensive literature review was presented providing the background on FRP confined columns, material properties of FRP composites as well as some factors which may lead to premature FRP rupture. A FE analysis was conducted to investigate the FRP hoop strains in the split-disk test, explaining for the first time that the fundamental mechanism of the lower FRP rupture strain in the split-disk test than in the flat coupon test is because strain localisation due to geometric discontinuities at the ends of the FRP and bending of the FRP ring at the gap due to change of curvature caused by the relative moment of the two half disks, as the FRP (as a brittle material) ruptures once the maximum strain at one of these locations reaches the FRP rupture strain. A list of contributory factors affecting the apparent FRP rupture strain in FRP wrapped columns were next identified and classified. An analytical solution was developed to investigate the influence of the triaxial stress state on the FRP strain efficiency, this factor has been shown to have a potentially significant effect on the failure of the FRP wrap but considerable discrepancies exist between predictions using different failure criteria so further research has been identified in this area. FE models were developed to examine the effect of the geometrical discontinuities on the strain efficiency of FRP jackets in FRP wrapped concrete-filled circular steel tubes and FRP wrapped concrete columns. It is demonstrated that severe FRP hoop strain concentrations occur in very small zones near the ends of the FRP wrap in both types of FRP wrapped columns, leading to premature FRP rupture and thus lower strain efficiency. The combined effects of end constraint and FRP overlap on the behaviour of FRP wrapped concrete columns was investigated using a three dimensional FE model considering one half of the length of an FRP-wrapped concrete cylinder. The results have shown that the frication between both ends of a column and the loading platens provides constraints to the ends of the column, but this constraint has little effect on the strain concentration caused by the geometrical discontinuities of the FRP overlap, though the ultimate axial strain of the FRP wrapped columns can be significantly overestimated if the end constraints are not considered.
APA, Harvard, Vancouver, ISO, and other styles
9

Youssef, Tarik A. "Time-dependent behaviour of fibre reinforced polymer (FRP) bars and FRP reinforced concrete beams under sustained load." Thèse, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/1941.

Full text
Abstract:
An extensive experimental/research program has taken place at the University of Sherbrooke FRP Durability Facility. The program, consisting of four phases, studies the creep performance of FRP bars as well as the overall long-term behaviour of FRP reinforced concrete beams. Phase 1 deals with the creep performance of two types of GFRP bars subjected to different levels of sustained axial load; causing creep rupture at higher levels. In Phase 2, six different types of GFRP bars are tested under two levels of allowable service load, according to the currently available North American standards. The test duration, for the two phases, exceeded 10000 hours (417 days) wherein regular monitoring' of creep strain evolution took place and. the creep coefficient of GFRP bars was calculated. Residual tensile tests and microstructural analysis followed the long-term testing period. It was found that 45 % of the GFRP bars' tensile strength, fu,ave , is a safe limit for GFRP exhibiting sustained load, in standard laboratory conditions. Microstructural analysis shows that the increase in creep strain, after the 10000 hour period, is negligible for GFRP bars under allowable service load. Phase 3 consists of twenty reinforced concrete beams (ten pairs) comprising GFRP, CFRP, and steel reinforcing bars. The dimensions of which are 100 mm x 150 mm x 1800 mm, installed under third-point sustained load, for a period exceeding one year. Exhibiting a maximum applied moment of 25 % of their nominal moment capacity, Mn , all beams were regularly monitored in terms of (i) time-dependent deflection, (ii) strain increase in concrete and reinforcement and (iii) crack widths. Theoretical predictions for immediate deflection were calculated, using three methods (ACI 440.1R-06, CAN/CSA S806-02 and the ISIS Canda Design Manual (2007)), and compared to the obtained experimental results. Results showed that the calculations, regarding immediate deflection, under estimate by 67 %; underestimate by 10 %; overestimate by 11 %, for the aforementioned methods, respectively. The long-term to immediate deflection ratio, .l, was calculated for all beams and compared to ACI 440.1R-06 and CAN/CSA S806-02 predictions. Results showed that the North American standards are conservative as regards long-term deflection prediction. Immediate crack width results were compared to the prediction equations adopted by ACI 440.1R-06 and CAN/CSA S6-06, on the one hand, and by the ISIS Canada Design Manual (2007) on the other hand. Satisfactory results were found when the k b bond-coefficient factor is taken as 1.2 and 1.0, respectively. From the obtained data, the time-dependent kt multiplier, accounting for crack width increase after one year, was deduced as 1.7 and 1.5 for both models, respectively. Phase 4 deals with four full-scale GFRP reinforced concrete beams, of dimensions (215 mm x 400 mm x 4282 mm), subjected to uniform distributed load for a period of six months. Sizeable concrete blocks (of dimensions 610 mm x 762 mm x 1219 mm and weight = 13334 kN) were arranged on top of the beams to simulate sustained uniform distributed load. The main study parameters, of this phase, are (i) bottom reinforcement ratio and (ii) type of upper/compression reinforcement (GFRP and/or steel). The applied moment ranges from 15 to 21 % of the nominal moment capacity for the beams. Numerical modelling took place using a computer program (Fortran-2003) based on the age-adjusted effective modulus method, to predict the long-term deflection of the beams. The creep and shrinkage coefficients were calculated based on the ACI Committee 209 recommendations (1992) and CEB-FIP Model Code (1990). The theoretical curves were in very good agreement with the measured values. Furthermore, the empirical models available in ACI 440.1R-06 and CAN/CSA S806-02 were used for long-term deflection prediction. These predictions showed that both models can serve as upper bound and lower bound limits for the measured long-term deflection curves, respectively. As regards crack width prediction, the equations adopted by ACI 440.1R-06 (same as that of CAN/CSA S6-06) and by the ISIS Canada Design Manual (2007) yield satisfactory results when the kb bond-coefficient factor is 1.2 and 1.0 respectively (similar to phase 3). For both equations the time-dependent kt multiplier is deduced as 1.4, after six months.--Résumé abrégé par UMI.
APA, Harvard, Vancouver, ISO, and other styles
10

Haji, Kamis Haji Elmi Bin. "Three dimensional analysis of fibre reinforced polymer laminated composites." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/three-dimensional-analysis-of-fibre-reinforced-polymer-laminated-composites(0ba2ceae-129c-4d09-bdbd-de110e7b3617).html.

Full text
Abstract:
The thesis presents the structural behaviour of fibre reinforced polymer (FRP) laminated composites based on 3D elasticity formulation and finite element modeling using Abaqus. This investigation into the performance of the laminate included subjecting it to various parameters i.e. different boundary conditions, material properties and loading conditions to examine the structural responses of deformation and stress. Both analytical and numerical investigations were performed to determine the stress and displacement distributions at any point of the laminates. Other investigative work undertaken in this study includes the numerical analysis of the effect of flexural deformation of the FRP strengthened RC slab. The formulation of 3D elasticity and enforced boundary conditions were applied to establish the state equation of the laminated composites. Transfer matrix and recursive solutions were then used to produce analytical solutions which satisfied all the boundary conditions throughout all the layers of the composites. These analytical solutions were then compared with numerical analysis through one of the commercial finite element analysis programs, Abaqus. Out of wide variety of element types available in the Abaqus element library, shells and solids elements are chosen to model the composites. From these FEM results, comparison can be made to the solution obtained from the analytical. The novel work and results presented in this thesis are the analysis of fully clamped laminated composite plates. The breakthrough results of fully clamped laminated composite plate can be used as a benchmark for further investigation. These analytical solutions were verified with FEM solutions which showed that only the solid element (C3D20) exhibited close results to the exact solutions. However, FEM gave poor results on the transverse shear stresses particularly at the boundary edges. As an application of the work above, it is noticed that the FEM results for the FRP strengthened RC slab, agreed well with the experimental work conducted in the laboratory. The flexural capacity of the RC slab showed significant increase, both at service and ultimate limit states, after FRP sheets were applied at the bottom surface of the slab. Given the established and developed programming codes, exact solutions of deflection and stresses can be determined for any reduced material properties, boundary and loading conditions, using Mathematica.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fibre-reinforced polymer (FRP)"

1

Wong, Rita Sheung Ying. Towards modelling of reinforced concrete members with externally-bonded fibre reinforced polymer (FRP) composites. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

béton, Fédération internationale du, ed. Externally bonded FRP reinforcement for RC structures: Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Lausanne, Switzerland: International Federation for Structural Concrete, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiang-Hwee, Tan, ed. Fibre-reinforced polymer reinforcement for concrete structures: Proceedings of the Sixth International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-6), Singapore 8-10 July, 2003. Singapore: World Scientific, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Homam, Sayed Mukhtar. Durability of fibre-reinforced polymers (FRP) used in concrete structures. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bai, Jiping. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier Science & Technology, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bai, Jiping. Advanced fibre-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing Limited, 2013. http://dx.doi.org/10.1533/9780857098641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bai, J. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier Science & Technology, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rehabilitation of Pipelines Using Fibre Reinforced Polymer (FRP) Composites. Elsevier Science & Technology, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bai, J. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier Science & Technology, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bai, Jiping. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier Science & Technology, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fibre-reinforced polymer (FRP)"

1

Correia, João Ramôa. "Fibre-Reinforced Polymer (FRP) Composites." In Materials for Construction and Civil Engineering, 501–56. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08236-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, B. Bala Murali, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo. "Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement." In Proceedings of the 2021 DigitalFUTURES, 368–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_34.

Full text
Abstract:
AbstractThe additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
APA, Harvard, Vancouver, ISO, and other styles
3

Benmokrane, B., and H. Mohamed. "Use of fibre-reinforced polymer (FRP) rebars for building durable concrete infrastructure." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 1518–23. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nagasree, Puppala Siva, Koona Ramji, Killi Krushna Murthy, Mantri Kannam Naidu, and Tammareddy Haritha. "Fibre Reinforced Polymer (FRP) Nanocomposites for Radar Absorption Application in the X-Band." In Lecture Notes in Mechanical Engineering, 409–18. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1124-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Choong, Kok Keong, Jayaprakash Jaganathan, Sharifah Salwa Mohd Zuki, Shahiron Shahidan, and Nurul Izzati Raihan Ramzi Hannan. "Repair of Fire-Damaged Concrete-Filled Double Skin Steel Tubular Columns with Fiber Reinforced Polymer (FRP)." In Concrete-Filled Double Skin Steel Tubular Column with Hybrid Fibre Reinforced Polymer, 55–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2715-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tran, Long Giang. "New Structural Solution for Breakwater Combined of Fibre Reinforced Polymer (FRP) Concrete Framework and FRP Concrete Plate Constructed on Soft Soil." In Lecture Notes in Civil Engineering, 592–98. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2306-5_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Inegbenebor, A. O., A. D. Ogbevire, and A. I. Inegbenebor. "Effect of CacO3 and Wood Flour Filler on the Compression Strength of Coconut (Coir) Fibre Reinforced Polymer (FRP) Composite." In Advanced Materials Research, 249–51. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-450-2.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Savardekar, S. K., R. Jamaji, and K. R. Raikar. "Structural Remediation of Unreinforced Brick Masonry Walls of Heritage Palace Building with Carbon Fibre Reinforced Polymers." In Advances in FRP Composites in Civil Engineering, 456–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17487-2_98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravindran, Lakshmipriya, M. S. Sreekala, and Sabu Thomas. "Natural Fibres—A Potential Bio-reinforcement in Polymers for Fibre Reinforced Plastic (FRP) Structures—An Overview." In Fiber Reinforced Polymeric Materials and Sustainable Structures, 129–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8979-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qureshi, Jawed. "Fibre-Reinforced Polymer (FRP) in Civil Engineering." In Next Generation Fiber-Reinforced Composites - New Insights [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107926.

Full text
Abstract:
Construction produces a third of global carbon emissions. These emissions cause global warming and contribute to climate emergency. There is a need to encourage use of sustainable and eco-friendly materials to effectively deal with climate emergency. Fibre-reinforced polymer (FRP) is an eco-friendly material with low-carbon footprint. FRP composites in civil engineering are mainly used in three applications: (1) FRP profiles in new-build; (2) FRP-reinforcing bar in concrete members and (3) FRP in repair and rehabilitation of existing structures. This chapter presents basic properties of constituent materials (fibres and polymer resins), mechanical properties of FRP bars, strengthening systems and profiles, manufacturing processes and civil engineering applications of FRP composites. Durability, sustainability and recycling of FRP composites are also discussed.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fibre-reinforced polymer (FRP)"

1

Ghoshal, Abhishek, Adnan Khan, Moosa Zahid, Salman Pervaiz, and Sathish Kannan. "Reviewing Machinability of Fibre-Reinforced Polymer (FRP)/Metallic Stacks Using MQL." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10961.

Full text
Abstract:
Abstract Minimum quantity lubrication (MQL) assisted techniques are gaining popularity because of their lower environmental impact and cost effectiveness. Fibre reinforced polymers (FRP) are mainly utilized in the aerospace and automotive sectors, because of their high strength-to-weight ratio, low coefficient of thermal expansion, high corrosion resistance, high modulus to weight ratio and improved tensile strength. Besides that, they are extremely light weight and suitable for structural applications. For fibre reinforced polymers (FRP) composites, all of these properties in combination provide superior functional performance. In a wide range of applications dissimilar material stack-ups of composites and aluminum and/or titanium are used for wing or tail plane structures. Mostly these fibre reinforced polymers (FRP) composites are drilled to provide options for their assembly with other components. However, machining of these fibre reinforced polymers (FRP) composites is very hectic task. It is due to their high abrasive nature and high heat resistance. In this paper, the machinability of fibre reinforced polymers (FRP) composites was explored and reviewed when machined using minimum quantity lubrication (MQL). The study was conducted by systematic selection of experimental and numerical studies from the latest published literature in state of the art. The study reviewed the effects of different parameters on the tool wear, thrust force, work-piece hole diameter, burr height and chip formation. The study provides critical insights about the potential and understanding of machining fibre reinforced polymers (FRP) composites under minimum quantity lubrication (MQL) assisted methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Norris, Chris, Ian Bond, and Richard Trask. "Bioinspired Vasculatures for Self-Healing Fibre Reinforced Polymer Composites." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-4959.

Full text
Abstract:
Self-healing in fibre reinforced polymer (FRP) composites is an active area of research, principally aimed at restoring the losses in mechanical strength associated with impact induced damage. This bioinspired function may be imparted upon a composite structure via the embedment of a vasculature that is capable of delivering functional agents from an external reservoir to regions of internal damage. A simple segregated vasculature design incorporated into a FRP via a ‘lost wax’ process was found to facilitate a self-healing function which resulted in an outstanding recovery (≥97%) in post-impact compression strength. The process involved infusion of a healing resin through the vascule channels. Resin egress from the backface damage, ultrasonic C-scan testing and microscopic evaluation all provide evidence that sufficient vascule-damage connectivity exists to confer a reliable and efficient self-healing function.
APA, Harvard, Vancouver, ISO, and other styles
3

George, Jerin Mathew, Mehrdad Kimiaei, and Mohamed Elchalakani. "Experimental Study on Structural Rehabilitation of Severely Damaged I-Beams Using Fibre Reinforced Polymers." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-60938.

Full text
Abstract:
Abstract Fixed and Floating Offshore structures commonly utilize I-beams as structural components withstanding distributed loads on their decks or inside hulls. These structural members get damaged due to the corrosive marine environment leading to a condition in which they need replacement or rehabilitation. Such situations are not desirable as it will incur monetary losses directly with replacement or repair costs and indirectly through operational losses due to shut down for hot repair works. A safe and economical alternative for structural rehabilitation of damaged I-beams is using Fibre Reinforced Polymer (FRP) composites. An experimental investigation on the feasibility of repair of a heavily damaged I-beam using two different types of FRPs is presented. The severe damage in the I-beam was artificially introduced by removing both flanges and the web for 300 mm in the mid-span of 1800 mm long I-beam. Four-point bending tests under static loads were performed until failure of the beam. The first repair was done using carbon fibre reinforced polymers (CFRPs) and the second one utilized glass fibre reinforced polymers (GFRP). The CFRP repaired specimen showed 277% improvement from the damaged state whereas the GFRP repair improved 248% in terms of the ultimate strength. A comparison of the behaviour between CFRP and GFRP repair is also highlighted in the study. Various parameters like stiffness, ductility, load-displacement behaviour and failure modes of these FRP repairs for damaged I-beams are discussed in detail. Overall, the results from the study portray the adequacy of an FRP rehabilitation to reinstate the strength from such structural damages in I-beams.
APA, Harvard, Vancouver, ISO, and other styles
4

Gilpin-Jackson, A., M. L. Lu, G. Mathew, and G. Fecht. "Design of Fibre-Reinforced Polymer (FRP) Structures for BC Hydro’s Transmission System." In Electrical Transmission and Substation Structures 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479414.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scott, Irene, and Russell Bridge. "Connections for Fibre Reinforced Polymer (FRP) Composite Bridges—Issues Related to Design." In International Conference on High Performance Materials in Bridges. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40691(2003)6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiong, Zhihua, Wenwen Li, Yang Meng, and Chenyu Zhao. "Fatigue Performance Evaluation of FRP Reinforced Steel Tubular K- Joint." In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.1560.

Full text
Abstract:
<p>Welded steel tubular joints have been widely used in bridge engineering, but fatigue cracks are common in the joints under cyclic loads due to structural discontinuity and manufacturing defects. The formation and development of cracks have a great influence on the bearing capacity of joints, and even lead to the lack of safety of joints, thus the normal use of joints is affected. In this paper, for the cracked tubular K-joints under fatigue load, the change of stress intensity factor (SIF) before and after reinforced with carbon fibre-reinforced polymer (CFRP) is discussed by numerical simulation. The influence of the number of carbon fibre-reinforced polymer layers on the SIF of the reinforced joints is also discussed. The numerical simulation results show that the SIF can be effectively reduced by using CFRP to strengthen joint, and the fatigue performance of the joints can be greatly improved.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Maldonado-Hurtado, Daniel, Javier Madrigal, Rocío Ruiz, Ana Isabel Crespo, and Salvador Sales. "Fibre Bragg Grating Optical Fibre Sensors Application for Strain Monitorisation in Pultruded Smart FRP Beams." In Optical Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sensors.2022.sm1c.3.

Full text
Abstract:
We successfully embedded optical sensors based on fibre Bragg gratings in a fibre reinforced polymer pultrusion beam for strain monitoring. Tests results showed up to 7500 µstrains transmitted from the test beam to the sensors.
APA, Harvard, Vancouver, ISO, and other styles
8

Jayanthi, V. "Performance Evaluation of RCC Beam Column Joint with Aramid Fibre." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-2.

Full text
Abstract:
Abstract-In reinforced concrete structure beam, the beam column joints are more crucial zones which are most susceptible to failure during earthquake excitation. It is very important to design the joint to dissipate the large amount of energy to the neighbouring elements without loss of strength and ductility. Several retrofitting methods are employed to strengthen the beam column joint. The effective method one among is Fibre Reinforced Polymer (FRP) composites. In this paper, the deflection of beam column joint wrapped with aramid fibre has been calculated and it is compared with Ansys software solution. From the results, the deflection of the joint is decreased when aramid fibre is used.
APA, Harvard, Vancouver, ISO, and other styles
9

Barris, Cristina, Paula Zubillaga, and Lluis Torres. "A review on experimental flexural cracking in FRP reinforced concrete members." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0088.

Full text
Abstract:
<p>This paper aims to assess the relationship among crack width and several influencing parameters of Fibre Reinforced Polymer (FRP) Reinforced Concrete (RC) flexural members. A database with the results of 133 concrete specimens reinforced with different types of FRP bars available in the literature has been collected and analysed. A bond coefficient <i>k</i>b has been adjusted for the maximum crack width of all specimens by using ACI-440 and ISIS Canada design guidelines in the service range, obtaining a mean bond coefficient of 1.11 and 0.72, respectively. The effect of the surface treatment and modulus of elasticity of the FRP rebar, and the <i>n·</i> ratio on the bond coefficient have been studied, obtaining no significant influence of the studied parameters due to the high scatter of results.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Kaklauskas, Gintaris, P. L. Ng, and Aleksandr Sokolov. "Crack Spacing Model for FRP Reinforced Concrete Beams based on Stress-Transfer Approach." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0464.

Full text
Abstract:
<p>The present study develops a mean crack spacing model for fibre-reinforced polymer (FRP) reinforced concrete (FRP-RC) beams. The proposed model is based on stress-transfer approach and compatibility of mean strain in the FRP reinforcing bars, in order to predict the mean spacing of primary cracks in the stabilised cracking stage upon flexure. Typical concrete block element between adjacent cracks is demarcated into the debonding zone, the effective zone, and the central zone. The interactions between concrete and FRP reinforcement is reflected in the model by taking into account the stress-transfer, and the mean reinforcement strain along the concrete block element is evaluated from the principle of compatibility. Multiple FRP-RC beams specimens reported in the literature are analysed using the proposed model. The predicted mean crack spacing results agree closely with the experimental results, with root-mean-square error of approximately 10%. Hence, the developed mean crack spacing model is of satisfactory accuracy.</p>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fibre-reinforced polymer (FRP)"

1

Dissanayake, N. Assessment of Data Quality in Life Cycle Inventory (LCI) for Fibre-reinforced Polymer (FRP) composites. National Physical Laboratory, August 2022. http://dx.doi.org/10.47120/npl.mat106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography