Journal articles on the topic 'Fibre Hydrophone'

To see the other types of publications on this topic, follow the link: Fibre Hydrophone.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fibre Hydrophone.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Graindorge, Phillippe, and Hervé Arditty. "Optical fibre hydrophone." Journal of the Acoustical Society of America 81, no. 2 (February 1987): 586. http://dx.doi.org/10.1121/1.394824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Xiaodi, and Desheng Chen. "A novel architecture of fibre-optic interferometric hydrophone." MATEC Web of Conferences 283 (2019): 01001. http://dx.doi.org/10.1051/matecconf/201928301001.

Full text
Abstract:
The fibre-optic interferometric hydrophone has been widely used in ocean acoustic applications. There are many different hydrophone systems in use. They can generally be classified as hull mounted, towed, or fixed (bottom mounted and vertical) array systems. Different optical architectures have evolved for each of the areas, which make a good case study on what aspects of a particular application influence the optical architecture. A novel architecture of fibre-optic hydrophone based on PMDI is theoretically and experimentally discussed in this paper. A novel optical configuration is proposed, and the modulation and demodulation system is built. A series of experiments are designed to analyse the characteristics of this system. The results of the experiments show that this type of fibre-optic interferometric hydrophone array has many advantages such as low noise, a large dynamic range.
APA, Harvard, Vancouver, ISO, and other styles
3

Nash, P. "Review of interferometric optical fibre hydrophone technology." IEE Proceedings - Radar, Sonar and Navigation 143, no. 3 (1996): 204. http://dx.doi.org/10.1049/ip-rsn:19960491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peng, Chengyan, Xueliang Zhang, Zhangqi Song, and Zhou Meng. "Optimal tone detection for optical fibre vector hydrophone." IET Radar, Sonar & Navigation 12, no. 11 (November 2018): 1233–40. http://dx.doi.org/10.1049/iet-rsn.2018.5174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lau, S. T., K. H. Lam, H. L. W. Chan, C. L. Choy, H. S. Luo, Q. R. Yin, and Z. W. Yin. "Piezoelectric PMN-PT fibre hydrophone for ultrasonic transducer calibration." Applied Physics A 80, no. 1 (January 2005): 105–10. http://dx.doi.org/10.1007/s00339-004-2908-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuttan Chandrika, Unnikrishnan, Venugopalan Pallayil, Kian Meng Lim, and Chye Heng Chew. "Flow noise response of a diaphragm based fibre laser hydrophone array." Ocean Engineering 91 (November 2014): 235–42. http://dx.doi.org/10.1016/j.oceaneng.2014.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ze-Feng, Wang, Hung Yong-Ming, Meng Zhou, and Ni Ming. "Experimental Investigation on a Fibre-Optic Hydrophone with a Cylindrical Helmholtz Resonator." Chinese Physics Letters 25, no. 5 (May 2008): 1606–8. http://dx.doi.org/10.1088/0256-307x/25/5/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bagnoli, P. E., N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono. "Development of an erbium-doped fibre laser as a deep-sea hydrophone." Journal of Optics A: Pure and Applied Optics 8, no. 7 (June 12, 2006): S535—S539. http://dx.doi.org/10.1088/1464-4258/8/7/s36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beard, P. C., and T. N. Mills. "Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer." Electronics Letters 33, no. 9 (1997): 801. http://dx.doi.org/10.1049/el:19970545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Staudenraus, J., and W. Eisenmenger. "Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water." Ultrasonics 31, no. 4 (July 1993): 267–73. http://dx.doi.org/10.1016/0041-624x(93)90020-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lau, S. T., S. Y. Liu, H. Y. Tam, and H. L. W. Chan. "Characterization of a Fibre Grating Laser-Based Hydrophone for Detection of High Frequency Medical Ultrasound: A Comparison with PVDF Membrane Hydrophone." Ferroelectrics 333, no. 1 (May 2006): 115–20. http://dx.doi.org/10.1080/00150190600689597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Koch, Christian, and Klaus-Vitold Jenderka. "Measurement of sound field in cavitating media by an optical fibre-tip hydrophone." Ultrasonics Sonochemistry 15, no. 4 (April 2008): 502–9. http://dx.doi.org/10.1016/j.ultsonch.2007.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, D. H., Ping Gang Jia, Z. G. Ma, L. F. Xie, and Q. B. Liang. "Tip‐sensitive fibre‐optic Bragg grating ultrasonic hydrophone for measuring high‐intensity focused ultrasound fields." Electronics Letters 50, no. 9 (April 2014): 649–50. http://dx.doi.org/10.1049/el.2013.3961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chan, H. L. W., K. S. Chiang, D. C. Price, J. L. Gardener, and J. Brinch. "Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers." Physics in Medicine and Biology 34, no. 11 (November 1, 1989): 1609–22. http://dx.doi.org/10.1088/0031-9155/34/11/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Wenrui, Yeye Pei, Lingyun Ye, and Kaichen Song. "High-Sensitivity Cuboid Interferometric Fiber-Optic Hydrophone Based on Planar Rectangular Film Sensing." Sensors 20, no. 22 (November 10, 2020): 6422. http://dx.doi.org/10.3390/s20226422.

Full text
Abstract:
Interferometric fiber-optic hydrophones are an important means in the field of underwater acoustic detection. The design of the hydrophone sensor head is the key technology related to its detection sensitivity. In this paper, a high-sensitivity cuboid interferometric fiber-optic hydrophone based on planar rectangular film sensing is proposed, and the sensitivity of the sensor is compared with that of the widely used air-backed mandrel hydrophone under the same conditions. The acoustic characteristic models of the two types of sensors were established by theoretical calculation and simulation analysis to obtain the theoretical pressure sensitivity. Some experiments were performed to examine the theory and design. According to the experiment results, the mean phase sensitivity of the mandrel type was −112.85 dB re 1 rad/μPa in the operating frequency range of 10–300 Hz, and that of the cuboid type was −84.50 dB re 1 rad/μPa. The latter was 28.35 dB higher than the former was. These results are useful for improving hydrophone sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
16

KURAHASHI, N. "STUDY OF ACOUSTIC ULTRA-HIGH ENERGY NEUTRINO DETECTION PHASE II." International Journal of Modern Physics A 21, supp01 (July 2006): 217–20. http://dx.doi.org/10.1142/s0217751x06033659.

Full text
Abstract:
The Study of Acoustic Ultra-high energy Neutrino Detection has started its second phase (SAUND II). Although the general location of the hydrophones has not changed, SAUND II uses a new hydrophone array that uses a fiber-optic cable to connect to shore. Changes associated with the new hydrophone array as well as a new DAQ system that incorporates multiprocessor computing and accurate GPS timestamping are reported. Initial data of lightbulb calibration conducted in March 2005, and a future plan for a more accurate calibration are also presented.
APA, Harvard, Vancouver, ISO, and other styles
17

Lefevre, Herve. "Optic fiber hydrophone and antenna associating a series of hydrophones." Journal of the Acoustical Society of America 88, no. 4 (October 1990): 2047. http://dx.doi.org/10.1121/1.400150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Meng Zhou, 孟洲, 陈伟 Chen Wei, 王建飞 Wang Jianfei, 胡晓阳 Hu Xiaoyang, 陈默 Chen Mo, 路阳 Lu Yang, 陈羽 Chen Yu, and 张一弛 Zhang Yichi. "光纤水听器技术的研究进展." Laser & Optoelectronics Progress 58, no. 13 (2021): 1306009. http://dx.doi.org/10.3788/lop202158.1306009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Huang, Jun Bin, Yu Li, Hong Can Gu, and Bo Tan. "Research of the Ultra-Thin Fiber Bragg Grating Hydrophone." Key Engineering Materials 500 (January 2012): 682–88. http://dx.doi.org/10.4028/www.scientific.net/kem.500.682.

Full text
Abstract:
In this paper, the basic theories and characteristics of distributed Bragg reflection (DBR) fiber laser and distributed feedback (DFB) fiber laser as hydrophone were described and analyzed; The interferometric demodulation technique of the underwater acoustic signals from fiber Bragg grating (FBG) hydrophone was discussed; And the theoretical experimental conclusions of the ultra-thin fiber Bragg grating hydrophone were introduced; Finally, the application in the torpedo homing field of the research on the ultra-thin fiber Bragg grating hydrophone were prospected.
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Minwei, Yang Yu, Yang Lu, Xiaoyang Hu, Yaorong Wang, Shangpeng Qin, Junyang Lu, Junbo Yang, and Zhenrong Zhang. "Optical Microfiber All-Optical Phase Modulator for Fiber Optic Hydrophone." Nanomaterials 11, no. 9 (August 28, 2021): 2215. http://dx.doi.org/10.3390/nano11092215.

Full text
Abstract:
In order to meet the needs of phase generated carrier (PGC) demodulation technology for interferometric fiber optic hydrophones, we proposed an optical microfiber all-optical phase modulator (OMAOPM) based on the photo-induced thermal phase shift effect, which can be used as a phase carrier generation component, so as to make the modulation efficiency and working bandwidth of this type of modulator satisfy the requirements of underwater acoustic signal demodulation applications. We analyzed the modulation principle of this modulator and optimized the structural parameters of the optical microfiber (OM) when the waist length and waist diameter of OM are 15 mm and 1.4 μm, respectively. The modulation amplitude of the modulator can reach 1 rad, which can meet the requirements of sensing applications. On this basis, the fiber optical hydrophone PGC-Atan demodulation system was constructed, and the simulated underwater acoustic signal test demodulation research was carried out. Experimental results showed that the system can demodulate underwater acoustic signals below 1 kHz.
APA, Harvard, Vancouver, ISO, and other styles
21

Kuzmenko, P. J., and D. T. Davis. "Fiber optic hydrophone." Journal of the Acoustical Society of America 98, no. 3 (September 1995): 1260. http://dx.doi.org/10.1121/1.413494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ding Peng, 丁朋, 黄俊斌 Huang Junbin, 姚高飞 Yao Gaofei, 顾宏灿 Gu Hongcan, 刘文 Liu Wen, and 唐劲松 Tang Jinsong. "二次涂覆增敏型弱反射光纤布拉格光栅水听器." Chinese Journal of Lasers 48, no. 9 (2021): 0906003. http://dx.doi.org/10.3788/cjl202148.0906003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cielo, Paolo G., and Garfield W. McMahon. "Stable fiber‐optic hydrophone." Journal of the Acoustical Society of America 79, no. 1 (January 1986): 210. http://dx.doi.org/10.1121/1.393601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Danver, B. A., and D. Meyer. "Onmidirectional fiber optic hydrophone." Journal of the Acoustical Society of America 96, no. 3 (September 1994): 1944–45. http://dx.doi.org/10.1121/1.410165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Myer, Jon H. "Fiber optic hydrophone transducers." Journal of the Acoustical Society of America 77, no. 1 (January 1985): 337. http://dx.doi.org/10.1121/1.392116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Krueger, Helmut H. A. "Fiber optic interferometric hydrophone." Journal of the Acoustical Society of America 84, no. 6 (December 1988): 2310. http://dx.doi.org/10.1121/1.396745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang Yunyun, 汪云云, 黄俊斌 Huang Junbin, 丁朋 Ding Peng, 顾宏灿 Gu Hongcan, 宋文章 Song Wenzhang, 徐丹 Xu Dan, 赵宏琳 Zhao Honglin, and 周璇 Zhou Xuan. "实时修正零差对称算法解调DFB光纤激光水听器." Chinese Journal of Lasers 48, no. 13 (2021): 1306001. http://dx.doi.org/10.3788/cjl202148.1306001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Koadri, Zainate, Azzedine Benyahia, Nadir Deghfel, Kamel Belmokre, Brahim Nouibat, and Ali Redjem. "Étude de l’effet du temps de traitement alcalin de fibres palmier sur le comportement mécanique des matériaux à base d’argile rouge de la région de M’sila." Matériaux & Techniques 107, no. 4 (2019): 404. http://dx.doi.org/10.1051/mattech/2019031.

Full text
Abstract:
Ce travail s’inscrit dans le développement de matériaux locaux, telle que la fibre végétale (fibre de palmier) et l’argile rouge du sud Algérien, largement utilisées dans la préparation des briques, comme matériaux de construction rurale. Les fibres végétales possèdent des propriétés très intéressantes, elles sont : renouvelables, biodégradables et le rapport coût/légèreté faible. Leurs propriétés mécaniques sont très importantes. Cependant, le problème prédominant dans ce type de matériaux composites est la faible adhésion de l’interface matrice-fibre, attribuée probablement, à la nature de la surface et au caractère hydrophobe des fibres naturelles, conduisant ainsi, à des propriétés mécaniques faibles pour le composite envisagé. Le but de cette étude consiste à traiter la fibre de palmier par une solution basique d’hydroxyde de sodium (NaOH 4 % [m/v]) durant des périodes variables : 3, 7, 24 et 48 heures, afin d’améliorer l’adhésion interfaciale. Les résultats obtenus à partir des essais réalisés sur le composite renforcé par les fibres de palmier traitées durant 7 h ont montré une nette augmentation quant à la résistance, à la flexion et à la compression ; cette croissance est respectivement de l’ordre de 57 et 60 %, comparativement au composite renforcé par les fibres non traitées. On peut déduire que les fibres de palmier peuvent être considérées comme l’un des matériaux appropriés pour le renforcement de l’argile.
APA, Harvard, Vancouver, ISO, and other styles
29

DING Peng, 丁朋, 黄俊斌 HUANG Junbin, 庞彦东 PANG Yandong, 周次明 ZHOU Ciming, 顾宏灿 GU Hongcan, and 唐劲松 TANG Jinsong. "弱反射光纤光栅水听器拖曳线列阵." ACTA PHOTONICA SINICA 50, no. 7 (2021): 46. http://dx.doi.org/10.3788/gzxb20215007.0706004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Liang Xian, Qiu Feng An, Jing Men, and Qian Jin Wang. "Film Morphology and Film-Forming Ability of Supramolecular Compound Self-Assembled with Amino Polysiloxane Emulsion and Carboxyl Polysiloxane Emulsion." Advanced Materials Research 503-504 (April 2012): 358–62. http://dx.doi.org/10.4028/www.scientific.net/amr.503-504.358.

Full text
Abstract:
Using cation amino polysiloxane emulsion(ASE) and anion carboxyl polysiloxane emulsion (CSE) as materials, mixing ASE and CSE together to self-assemble or aggregate by electrostatic interaction, supramolecular compound emulsion (ASE-CSE) was formed. TEM and particle size analyzer observation showed that the particle of ASE-CSE is sphericity, and its particle diameter is bigger than that of mono-composition emulsion and has single-peak distribution. SEM, atomic force microscope (AFM) and other instruments detections indicated that the ASE-CSE possesses good form-film property. The ASE-CSE film on the silicon wafer is very rough. There are many islands or peaks package on the film surface. The average thickness of the film is 12.45nm, and it is about 7.1 times as against ASE. With the ASE-CSE film, the stripes or grooves on the fiber surface is weakened or disappeared. And the surface is smoother than that of the control sample. In addition, the contact angle of the cotton fabric treated by ASE-CSE is 86.5°. This reveals that the ASE-CSE film brings fiber fabric from hydrophile to hydrophobe.
APA, Harvard, Vancouver, ISO, and other styles
31

Romashko, R. V., M. N. Bezruk, S. A. Ermolaev, I. N. Zavestovskaya, and Yu N. Kulchin. "Laser adaptive fiber-optic hydrophone." Bulletin of the Lebedev Physics Institute 42, no. 7 (July 2015): 201–5. http://dx.doi.org/10.3103/s1068335615070027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Maas, S. J., and A. D. Meyer. "Multiple segment fiber optic hydrophone." Journal of the Acoustical Society of America 98, no. 3 (September 1995): 1260. http://dx.doi.org/10.1121/1.413493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gulyaev, A. Yu, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, and R. V. Yushkaĭtis. "Deep-water fiber-optic hydrophone." Soviet Journal of Quantum Electronics 20, no. 7 (July 31, 1990): 867–69. http://dx.doi.org/10.1070/qe1990v020n07abeh007123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Azmi, Asrul Izam, Ian Leung, Xiaobao Chen, Shaoling Zhou, Qing Zhu, Kan Gao, Paul Childs, and Gangding Peng. "Fiber laser based hydrophone systems." Photonic Sensors 1, no. 3 (January 15, 2011): 210–21. http://dx.doi.org/10.1007/s13320-011-0018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Takahashi, Sumio, Toshiaki Kikuchi, Ryohei Yagi, and Akio Hasegawa. "A Single Fiber Heterodyne Optical Fiber Hydrophone." Japanese Journal of Applied Physics 27, S1 (January 1, 1988): 91. http://dx.doi.org/10.7567/jjaps.27s1.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Meng, Zhou, Wei Chen, Jianfei Wang, Xiaoyang Hu, Mo Chen, and Yichi Zhang. "Recent Progress in Fiber-Optic Hydrophones." Photonic Sensors 11, no. 1 (January 22, 2021): 109–22. http://dx.doi.org/10.1007/s13320-021-0618-5.

Full text
Abstract:
AbstractFiber-optic hydrophone (FOH) is a significant type of acoustic sensor, which can be used in both military and civilian fields such as underwater target detection, oil and natural gas prospecting, and earthquake inspection. The recent progress of FOH is introduced from five aspects, including large-scale FOH array, very-low-frequency detection, fiber-optic vector hydrophone (FOVH), towed linear array, and deep-sea and long-haul transmission. The above five aspects indicate the future development trends in the FOH research field, and they also provide a guideline for the practical applications of FOH as well as its array.
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Kyung Bok. "A Study on The Multi-point Signal and It's Directivity detection of FBG Hydrophone Using Hopper WDM be in The Making." Journal of the Institute of Electronics and Information Engineers 52, no. 11 (November 25, 2015): 156–63. http://dx.doi.org/10.5573/ieie.2015.52.11.156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mills, Gary B. "Fiber optic gradient hydrophones." Journal of the Acoustical Society of America 77, no. 6 (June 1985): 2196. http://dx.doi.org/10.1121/1.391708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Layton, M. R. "High performance extended fiber optic hydrophone." Journal of the Acoustical Society of America 100, no. 5 (1996): 2899. http://dx.doi.org/10.1121/1.417128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Brown, David Alan. "A fiber optic flexural disk hydrophone." Journal of the Acoustical Society of America 87, no. 6 (June 1990): 2787. http://dx.doi.org/10.1121/1.399019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ames, Gregory H., and Jason M. Maguire. "Miniaturized mandrel-based fiber optic hydrophone." Journal of the Acoustical Society of America 121, no. 3 (March 2007): 1392–95. http://dx.doi.org/10.1121/1.2431340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tseng, Yung-Hsin, and Jau-Sheng Wang. "Single-crystalline tellurite optical fiber hydrophone." Optics Letters 41, no. 5 (February 24, 2016): 970. http://dx.doi.org/10.1364/ol.41.000970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Guan, Bai-Ou, Yan-Nan Tan, and Hwa-Yaw Tam. "Dual polarization fiber grating laser hydrophone." Optics Express 17, no. 22 (October 14, 2009): 19544. http://dx.doi.org/10.1364/oe.17.019544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Jin-yu, Qing-mei Sui, Jun Chang, Tong-yu Liu, Liang-zhu Ma, and Jia-sheng Ni. "A new DFB-fiber laser hydrophone." Optoelectronics Letters 3, no. 4 (July 2007): 264–66. http://dx.doi.org/10.1007/s11801-007-6169-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Abdallah, Adel, Chao Zhu Zhang, and Zhi Zhong. "Model Analysis of Underwater Acoustic Sensing with Hollow-Core Photonic Bandgap Fiber." Applied Mechanics and Materials 568-570 (June 2014): 581–89. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.581.

Full text
Abstract:
Recently, using hollow-core photonic bandgap fiber (HC-PBF) for underwater acoustic sensing has been tested experimentally. Besides its unique characteristics and advantages over conventional single mode fiber (SMF), it provides higher responsivity to acoustic pressure. A robust deep water ray tracing model for multipath acoustic signals propagation and the elastic model of HC-PBF are both required to study the effects of underwater enviroment on the propagating acoustic signal for sensing with HC-PBF hydrophones. The combination of the two models allows studying the frequency response, sensitivity, detection range, and maximum operating depth of the HC-PBF hydrophones. The models analysis and simulations show the considerations that must be taken into account for the design and field operation of the HC-PBF hydrophones. In this paper, a complete package to study, design, optimize, and analyze the simulation results of the interferometric HC-PBF hydrophones is proposed.
APA, Harvard, Vancouver, ISO, and other styles
46

Wear, Keith, Yunbo Liu, Paul Gammell, Subha Maruvada, and Gerald Harris. "Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 62, no. 1 (January 2015): 152–64. http://dx.doi.org/10.1109/tuffc.2014.006578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

TAKAHASHI, Nobuaki, Kazuto YOSHIMURA, Sumio TAKAHASHI, and Kazuo IMAMURA. "A compact optical fiber hydrophone using fiber Bragg grating." Journal of the Marine Acoustics Society of Japan 27, no. 1 (2000): 28–34. http://dx.doi.org/10.3135/jmasj.27.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Danielson, D. A., and S. L. Garrett. "Fiber-optic ellipsoidal flextensional hydrophones." Journal of Lightwave Technology 7, no. 12 (1989): 1995–2002. http://dx.doi.org/10.1109/50.41620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Garrett, S. L., and D. A. Brown. "Fiber‐optic push‐pull hydrophones." Journal of the Acoustical Society of America 88, S1 (November 1990): S64—S65. http://dx.doi.org/10.1121/1.2029100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

TANG Bo, 唐波, 黄俊斌 HUANG Jun-bin, 顾宏灿 GU Hong-can, and 毛欣海 MAO Xin. "DFB Fiber Laser Hydrophone with Acceleration Compensation." ACTA PHOTONICA SINICA 46, no. 5 (2017): 506003. http://dx.doi.org/10.3788/gzxb20174605.0506003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography