To see the other types of publications on this topic, follow the link: Fibre composite.

Journal articles on the topic 'Fibre composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fibre composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Durga Prasada Rao, V., G. Moses Dayan, and V. Navya Geethika. "Study of hardness and flexural strength of banyan and peepal fibre reinforced hybrid composites." MATEC Web of Conferences 172 (2018): 04009. http://dx.doi.org/10.1051/matecconf/201817204009.

Full text
Abstract:
In the present work, Banyan and Peepal fibre reinforced hybrid composites are prepared through hand Lay- up technique..The objective of the work is to investigate the hardness and flexural properties of eight varieties of banyan – peepal hybrid composites. The composites include banyan-peepal-banyan-peepal-banyan fibre composite, peepal-banyan-peepal-banyan-peepal fibre composite, banyan-copper-banyan-copper-banyan fibre composite (F1-Cu-F1-Cu-F1), peepal-copper-peepal-copper-peepal fibre composite, banyan-peepal-copper-peepal-banyan fibre composite, peepal-copper-banyan-copper-peepal fibre composite, peepal-banyan-copper-banyan-peepal fibre composite, and banyan-copper-peepal-copper-banyan fibre composite . Each of these composites is prepared in 00 orientations (i.e., fibres parallel each other), 450 (i.e., fibres at 450 to each other) and 900 orientations (i.e., fibres perpendicular to each other). It is observed from the results that, the hardness of F2-Cu-F1-Cu-F2 composite with 900 orientation is high and that of F1-F2-F1-F2-F1 composite with 450 orientation is low. It is also noticed that, the bending strength of F2-Cu-F1-Cu-F2 composite with 00 orientation is high and that of F2-F1-F2-F1-F2 composite with 450 orientation is low, and as far as the composites with 90⁰ orientations are considered, no results are obtained. Further it is noticed that, the hardness of all the eight composites with 90˚ orientation is found to be high compared to their remaining orientations and also the hardness of all the composites with 45˚ orientation is low compared to their 0˚ and 90˚ orientations
APA, Harvard, Vancouver, ISO, and other styles
2

binti Mohd, Nurul Farah Adibah, Taufik Roni Sahroni, and Mohammad Hafizudin Abd Kadir. "Feasibility Study of Casted Natural Fibre-LM6 Composites for Engineering Application." Advanced Materials Research 903 (February 2014): 67–72. http://dx.doi.org/10.4028/www.scientific.net/amr.903.67.

Full text
Abstract:
This paper presents the investigation of casted natural fiber-LM6 composites for engineering application. The objective of this research is to study the feasibility of natural fibre to introduce in the metal matrix composites for sand casting process. LM6 is the core material used in this research while natural fibre used as composite materials as well as to remain the hardness of the materials. The preparation of natural fibre composites was proposed to introduce in metal matrix composite material. Empty Fruit Bunch (EFB) and kenaf fibre were used in the experimental work. Natural fibre is reinforced in the LM6 material by using metal casting process with open mould technique. LM6 material was melted using induction furnace which required 650°C for melting point. The structure and composition of the composite materials is determined using EDX (Energy Dispersive X-ray) to show that fibres are absent on the surface of LM6. The microstructure of casted natural fibre-LM6 composites was presented using Zeiss Scanning Electron Microscope (SEM) with an accelerating voltage of 15kV. As a result, natural fibre composites were feasible to be introduced in metal matrix composites and potential for engineering application.
APA, Harvard, Vancouver, ISO, and other styles
3

Rohit, Ram, Linford Pinto, K. Mallikharjuna Babu, Martin Jebraj, and Harsha R. Gudi. "Fabrication and Comparison of Mechanical Properties of Jute and Glass Fibre Reinforced Composites." Applied Mechanics and Materials 592-594 (July 2014): 344–48. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.344.

Full text
Abstract:
The properties of fiber reinforced composites (FRP) like high strength to weight ratio, high stiffness to weight ratio, flexibility in design, ease of fabrication with economical savings as compared to metal alloys, make it an excellent choice for various range of products from building materials, sporting equipment, appliances, automotive parts, boats, canoe hulls to bodies for recreational vehicles. In this study the properties of natural fibre composite are compared with composite made of artificial fibres. The natural fibre chosen is jute fibre and the artificial fibre chosen is glass fiber. Polyester resin was the matrix used because of compatibility, cost effectiveness and easy availability. The composites were fabricated by Hand Layup technique and the number of layers of composite laminate was varied as three, four and five. The specimens were subjected to mechanical tests and Young’s Modulus, Ultimate Strength were evaluated. Modal analysis was carried out to determine the damping characteristics through damping ratio. A comparison of the two composites in terms of mechanical properties is made and the results are tabulated.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Sanjeev, Lalta Prasad, Vinay Kumar Patel, Virendra Kumar, Anil Kumar, Anshul Yadav, and Jerzy Winczek. "Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites." Polymers 13, no. 9 (April 22, 2021): 1369. http://dx.doi.org/10.3390/polym13091369.

Full text
Abstract:
In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.
APA, Harvard, Vancouver, ISO, and other styles
5

Vigneshwaran, G. Veerakumar, Iyyadurai Jenish, and Rajeshwaran Sivasubramanian. "Design, Fabrication and Experimental Analysis of Pandanus Fibre Reinforced Polyester Composite." Advanced Materials Research 984-985 (July 2014): 253–56. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.253.

Full text
Abstract:
Due to the light weight, high strength to weight ratio, corrosion resistance and other advantages, natural fibre based composites are becoming important composite materials in mechanical engineering fields. The current project emphasizes the newly identified Pandanus Fibre (Pandanus Fascicularis) which is extracted from the stem of screw pine tree by the manual water treatment process. The mechanical properties of chopped Pandanus fibre by Polyester composites are investigated and compared with the similar natural fibres in the fibre reinforced composite material field. The composite plates were fabricated with raw pandanus fibres by compression moulding method with varying weight percentage and lengths of fibre.
APA, Harvard, Vancouver, ISO, and other styles
6

Chavan, Vithal Rao, K. R. Dinesh, K. Veeresh, Veerabhadrappa Algur, and Manjunath Shettar. "Influence of post curing on GFRP hybrid composite." MATEC Web of Conferences 144 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201814402011.

Full text
Abstract:
Composite materials for the most part depicted as the mixes of two or more materials that outcome in the unmistakable properties than that of guard materials. Fibre strengthened plastics have been all around utilized for get-together flying machine and transport key parts as a delayed consequence of their specific mechanical and physical properties, for example, high particular quality and high particular robustness. Another pertinent application for fibre maintained polymeric composites (particularly glass fibre strengthened plastics) is in the electronic business, in which they are utilized for passing on printed wiring sheets. The utilization of polymer composite materials is winding up being powerfully essential. The present work delineates the change and mechanical portrayal of new polymer composites including glass fibre fortress, epoxy and maple cellulose fibre. The starting late made composites are delineated for their mechanical properties. The composite spreads were set up by utilizing hand layup framework. The experiments were conducted on and studied the effect of post curing on hybrid composites. The result reveals that the samples only with natural fibre have more promising results compared with synthetic fibre. The synthetic fibres get wrinkled due to post curing were as no such visuals in the natural fibres.
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Jie, Han Shi, Lei Tao, Liangliang Qi, Wei Min, Hui Zhang, Muhuo Yu, and Zeyu Sun. "Effect of Fibres on the Failure Mechanism of Composite Tubes under Low-Velocity Impact." Materials 13, no. 18 (September 17, 2020): 4143. http://dx.doi.org/10.3390/ma13184143.

Full text
Abstract:
Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Chenkai, Jingjing Li, Mandy Clement, Xiaosu Yi, Chris Rudd, and Xiaoling Liu. "The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites." Journal of Fire Sciences 37, no. 3 (May 2019): 257–72. http://dx.doi.org/10.1177/0734904119849395.

Full text
Abstract:
This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.
APA, Harvard, Vancouver, ISO, and other styles
9

Siregar, Januar Parlaungan, Tezara Cionita, Dandi Bachtiar, and Mohd Ruzaimi Mat Rejab. "Tensile Properties of Pineapple Leaf Fibre Reinforced Unsaturated Polyester Composites." Applied Mechanics and Materials 695 (November 2014): 159–62. http://dx.doi.org/10.4028/www.scientific.net/amm.695.159.

Full text
Abstract:
In recent years natural fibres such as sisal, jute, kenaf, pineapple leaf and banana fibres appear to be the outstanding materials which come as the viable and abundant substitute for the expensive and non-renewable synthethic fibre. This paper investigate the effect of fibre length and fibre content on the tensile properties of pineapple leaf fibre (PALF) reinforced unsaturated polyester (UP) composites. PALF as reinforcement agent will be employed with UP to form composite material specimens. The various of fiber length (<0.5, 0.5–1, and 1-2 mm) and fibre content (0, 5, 10 and 15 % by volume) in UP composite have been studied. The fabrication of PALF/UP composites used hand lay-up process, and the specimens for tensile test prepared follow the ASTM D3039. The result obtained from this study show that the 1-2 mm fibre length has higher tensile strength (42 MPa) and tensile modulus (1344 MPa) values compared to fibre length of <0.5 mm (30 MPa and 981 MPa) and 0.5-1 mm (35.40 MPa and 1020 MPa) respectively. Meanwhile, for the effect of various fibre content in study has shown that the increase of fibre content has decreased in tensile strength dan tensile modulus of composites. The increase of fibre content due to poor interfacial bonding and poor wetting of the fibre by unsaturated polyster. The treatment of natural fibre are suggested in order to improve the interfacial adhesion between natural fibre and the unsaturated polyester.
APA, Harvard, Vancouver, ISO, and other styles
10

Prasad, Lalta, Shiv Kumar, Raj Vardhan Patel, Anshul Yadav, Virendra Kumar, and Jerzy Winczek. "Physical and Mechanical Behaviour of Sugarcane Bagasse Fibre-Reinforced Epoxy Bio-Composites." Materials 13, no. 23 (November 27, 2020): 5387. http://dx.doi.org/10.3390/ma13235387.

Full text
Abstract:
In this study, experiments are performed to study the physical and mechanical behaviour of chemically-treated sugarcane bagasse fibre-reinforced epoxy composite. The effect of alkali treatment, fibre varieties, and fibre lengths on physical and mechanical properties of the composites is studied. To study the morphology of the fractured composites, scanning electron microscopy is performed over fractured composite surfaces. The study found that the variety and lengths of fibres significantly influence the physical and mechanical properties of the sugarcane bagasse-reinforced composites. From the wear study, it is found that the composite fabricated from smaller fibre lengths show low wear. The chemically-treated bagasse-reinforced composites fabricated in this study show good physical and mechanical properties and are, therefore, proposed for use in applications in place of conventional natural fibres.
APA, Harvard, Vancouver, ISO, and other styles
11

M. Haameem, J. A., M. S. Abdul Majid, E. A. H. Engku Ubaidillah, Mohd Afendi, R. Daud, and N. A. M. Amin. "Tensile Strength of Untreated Napier Grass Fibre Reinforced Unsaturated Polyester Composites." Applied Mechanics and Materials 554 (June 2014): 189–93. http://dx.doi.org/10.4028/www.scientific.net/amm.554.189.

Full text
Abstract:
This paper describes the experimental investigation of the tensile strength of untreated Napier grass fibre reinforced polyester composites. Napier grass fibres were extracted trough conventional water retting process and used as reinforcing materials in the polyester composite laminates. Tensile tests were then conducted for the composite specimens from the laminates at 25% fibre loading using the electronic extensometer setup to obtain the tensile properties. The results show significant differences in tensile strength between random short fibres laminates and random long fibre laminates with the long fibres yield almost 45 % higher in the strength. The laminates also show higher maximum strength compared to other commonly available natural fibre composites with over 70 % increase in the maximum strength compared to the short kenaf fibre reinforced composites.
APA, Harvard, Vancouver, ISO, and other styles
12

Haameem, J. A. M., M. S. Abdul Majid, M. Afendi, M. Haslan Fadli, E. A. Helmi, and I. Fahmi. "Tensile and Flexural Strength of Untreated Napier Grass Fibre/Polyester Composites." Materials Science Forum 819 (June 2015): 295–300. http://dx.doi.org/10.4028/www.scientific.net/msf.819.295.

Full text
Abstract:
This paper describes the experimental investigation of the tensile and flexural strength of untreated Napier grass fibre reinforced polyester composites. Napier grass fibres were extracted trough conventional water retting process and used as reinforcing materials in the polyester composite laminates. Tensile tests were then conducted for the composite specimens from the laminates at 25% fibre loading using the electronic extensometer setup to obtain the tensile properties. The results show significant differences in tensile strength between random short fibres laminates and random long fibrelaminates with the long fibres yield over 30 % higher in strength.Both the short and long fibre composites exhibits similar strength with short fibres having slightly higher flexural strength to long fibres The laminate also shows higher maximum strength compared to other commonly available natural fibre composites with almost 75 % improved in the maximum strength compared to the short kenaf fibre reinforced composites.
APA, Harvard, Vancouver, ISO, and other styles
13

Cordin, Michael, and Thomas Bechtold. "Physical properties of lyocell-reinforced polypropylene composites from intermingled fibre with varying fibre volume fractions." Journal of Thermoplastic Composite Materials 31, no. 8 (October 19, 2017): 1029–41. http://dx.doi.org/10.1177/0892705717734594.

Full text
Abstract:
Polypropylene (PP)-cellulose fibre blends exhibit substantial potential for the production of high-performance textile fibre–reinforced composites. The production of reinforced parts from PP-cellulose composites through thermal shaping of intermingled fibre blends is a strategy to form parts which exhibit superior mechanical properties. In this study, the use of intermingled fibre slivers with different ratios of lyocell fibres (CLY) and PP fibres as raw materials for thermally formed composites was investigated. Such a concept will maximize the interface between the reinforcement fibres and polymer matrix. The cellulose fibres remain oriented along the direction in which the drawing process was performed, which forms the basis for tailored fibre placement in technical production. Because of good surface contact between the cellulose fibre surface and PP matrix, no special coupling agents were required to improve the interfacial adhesion between the two different polymers. The share of CLY and PP fibres in the composite varied from 50% w/w CLY content, up to 70% w/w CLY. Besides analysis of the mechanical properties, such as tensile strength and E-modulus, attention was directed towards moisture sorption of the composites. The rate of sorption and amount of water bound in the composite were found to be dependent on the cellulose fibre content. Composites with a higher CLY content exhibited a more rapid and higher moisture uptake. In water saturated state, the ultimate tensile strength of composites reduced from 160 MPa to 90 MPa, which is an indicator for a reduced adhesion between the CLY surface and PP matrix. The results indicate the potential of the intermingled fibre concept blend for the efficient manufacturing of composite parts.
APA, Harvard, Vancouver, ISO, and other styles
14

Mutasher, Saad A., Adrian Poh, Aaron Mark Than, and Justin Law. "The Effect of Alkali Treatment Mechanical Properties of Kenaf Fiber Epoxy Composite." Key Engineering Materials 471-472 (February 2011): 191–96. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.191.

Full text
Abstract:
Increasing worldwide environmental awareness is an encouraging scientific research into the development of cheaper, more environmentally friendly and sustainable construction and packaging materials. Kenaf fibre is a natural fibre which is growing in popularity due environmental issues and its properties as filler. Epoxy is a versatile thermosetting polymer which has a low curing temperature and used in making carbon fibre and glass composites. In this paper the properties of kenaf bast fibre epoxy reinforced composite have been investigated. The effects of alkali surface treatment of the fiber on the composite properties are also investigated. A hand layup method was use to fabricate the test specimens. Generally, all the treated fibre composites performed better than the untreated fibre with an improvement approximately 5% to 10%. Epoxy has the highest tensile strength and flexural strength among all specimens. The 24wt% treated kenaf fibre composites has the highest tensile strength, 27.72MPa and flexural strength, 56.91MPa. The kenaf fiber weight fraction of 40% gave the highest impact strength. The impact strength of the 40wt% kenaf fiber increased 14.3% after alkali treatment.
APA, Harvard, Vancouver, ISO, and other styles
15

Möhl, Claudia, and Andreas Krombholz. "Impact Resistance Bio Compound." Materials Science Forum 825-826 (July 2015): 1047–54. http://dx.doi.org/10.4028/www.scientific.net/msf.825-826.1047.

Full text
Abstract:
Modified wood fibre reinforced polypropylene composites at a wood fibre content of 50 wt. % are prepared using different types of wood fibres (beech wood refiner fibre, mercerised beech wood refiner fibre, mercerised and bleached beech wood refiner fibre as well as beech wood chips, mercerised beech wood chips, mercerised and bleached beech wood chips) to improve the impact resistance of the final composite. Additionally a beech wood refiner fibre-PP composite as well as a beech wood chip-PP composite are mixed with regenerated cellulosic fibres (5 wt. % and 10 wt. %) to further enhance the impact resistance. To increase the interfacial adhesion with the matrix and to improve the dispersion of particles two different coupling agents with contents from 2 wt. % to 8 wt. % are tested with two wood plastic composites (WPC). One is made of beech wood refiner fibres and the other one is produced from beech wood chips.The present study investigated Charpy impact property of wood fibres reinforced polypropylene as a function of fibre modification, content of regenerated cellulosic fibres and coupling agent.From the results it is observed that beech wood refiner fibre-PP composites show better Charpy impact properties than beech wood chips-PP composites. Charpy impact resistance is improved by mixing regenerated cellulose fibres (RCF) and RCF-PP-granule with beech wood refiner fibres and chips. The maximum increase in impact resistance is two times for refiner fibres and 10 % RCF-PP-granule respectively three and a half times for chips and 10 % RCF-PP-granule. By adding coupling agent Charpy impact resistance is nearly doubled for all wood fibre-PP composites.
APA, Harvard, Vancouver, ISO, and other styles
16

Etaati, Amir, Selvan Pather, Moloud Rahman, and Hao Wang. "Ground Hemp Fibers as Filler/Reinforcement for Thermoplastic Biocomposites." Advances in Materials Science and Engineering 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/513590.

Full text
Abstract:
Mechanical properties (tensile, flexural, and impact) of ground hemp fibre polypropylene composites were investigated. Ground alkali-treated hemp fibre and noil hemp fibres with various initial fibre lengths were utilized to reinforce polypropylene matrix. Firstly, the microstructural and tensile characterizations of the two types of fibres were characterized using scanning electron microscope (SEM), Fourier transform infrared analysis (FTIR), and Dynamic Mechanical Analyser (DMA). Then, the fibres were ground into different lengths of 0.2, 0.5, 1, and 2 mm; composites containing 40 wt% short hemp fibre and 5 wt% maleic anhydride grafted polypropylene (MAPP) were fabricated by means of a twin screw extruder and an injection moulding machine. Finally, influence of hemp fibre type and initial hemp fibre length on tensile property of the composites were investigated. The results revealed that addition of either noil hemp fibre or normal treated hemp fibre into the pure polypropylene matrix increased the tensile strength almost twice and stiffness of the composites more than three times. Although noil hemp fibre composite indicated slightly lower mechanical properties than the normal alkali-treated fibre composites, the difference was not significant. The analysis of the results provided the optimum initial fibre length (powder) of 0.2 mm hemp polypropylene composite. The results can be extended to different types of natural fibres.
APA, Harvard, Vancouver, ISO, and other styles
17

Mohammed, Ibrahim, Abd Rahim Abu Talib, Mohamed Thariq Hameed Sultan3, and Syamimi Sadoon. "Fire behavioural and mechanical properties of carbon fibre reinforced aluminium laminate composites for aero-engine." International Journal of Engineering & Technology 7, no. 4.13 (October 9, 2018): 22. http://dx.doi.org/10.14419/ijet.v7i4.13.21323.

Full text
Abstract:
Two different properties of fibre-metal laminate composites (FML), including the fire behaviour and mechanical properties, were experimentally studied in this paper. The fibre-metal laminate composites studied were made of aluminium alloy 2024-T3, carbon fibre, flax, kenaf and epoxy resin/hardener arranged in different forms. The aims of the study are to assess the fire behaviour of the composites using ISO2685 standard and mechanical properties of the composite after withstanding the burn-through according to the standard. The fire test was carried out using ISO2685 standard using a propane-air burner, whereby the propane gas and air serves as the fluid to the system. The universal testing machine of the 100 kN load cell and gun tunnel were used for the mechanical properties test according to each test standard. The fire results showed that three of the FML composites considered in the study are fireproof composites while carbon fibre kenaf reinforced aluminium laminate (CARALL4) is a fire resistant composite. Carbon fibre reinforced aluminium laminate with aluminium alloy at the front and the rear face (CARALL2) withstood higher flame temperature than the other FML composites with 14.4%, 49.0% and 82.8% greater than CARALL1, CARALL3 and CARALL4 in terms of thermal conductivity. In terms of mechanical properties, it was also CARALL2 that has higher tensile, compressive, flexural and impact strength. Therefore, the study showed that carbon fibre flax reinforced aluminium laminate (CARALL3) which is the hybrid composite with green fibre can compete with fibre-metal laminate composites of pure synthetic fibre in terms of their properties.
APA, Harvard, Vancouver, ISO, and other styles
18

MC, Nandini. "Studies on Mechanical and Flexural Strength of Carbon Nano Tube Reinforced with Hemp/Vinyl Ester/Carbon Fiber Laminated Hybrid Composite." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 699–708. http://dx.doi.org/10.22214/ijraset.2021.38035.

Full text
Abstract:
Abstract: In Recent days, the natural fibres from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the use of glass, carbon and other man-made fibres. Among various fibres, Hemp is most widely used natural fibre due to its advantages like easy availability, low density, low production cost and satisfactory mechanical properties. Composite materials play a vital role in the field of materials to meet the stringent demands of light weight, high strength, corrosion resistance and near-net shapes. Composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other. Composites are having two phases that are reinforcing phase like fiber, particle, or flakes & matrix phase like polymers, metals, and ceramics. In this project an attempt is made to prepare different combination of composite materials using hemp/carbon fiber and Carbon nano tube reinforcement and vinyl ester as the matrix material respectively. Composites were prepared according to ASTM standards and following test are carried out Tensile, Flexural and ILSS test. The effect of addition of Carbon nano tubes in hemp/vinyl ester/carbon fibers has been studied & it has been observed that there is a significant effect of fibre loading and performance of hemp/carbon fiber reinforced vinyl ester based hybrid composites with improved results Keywords: Hemp fiber, Vinyl ester, Carbon fiber, Tensile, Flexural and ILSS Test
APA, Harvard, Vancouver, ISO, and other styles
19

Zaleha, M., M. Shahruddin, and I. Maizlinda Izwana. "A Review on the Mechanical and Physical Properties of Natural Fiber Composites." Applied Mechanics and Materials 229-231 (November 2012): 276–81. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.276.

Full text
Abstract:
Research on the use of natural fibers as replacement to man-made fibre in fiber reinforced composites have received more interest and opened up further industrial possibilities. Natural fibre presents many advantages compared to synthetic fibers which make them attractive as reinforcements in composite material. They come from abundant and renewable resources, which ensures a continuous fibre supply and a significant material cost saving to the plastics, automotive and packaging industries. The paper reviews the previous and current research works published in the field of natural fiber reinforced composite material with special reference in mechanical properties of the natural fiber reinforced composite.
APA, Harvard, Vancouver, ISO, and other styles
20

Chun, Koay Seong, Tengku Maimunah, Chan Ming Yeng, Tshai Kim Yeow, and Ong Thai Kiat. "Properties of corn husk fibre reinforced epoxy composites fabricated using vacuum-assisted resin infusion." Journal of Physical Science 31, no. 3 (November 25, 2020): 17–31. http://dx.doi.org/10.21315/jps2020.31.3.2.

Full text
Abstract:
Corn husk is a non-fruit part of the corn and an agricultural waste. This research focuses on fabricating composite material from the corn husk fibre by using a vacuum assisted resin infusion (VARI) technique. The corn husk fibre was extracted using water retting method and treated with alkali and bleaching treatments using sodium hydroxide (NaOH) and hydrogen peroxide (H2O2). Then, those fibres were made into nonwoven fibre mat using water laid method. The fibre mat was infused with epoxy resin to make a composite. The mechanical result has shown that the composite with 20% of fibre has higher tensile strength and modulus compared to neat epoxy. Both treatments have removed the non-cellulose content, such as hemicellulose and lignin. Moreover, the treatments also promoted better interfacial adhesion between fibre and matrix. Thus, the NaOH treated and H2O2 treated composites showed approximately 56% and 82%, respectively, higher tensile strength than untreated composite. Both treated composites were also stiffer and exhibited lower water absorption compared to untreated composite.
APA, Harvard, Vancouver, ISO, and other styles
21

Dan-mallam, Yakubu, Mohamad Zaki Abdullah, and Puteri Sri Melor Megat Yusoff. "Mechanical Properties of Short and Continuous Kenaf/Pet Fibre Reinforced Polyoxymethylene Composite." Advanced Composites Letters 24, no. 4 (July 2015): 096369351502400. http://dx.doi.org/10.1177/096369351502400404.

Full text
Abstract:
The challenges of improving the mechanical properties of natural fibre composites cannot be over emphasized due to fibre geometry, poor fiber distribution in the matrix, the hydrophilic nature of natural fibers and poor fibre–matrix interfacial adhesion. The primary objective of this research is to study the influence of fibre length on mechanical properties of kenaf/PET fibre reinforced POM and to study the effect of hybridization on mechanical properties of the composites. The composites were produced by compression molding and subsequently subjected to tensile, flexural and impact tests according to their respective ASTM standards. The tensile strength of short POM/kenaf/PET (80/10/10) hybrid composite dropped by approximately 33% from 61.8 MPa to 41.3 MPa compared to neat POM. However, the tensile strength of continuous POM/kenaf composites increased significantly by approximately 127% and 107% for 70/30 and 80/20 compositions compared to neat POM. The flexural moduli of short POM/kenaf/PET (70/15/15) hybrid composite and continuous POM/kenaf (70/30) composite improved by approximately 41% and 29%, respectively. The impact strength substantially increased by nearly 161% in continuous POM/kenaf/PET (70/15/15) hybrid composite and 30% in POM/kenaf (80/20) composite. The results show that tensile, flexural and impact properties of the continuous POM/kenaf composites are superior to the short fiber composites, and the influence of hybridization, made a positive impact by enhancing the flexural and impact properties of the composites.
APA, Harvard, Vancouver, ISO, and other styles
22

Kaya, Figen. "Damage Detection in Fibre Reinforced Ceramic and Metal Matrix Composites by Acoustic Emission." Key Engineering Materials 434-435 (March 2010): 57–60. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.57.

Full text
Abstract:
In this work damage micro-mechanisms of two different types of fibre reinforced composites are investigated by acoustic emission, AE. Ceramic based oxide fibre reinforced mullite matrix composite and metallic based SiC fibre reinforced titanium matrix composites exhibit different fracture mechanisms during loading and AE technique could pinpoint these damage mechanisms based on the AE responses detected simultaneously. The results show that in a ceramic matrix composite, the identification of fibre fracture and matrix cracking requires careful analysis of the AE data as both fibres and matrix break in brittle manner. Whereas the separation of fibre fracture from the ductile tearing of matrix ligaments could be easier in metallic based composites, such as titanium matrix composites.
APA, Harvard, Vancouver, ISO, and other styles
23

Akash, K. Chikkanna Anil, K. G. Girisha, and K. V. Sreenivas Rao. "Effect of Fibre Orientation on Specific Gravity, Hardness, Flexural Strength and Tensile Properties of Jute/Hemp Hybrid Laminate Composite." Applied Mechanics and Materials 766-767 (June 2015): 75–78. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.75.

Full text
Abstract:
Bio-composites are taking over the polymer based composites due to their multi fold advantages. In this work, the natural fibre (jute-hemp) hybrid composite was prepared by traditional hand-lay-up method. The hardness, tensile and flexural properties of the composite specimen was evaluated in order to study the effect of fibres and fibre orientations using standard procedures. A significant improvement in hardness (114RHN), tensile (79.13mpa) and flexural (120.06mpa) properties were observed with fibre orientation of 900 compare to 300 & 450 orientations. Specific gravity test were conducted by using ASTM D792 standard at the temperature of 230c. The specific gravity was found to increase for 900 orientation of the fibre in the composite. It is also observed that the polyester based hybrid composite exhibits higher values of mechanical properties compared to epoxy based hybrid composites.
APA, Harvard, Vancouver, ISO, and other styles
24

Nicholas Kuan, Hoo Tien. "Characterisation of Artocarpus Heterophyllus Fibre Reinforced Composite." Journal of Applied Science & Process Engineering 5, no. 2 (September 30, 2018): 304–9. http://dx.doi.org/10.33736/jaspe.948.2018.

Full text
Abstract:
Natural fibre reinforced polymer composite (NFRPC) has successfully replaced other synthetic fibre for applications in automobile, sport equipment, furniture, electrical appliances, etc. Artocarpus heterophyllus or jackfruit are mass produced in most South East Asia, but most of the parts other than the fruit would go to waste. In this study, Artocarpus heterophyllus fibre reinforced high density polyethylene (HDPE) composite was fabricated and tested for its mechanical properties, such as tensile and hardness properties. Artocarpus heterophyllus fibres were made into sheets using traditional paper making process, before being laminated with HDPE films using hot press method. Different volume fraction of fibre laminates were produced: 10%, 13%, 17% and 21%. The study shows that composite with 10%, 13% and 17% fibre volume fraction exhibits better tensile strength and hardness value than neat HDPE, while composites with 13%, 17% and 21% fibre volume fraction exhibit higher tensile modulus than neat HDPE. The optimum fibre content for the Artocarpus heterophyllus composite is 17%.
APA, Harvard, Vancouver, ISO, and other styles
25

Santhanam, V., and M. Chandrasekaran. "Effect of Surface Treatment on the Mechanical Properties of Banana-Glass Fibre Hybrid Composites." Applied Mechanics and Materials 591 (July 2014): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.591.7.

Full text
Abstract:
Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.
APA, Harvard, Vancouver, ISO, and other styles
26

O RUAN, FANGTAO, CHENGLONG XIA, LI YANG, ZHENZHEN XU, and FEIYAN TAO. "Effect of filaments diameter on the mechanical properties of wrap hybrid CFRP." Industria Textila 72, no. 02 (April 22, 2021): 144–48. http://dx.doi.org/10.35530/it.072.02.1733.

Full text
Abstract:
In this paper, the vine-like structure of carbon bundles was designed through polyester fibre wrapping for better mechanical properties. The effect of wrapped hybrid structure and diameters of polyester fibre on the mechanical properties of carbon-polyester fibre/epoxy unidirectional composites was investigated experimentally. Five kinds of specimens with different polyester filament diameters were produced. The impact, tensile and unidirectional compressive properties of WHC (Wrap Hybrid Composite) were measured. Experimental results show that: it can be developed with strength and toughness properties far superior to those of their constituents, the compressive fracture morphology of specimens indicated that the fracture patterns of composites depend on wrapped hybrid structure, polyester fibres with higher tensile strengths provide better impact resistance, while thinner wrapping fibres enhance the compression properties of the composite material more effectively. The diameter of the wrapping fibre should be optimized as per the application of the composite material. The vine-like structure can provide a new design method for the structural design of continue fibre reinforced composite materials.
APA, Harvard, Vancouver, ISO, and other styles
27

Silva, Elisabete R., Humberto E. Ferreira, Jorge F. J. Coelho, and João C. Bordado. "Hybrid Fibre-Reinforced Cement Composite." Materials Science Forum 730-732 (November 2012): 343–48. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.343.

Full text
Abstract:
This paper reports the results of a series of experiments carried out to investigate the effectiveness of newly hybrid polyethylene/polypropylene (PP/PE) fibres inclusion in the mechanical performance of cement matrices, with regard to fibres properties and content. The results indicate that, compared with plain cement matrix, the PP/PE fibre-reinforced cement matrices (FRC) revealed improvements on their mechanical performance. Increases of 37 ± 1% on compressive (40.2 MPa) and flexural strengths (8.1 MPa) were obtained for 24 mm fibre length composites containing a rather low fibre’s content (1 wt.%). These mechanical improvements were achieved after optimisation of the mortar workability by the addition of a superplasticizer. FRC mechanical behaviours also evidenced that despite the compressive strengths increasing with fibre length, a flexural strength effect is only noticeable for a 24 mm length fibre-reinforced composite and for fibres volume higher than 2.9 %. Morphological observations showed a strong interaction between fibres and cement matrix, evidenced a crack arrest role (bridge effect) on fibre/cement interfacial zone and revealed a typical multiple fracture cracking mechanism.
APA, Harvard, Vancouver, ISO, and other styles
28

Ghazzawi, Yousof M., Andres F. Osorio, and Michael T. Heitzmann. "Fire performance of continuous glass fibre reinforced polycarbonate composites: The effect of fibre architecture on the fire properties of polycarbonate composites." Journal of Composite Materials 53, no. 12 (October 23, 2018): 1705–15. http://dx.doi.org/10.1177/0021998318808052.

Full text
Abstract:
The fire performance of polycarbonate resin and the role of glass fibre reinforcement in altering the fire performance was investigated. Three different fibre weaves with comparable surface density, plain, twill, and unidirectional glass fabrics, were used as reinforcements. E-glass fabrics were solution-impregnated with polycarbonate/dichloromethyl, laid up, and compression-moulded to consolidate the glass fibre reinforced polycarbonate composite. Cone calorimetry tests with an incident radiant flux of 35 kW/m2 were used to investigate the fire properties of polycarbonate resin and its composites. Results showed that glass fibre reinforcement improves polycarbonate performance by delaying its ignition, decreasing its heat release rate, and lowering the mass loss rate. The three fibre weave types exhibited similar time to ignition. However, unidirectional fibre had a 35% lower peak heat release rate followed when compared to plain and twill weave fibres.
APA, Harvard, Vancouver, ISO, and other styles
29

Lu, Xun, Ming Qiu Zhang, Min Zhi Rong, Guang Shi, Gui Cheng Yang, and Han Min Zeng. "Natural Vegetable Fibre / Plasticised Natural Vegetable Fibre - a Candidate for Low Cost and Fully Biodegradable Composite." Advanced Composites Letters 8, no. 5 (September 1999): 096369359900800. http://dx.doi.org/10.1177/096369359900800505.

Full text
Abstract:
A novel fibre composite consisting of natural vegetable fibre as the reinforcer and plasticised natural vegetable fibre as the matrix was studied. By means of cyanoethylation and chlorination, pine sawdust and chopped sisal were converted into thermoplastics and then compounded with sisal and ramie fibres. The natural fibre composite not only exhibits properties similar to those of conventional fibre composites, but also is characterised by easy processing, enviromental frendliness, low cost and capability of tailoring property due to the physically heterogeneous nature.
APA, Harvard, Vancouver, ISO, and other styles
30

Kumar, Santosh, and KK Singh. "Tribological behaviour of fibre-reinforced thermoset polymer composites: A review." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234, no. 11 (July 21, 2020): 1439–49. http://dx.doi.org/10.1177/1464420720941554.

Full text
Abstract:
Application of fibre-reinforced polymer composites has increased over the last two decades as compared to conventional materials. This improvement in the application of fibre-reinforced polymer composites is attributed to their unique material properties, such as high strength and stiffness-to-weight ratio, specific modulus and internal vibration damping. However, in most of the industrial applications, composite materials encounter tribological complications. Economic indicators and market dynamics suggested that the market for composite materials is booming and the dominant materials are carbon fibres, glass fibres and thermoset polymer (polyester resin) in resin segments. That is why tribological characteristics are crucial in designing carbon and glass-based fibre-reinforced polymer components. Owing to this importance, the study of tribological behaviour of fibre-reinforced polymer composite materials has expanded significantly. The present study has made an attempt to review the fundamental tribological applications and critical aspects of fibre-reinforced polymers, based on research work, which has been carried out over the past couple of decades. This work has primarily focused on the fibre-reinforced polymer composites, based on carbon and glass fibres with thermosets as the matrix material for probing into tribological behaviours. In the process, the focus has largely been on the most commonly occurring erosive and abrasive mode of wear process.
APA, Harvard, Vancouver, ISO, and other styles
31

Srinivasan, V. S., S. Rajendra Boopathy, and B. Vijaya Ramnath. "Fabrication and Evaluation of Tensile Properties of Kenaf-Flax Hybrid Composite." Applied Mechanics and Materials 680 (October 2014): 50–53. http://dx.doi.org/10.4028/www.scientific.net/amm.680.50.

Full text
Abstract:
With the upcoming difficulties the need for environmental friendly, biodegradable material plays vital role in automotive and aero space applications. This necessitates to innovate new materials like composites and smart materials. In this paper, the Flax and Kenaf fibres are used as reinforcement to form hybrid composite. The tensile properties of hybrid composites are compared with single fibre composites. The result shows hybridization have more impact on enhanced tensile property. Hand layup technique is used in this work to prepare composite specimens. Fiber distributions,crack propagation and shearing styles analysed using the Scanning electron Microscope (SEM) images of the tested specimens.
APA, Harvard, Vancouver, ISO, and other styles
32

Yuhazril bin Yaakob, Mohd, Mohamad Pazlin bin Saion, and Mohd Amirhafizan bin Husin. "The potency of natural and synthetic composites for ballistic resistance: A review." Applied Research and Smart Technology (ARSTech) 1, no. 2 (November 30, 2020): 43–55. http://dx.doi.org/10.23917/arstech.v1i2.52.

Full text
Abstract:
Mechanical characteristics of the laminated composite crafted from fabric type reinforcement perhaps inspired via the weaving method and reinforcement agent's usage due to each layer's constructional parameter. As a result, research on the arrangement configuration between bio composite and synthetic fibre for the material shape was proposed to enhance the composite structure's biodiversity and physical characteristics. Substitute for natural fibre in synthetic fibre composite works has shown the excessive capacity to be explored scientifically. The evaluation focused on the concept and essential of bio composite and the synthetic composite fabric positioned over the years from the previous studies of the preliminary researches. The sorts and features of matrix and fibre filler reinforcement materials in composites were also discussed. This assessment's main findings indicated that the composite centre relied on the weave styles and inter-ply and interplay lamination roles. Therefore, the state-of-the-art intraply for synthetic fibre and bio composite fibre in a composite shape was anticipated performing higher in mechanical energy, particularly within the application of ballistic resistance, besides decreased dependency on artificial fibre. It would ultimately suggest the excellent weave sample designs in the proper combination shape of natural and synthetic fibres embedded with polymers. The statistical results were compared with the experimental parameters available inside the literature review. The review explains approximately the studies and evolution within the enhancement of characteristic fibres reinforced polymer composites in ballistic resistance use. This paper goes over the body armour's profitable and present advancement materials, structure and development procedures, and related works on upgrading ballistic energy captivation and upgrading the mechanical tenacity for high impact resistance applications.
APA, Harvard, Vancouver, ISO, and other styles
33

Ji, Xiaodi, Yue Dong, Tat Thang Nguyen, Xueqi Chen, and Minghui Guo. "Environment-friendly wood fibre composite with high bonding strength and water resistance." Royal Society Open Science 5, no. 4 (April 2018): 172002. http://dx.doi.org/10.1098/rsos.172002.

Full text
Abstract:
With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.
APA, Harvard, Vancouver, ISO, and other styles
34

Aadithya, M., V. K. Kirubakar, T. Aakash, and Chinnasamy Senthamaraikannan. "Investigation of the Tensile and Flexural Behavior of Polylactic Acid Based Jute Fiber Bio Composite." Key Engineering Materials 841 (May 2020): 283–87. http://dx.doi.org/10.4028/www.scientific.net/kem.841.283.

Full text
Abstract:
The main objective of this investigation is to reduce and eventually replace the use of non-biodegradable synthetic fiber. Bio composites have shown growth and has been used in the domestic sector, aerospace industry, circuit boards, and automotive applications over the past few years. Many types of natural fibres have been investigated to produce composite materials that are competitive with synthetic fibre composites. Jute is a natural fibre and is 100% bio-degradable and recyclable and thus environmentally friendly. Its properties include high tensile strength, low extensibility. This bio composite specimen has been fabricated with the help of hot press molding machine. The flexural and Tensile tests have been done according to the ASTM standards. The increasing awareness of global environmental and social concern and new environmental regulations have propelled the search for new composites that are compatible with the environment.
APA, Harvard, Vancouver, ISO, and other styles
35

Godwin, G., and K. Umanath. "Flexural, Tensile and Impact Properties of Alkali Treated Coir Fibre Composites Prepared by Compression Molding Technique." Applied Mechanics and Materials 766-767 (June 2015): 90–95. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.90.

Full text
Abstract:
Polymeric materials reinforced with synthetic fibres such as glass provide advantage of high stiffness and high strength to weight ratio. Despite these advantages, the widespread use of synthetic fibre-reinforced polymer composite has a tendency to decline because of their high-initial cost and most importantly their adverse environmental impact. In this work, four different composites are prepared with untreated coconut fibres, NaOH mercerized coconut fibres, KOH mercerized coconut fibres and CSM glass fibres. A lot of studies are done earlier on NaOH mercerized coconut fibre composites. But, no studies are done specifically for KOH mercerized coconut fibre composites. So, KOH mercerized coconut fibre composites are prepared in this study. General purpose polyester resin is used for preparing all the compsites. The mechanical properties of composites are studied using the flexural test, impact test and tensile test. The mechanical properties of KOH mercerized coconut fibre composites are studied and compared with the mechanical properties of NaOH mercerized coconut fibre composites, untreated coconut fibre composites and CSM glass fibre composites.
APA, Harvard, Vancouver, ISO, and other styles
36

Islam, Faisal, Sébastien Joannès, and Lucien Laiarinandrasana. "Evaluation of Critical Parameters in Tensile Strength Measurement of Single Fibres." Journal of Composites Science 3, no. 3 (July 9, 2019): 69. http://dx.doi.org/10.3390/jcs3030069.

Full text
Abstract:
Mechanical properties of fibre reinforced composites are primarily dependent on those of fibres. Fibre properties are used for estimating the damage and strength behaviour of composite materials and structures. Tensile strength of fibres is commonly determined by single fibre tensile tests, which is challenging and is prone to measurement errors. In this study, different possible sources of errors due to experimental limitations in the fibre testing process were identified. Their effect on fibre tensile strength was analytically modelled. This model was used to evaluate the uncertainty in experimentally determined fibre strength. A sensitivity analysis was conducted to rank the relative significance of input quantities on the calculated fibre strength. Since composite models require fibre properties determined at very small gauge lengths, the results of the sensitivity analysis were extrapolated to determine critical parameters for tests done at those small gauge lengths of a few millimetres. It was shown that, for sufficiently long fibres, their strength depends mainly on the diameter and failure force; however, for shorter gauge lengths, the effects of misalignment become very significant. The knowledge of uncertainty would be useful in estimating the reliability of the predictions made by composite strength models on the damage and failure behaviour of composite materials and structures. Minimising the influence of critical parameters on fibre strength would help in designing improved single fibre testing systems capable of determining fibre strength more accurately.
APA, Harvard, Vancouver, ISO, and other styles
37

Mahzan, Shahruddin, Wahieda M. Bahtiar, and Zaleha Mohamad. "Investigation on the Tensile Strength of Treated and Untreated Woven Sugar Palm Fibre Reinforced Composites." Applied Mechanics and Materials 660 (October 2014): 588–92. http://dx.doi.org/10.4028/www.scientific.net/amm.660.588.

Full text
Abstract:
Natural fibres offer environmental benefits such as biodegradable and can be obtained from renewable resources. However, there is lack of investigations done to characterize and compare different types and orientation done on the natural fibres. This paper determines the tensile strength of sugar palm fibres under various treatment processes. The composites were fabricated using woven sugar-palm fibre treated with alkali and acid and used epoxy resin as the matrices for the composite. The tensile test was done to determine the tensile strength of the composite and the surface morphological analysis was done using SEM. The results demonstrated that the composite with the alkali treated fibres produced higher tensile strength compared to untreated and acid treated fibres. With these properties, it shows that treated woven sugar-palm fibre composite can withstand high stress load during operation compared to untreated fibres reinforced composites.
APA, Harvard, Vancouver, ISO, and other styles
38

Ahmad, R., R. Hamid, and S. A. Osman. "Physical and Chemical Modifications of Plant Fibres for Reinforcement in Cementitious Composites." Advances in Civil Engineering 2019 (March 12, 2019): 1–18. http://dx.doi.org/10.1155/2019/5185806.

Full text
Abstract:
This paper highlights the physical and chemical surface modifications of plant fibre (PF) for attaining suitable properties as reinforcements in cementitious composites. Untreated PF faces insufficient adhesion between the fibres and matrix due to high levels of moisture absorption and poor wettability. These conditions accelerate degradation of the fibre in the composite. It is also essential to reduce the risk of hydrophilic PF conditions with surface modification, to enhance the mechanical properties of the fibres. Fibres that undergo chemical and physical modifications had been proven to exhibit improved fibre-matrix interfacial adhesion in the composite and contribute to better composite mechanical properties. This paper also gives some recommendations for future research on chemical and physical modifications of PF.
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Peng. "Research on the Design and Use of Structures and Components Made from Fibre Composite Materials." Applied Mechanics and Materials 174-177 (May 2012): 782–86. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.782.

Full text
Abstract:
Fibres composite materials designed as glass fibre, carbon fibre and aramid fibre. They were used for chemical resistance, compressive strength, stiffness, impact resistance, and fire resistance. However, they had a number of limitations, including vandalism, accidental damage, short-term durability, high cost, and suitably qualified staff shortage. These problems could be solved by appropriate monitoring, suitably qualified designers and contractors. The design and use of fibre composite materials has become an important aspect of engineering.
APA, Harvard, Vancouver, ISO, and other styles
40

Raghu, M. J., and Govardhan Goud. "Tribological Properties of Calotropis Procera Natural Fiber Reinforced Hybrid Epoxy Composites." Applied Mechanics and Materials 895 (November 2019): 45–51. http://dx.doi.org/10.4028/www.scientific.net/amm.895.45.

Full text
Abstract:
Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Nan, Xiuxiu Yang, Feng Bao, Yunxing Pan, Chenghao Wang, Bo Chen, Lishuai Zong, Chengde Liu, Jinyan Wang, and Xigao Jian. "Improved Mechanical Properties of Copoly(Phthalazinone Ether Sulphone)s Composites Reinforced by Multiscale Carbon Fibre/Graphene Oxide Reinforcements: A Step Closer to Industrial Production." Polymers 11, no. 2 (February 1, 2019): 237. http://dx.doi.org/10.3390/polym11020237.

Full text
Abstract:
The properties of carbon fibre (CF) reinforced composites rely heavily on the fibre-matrix interface. To enhance the interfacial properties of CF/copoly(phthalazinone ether sulfone)s (PPBES) composites, a series of multiscale hybrid carbon fibre/graphene oxide (CF/GO) reinforcements were fabricated by a multistep deposition strategy. The optimal GO loading in hybrid fibres was investigated. Benefiting from the dilute GO aqueous solution and repeated deposition procedures, CF/GO (0.5%) shows a homogeneous distribution of GO on the hybrid fibre surface, which is confirmed by scanning electron microscopy, atomic force microscope, and X-ray photoelectron spectroscopy, thereby ensuring that its PPBES composite possesses the highest interlaminar shear strength (91.5 MPa) and flexural strength (1886 MPa) with 16.0% and 24.1% enhancements, respectively, compared to its non-reinforced counterpart. Moreover, the incorporation of GO into the interface is beneficial for the hydrothermal ageing resistance and thermo-mechanical properties of the hierarchical composite. This means that a mass production strategy for enhancing mechanical properties of CF/PPBES by regulating the fiber-matrix interface was developed.
APA, Harvard, Vancouver, ISO, and other styles
42

Dhakal, Hom Nath, and Mohini Sain. "Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications." Materials 13, no. 1 (December 25, 2019): 109. http://dx.doi.org/10.3390/ma13010109.

Full text
Abstract:
The effect of unidirectional (UD) carbon fibre hybridisation on the tensile properties of flax fibre epoxy composite was investigated. Composites containing different fibre ply orientations were fabricated using vacuum infusion with a symmetrical ply structure of 0/+45/−45/90/90/−45/+45/0. Tensile tests were performed to characterise the tensile performance of plain flax/epoxy, carbon/flax/epoxy, and plain carbon/epoxy composite laminates. The experimental results showed that the carbon/flax fibre hybrid system exhibited significantly improved tensile properties over plain flax fibre composites, increasing the tensile strength from 68.12 MPa for plain flax/epoxy composite to 517.66 MPa (670% increase) and tensile modulus from 4.67 GPa for flax/epoxy to 18.91 GPa (305% increase) for carbon/flax hybrid composite. The failure mechanism was characterised by examining the fractured surfaces of tensile tested specimens using environmental scanning electron microscopy (E-SEM). It was evidenced that interactions between hybrid ply interfaces and strain to failure of the reinforcing fibres were the critical factors for governing tensile properties and failure modes of hybrid composites.
APA, Harvard, Vancouver, ISO, and other styles
43

Alazemi, Fahad Kh A. O. H., Mohd Na’im Abdullah, Mohd Khairol Anuar Mohd Ariffin, Faizal Mustapha, and Eris Elianddy Supeni. "Optimization of Cutting Tool Geometry for Milling Operation using Composite Material – A Review." Journal of Advanced Research in Materials Science 76, no. 1 (January 18, 2021): 17–25. http://dx.doi.org/10.37934/arms.76.1.1725.

Full text
Abstract:
Fibre reinforced composite materials having their own specific advantages are why they currently gain more and more attention. A vital procedure once preparations of materials are done is the machining process. Various secondary operations such as milling, drilling, turning and various unconventional processes are used for achieving near net shape and size of desired component. Compared to conventional materials, fibre reinforced composite materials are more practical to be use in machining process due to less amount of cutting forces are required to complete the exact shape and size of desired component. Therefore, a review on milling of fibre reinforced composite material will be helpful for numerous researchers and other manufacturing industries, which are currently working in this field. This review paper represents the classification of composite materials, Fiber Reinforced Plastic (FRP) Composites and Carbon Fibre Reinforced Plastic (CFRP) Composites. In addition, this review also defines the machinability of CFRP composites selection and tool design of end mill.
APA, Harvard, Vancouver, ISO, and other styles
44

Karcagi, Rita, and János Lukács. "Fatigue Crack Growth Tests on Carbon Fibre Reinforced Aluminium Matrix Composites." Materials Science Forum 473-474 (January 2005): 111–16. http://dx.doi.org/10.4028/www.scientific.net/msf.473-474.111.

Full text
Abstract:
Composite materials combine the advantages of their components. Carbon fibre reinforced composites are used in construction where reduced weight is critical. To produce carbon fibre reinforced composites, aluminium alloys can be the matrix. Advantageous properties of aluminium matrix composites – good toughness, low weight – are applied in aerospace and automotive industry. Because aluminium alloys are not reactive to carbon, therefore the coating of the fibres can solve the problem. Nickel coated and chemically treated carbon fibres were used to producing of aluminium matrix composites. The investigated composite materials were prepared by pressure infiltration. The influence of treating of carbon fibres was examined on the fracture mechanical properties of aluminium matrix composites. Three types of matrix materials, three types of carbon fibres and four types of surface treatment were studied. Fatigue crack growth tests were performed under mode I loading condition and the failure mechanisms of the composite materials were investigated. Test results belonging to different coated fibres were compared, and our results were compared with the results from the literature, too.
APA, Harvard, Vancouver, ISO, and other styles
45

JOLLY, MARC, and KRISHNAN JAYARAMAN. "MANUFACTURING FLAX FIBRE-REINFORCED POLYPROPYLENE COMPOSITES BY HOT-PRESSING." International Journal of Modern Physics B 20, no. 25n27 (October 30, 2006): 4601–6. http://dx.doi.org/10.1142/s0217979206041756.

Full text
Abstract:
The renewable characteristic of natural fibres, such as flax, and the recyclable nature of thermoplastic polymers, such as polypropylene, provide an attractive eco-friendly quality to the resulting composite materials. Common methods for manufacturing natural fibre-reinforced thermoplastic composites, injection moulding and extrusion, tend to degrade the fibres during processing. Development of a simple manufacturing technique for these composites, that minimises fibre degradation, is the main objective of this study. Flax fibres were conditioned, cut into lengths ranging from 1 mm to 30 mm with scissors and a pelletiser, and shaped into randomly oriented mats using a drop feed tower. Polypropylene in sheet form, was added to the fibres to furnish polypropylene/flax/polypropylene sandwiches with a fibre mass fraction of 25%, which were then consolidated by the hot pressing technique. Tensile, flexural and impact properties of these composite sheets were determined as functions of fibre length and processing temperature.
APA, Harvard, Vancouver, ISO, and other styles
46

Ahmad, Husam, Jonas Stiller, Erik Päßler, Daisy Nestler, Guntram Wagner, and Lothar Kroll. "Influence of Initial Fibre Length and Content Used in the Injection Moulding of CFRP on the Properties of C/C and C/C-SiC Composites." Key Engineering Materials 809 (June 2019): 171–79. http://dx.doi.org/10.4028/www.scientific.net/kem.809.171.

Full text
Abstract:
The production of C/C-SiC composites comprises a three-stage process: forming (CFRP-composite), pyrolysis (C/C-composite) and liquid silicon infiltration (C/C-SiC). A new promising approach for the manufacturing of CFRP intermediate composites is the injection moulding of customised granulates (novolac resin, hardener, processing additives and short carbon fibre) produced by compounding technique. To date, a direct dosing of short carbon fibre into the compounder was technically not realisable due to fibre separation and electrostatic charging in the hopper. A possible substitute solution has been the direct feeding of a carbon fibre bundle from a roving into the compounder. However, this is associated with a severe damage of the fibres and an inaccurate adjustment of the fibres content. In the present article, new chopped carbon fibres provided with an adapted sizing to be directly dosed into the compounder are used. The fibres possess a predefined length of 3 and 6 mm and their content amounts to 50 and 58 wt.%. The influence of the initial fibre length and fibre content on the physical and mechanical properties of the resulting CFRP-, C/C-and C/C-SiC-composites is presented and discussed. In addition, the impact of fibre feeding procedure at the compounding stage on the microstructure is considered
APA, Harvard, Vancouver, ISO, and other styles
47

Nicholas Kuan, Hoo Tien, Kennedy Jadum, Mahshuri Yusof, Sim Nee Ting, and Chee Khoon Ng. "Study of Betel Nut Husk Fibre Reinforced Polymer Composite." Journal of Applied Science & Process Engineering 6, no. 2 (October 1, 2019): 378–85. http://dx.doi.org/10.33736/jaspe.1812.2019.

Full text
Abstract:
The mechanical properties of oxo-biodegradable high-density polyethylene (oxo-HDPE) composites reinforced betel nut husk (BNH) fibre were studied in this research. A neat oxo-HDPE laminate and four betel nut fibre reinforced oxo-HDPE composites were fabricated using hot press compression moulding method. The composites contain 7%, 12%, 17%, and 22% fibres volume fraction respectively. The cross section of the composite was observed under scanning electron microscopy (SEM) and all five laminates are put through tensile test and hardness test. The result of the study shows that adding betel nut husk (BNH) fibres as reinforcement increases its tensile strength, specific tensile strength, and hardness of the composites. The good lamination observed under scanning electron microscopy (SEM) enable good transfer and distribution of stresses from the matrix to the fibres.
APA, Harvard, Vancouver, ISO, and other styles
48

Pang, C., R. Shanks, K. Ing, and F. Daver. "Plasticised cellulose acetate-natural fibre composite." World Journal of Engineering 10, no. 5 (October 1, 2013): 405–10. http://dx.doi.org/10.1260/1708-5284.10.5.405.

Full text
Abstract:
Due to positive impact on the environment, biodegradable composite materials are of growing interest. This study used cellulose acetate, a derivative of cellulose, as the matrix for its solubility and flexibility. Kenaf composites have been used in furniture, ceiling panels, and fences. The aim is to prepare composites with plasticized cellulose acetate and natural fibre. The kenaf fibres were surface treated to remove impurities, in particular, hemicellulose, wax, and lignin. Chopped kenaf was added to dissolve cellulose acetate and cast on a Petri dish. After solvent has evaporated, the composite was compression moulded. The thermal and mechanical properties of the kenaf cellulose acetate composite were characterised. From thermogravimetry, the composites were shown to be stable until moisture began evaporating. As a hydrophilic material, cellulose is sensitive to moisture. The mechanical properties of the composites were analysed under high humidity. Dynamic mechanical analysis showed that these properties changed slightly with humidity.
APA, Harvard, Vancouver, ISO, and other styles
49

Kaya, Cengiz. "Current Status of Oxide Fibre-Reinforced Oxide Ceramic Matrix Composites for Gas Turbine Applications." Key Engineering Materials 434-435 (March 2010): 1–4. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.1.

Full text
Abstract:
Recent developments in the processing, understanding and mechanical/thermomechanical properties of oxide fibre reinforced oxide ceramic matrix composites for high temperature applications are reported. Two dimensional composite plates and uni-directional tubular composite (so called mini-composite) specimens are successfully manufactured and their microstructure, matrix/ fiber interface as well as mechanical properties are examined. It is shown that the microstructural variations, such as porosity size and interface between fibre and matrix determine the fracture behaviour and high temperature performance of the composites. The optimised components produced are considered to be suitable for gas turbine applications.
APA, Harvard, Vancouver, ISO, and other styles
50

Vasumathi, M., and Murali Vela. "Mechanical Behaviour of Chemically Treated Reshira-Epoxy Composite at Cryogenic Temperatures." Advanced Materials Research 488-489 (March 2012): 718–23. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.718.

Full text
Abstract:
Natural fiber composite has already proved its worth in various mechanical applications. Natural fibres with attractive properties such as low density, environment-friendliness and less processing work are widely available and provide an alternative to the conventional fibres. In this paper, the fibre reshira has been tried for the first time for cryogenic applications. Initially, the fibre is given chemical treatment with sodium hydroxide solution to enhance the adhesion between the fibre and the resin. The treated fibre is reinforced with epoxy resin and its properties such as storage modulus, loss modulus and Glass Transition Temperature are evaluated both at room temperature and under cryogenic conditions and these are compared to see which condition produces better mechanical performance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography