Academic literature on the topic 'Fibre composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fibre composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fibre composite"

1

Durga Prasada Rao, V., G. Moses Dayan, and V. Navya Geethika. "Study of hardness and flexural strength of banyan and peepal fibre reinforced hybrid composites." MATEC Web of Conferences 172 (2018): 04009. http://dx.doi.org/10.1051/matecconf/201817204009.

Full text
Abstract:
In the present work, Banyan and Peepal fibre reinforced hybrid composites are prepared through hand Lay- up technique..The objective of the work is to investigate the hardness and flexural properties of eight varieties of banyan – peepal hybrid composites. The composites include banyan-peepal-banyan-peepal-banyan fibre composite, peepal-banyan-peepal-banyan-peepal fibre composite, banyan-copper-banyan-copper-banyan fibre composite (F1-Cu-F1-Cu-F1), peepal-copper-peepal-copper-peepal fibre composite, banyan-peepal-copper-peepal-banyan fibre composite, peepal-copper-banyan-copper-peepal fibre composite, peepal-banyan-copper-banyan-peepal fibre composite, and banyan-copper-peepal-copper-banyan fibre composite . Each of these composites is prepared in 00 orientations (i.e., fibres parallel each other), 450 (i.e., fibres at 450 to each other) and 900 orientations (i.e., fibres perpendicular to each other). It is observed from the results that, the hardness of F2-Cu-F1-Cu-F2 composite with 900 orientation is high and that of F1-F2-F1-F2-F1 composite with 450 orientation is low. It is also noticed that, the bending strength of F2-Cu-F1-Cu-F2 composite with 00 orientation is high and that of F2-F1-F2-F1-F2 composite with 450 orientation is low, and as far as the composites with 90⁰ orientations are considered, no results are obtained. Further it is noticed that, the hardness of all the eight composites with 90˚ orientation is found to be high compared to their remaining orientations and also the hardness of all the composites with 45˚ orientation is low compared to their 0˚ and 90˚ orientations
APA, Harvard, Vancouver, ISO, and other styles
2

binti Mohd, Nurul Farah Adibah, Taufik Roni Sahroni, and Mohammad Hafizudin Abd Kadir. "Feasibility Study of Casted Natural Fibre-LM6 Composites for Engineering Application." Advanced Materials Research 903 (February 2014): 67–72. http://dx.doi.org/10.4028/www.scientific.net/amr.903.67.

Full text
Abstract:
This paper presents the investigation of casted natural fiber-LM6 composites for engineering application. The objective of this research is to study the feasibility of natural fibre to introduce in the metal matrix composites for sand casting process. LM6 is the core material used in this research while natural fibre used as composite materials as well as to remain the hardness of the materials. The preparation of natural fibre composites was proposed to introduce in metal matrix composite material. Empty Fruit Bunch (EFB) and kenaf fibre were used in the experimental work. Natural fibre is reinforced in the LM6 material by using metal casting process with open mould technique. LM6 material was melted using induction furnace which required 650°C for melting point. The structure and composition of the composite materials is determined using EDX (Energy Dispersive X-ray) to show that fibres are absent on the surface of LM6. The microstructure of casted natural fibre-LM6 composites was presented using Zeiss Scanning Electron Microscope (SEM) with an accelerating voltage of 15kV. As a result, natural fibre composites were feasible to be introduced in metal matrix composites and potential for engineering application.
APA, Harvard, Vancouver, ISO, and other styles
3

Rohit, Ram, Linford Pinto, K. Mallikharjuna Babu, Martin Jebraj, and Harsha R. Gudi. "Fabrication and Comparison of Mechanical Properties of Jute and Glass Fibre Reinforced Composites." Applied Mechanics and Materials 592-594 (July 2014): 344–48. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.344.

Full text
Abstract:
The properties of fiber reinforced composites (FRP) like high strength to weight ratio, high stiffness to weight ratio, flexibility in design, ease of fabrication with economical savings as compared to metal alloys, make it an excellent choice for various range of products from building materials, sporting equipment, appliances, automotive parts, boats, canoe hulls to bodies for recreational vehicles. In this study the properties of natural fibre composite are compared with composite made of artificial fibres. The natural fibre chosen is jute fibre and the artificial fibre chosen is glass fiber. Polyester resin was the matrix used because of compatibility, cost effectiveness and easy availability. The composites were fabricated by Hand Layup technique and the number of layers of composite laminate was varied as three, four and five. The specimens were subjected to mechanical tests and Young’s Modulus, Ultimate Strength were evaluated. Modal analysis was carried out to determine the damping characteristics through damping ratio. A comparison of the two composites in terms of mechanical properties is made and the results are tabulated.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Sanjeev, Lalta Prasad, Vinay Kumar Patel, Virendra Kumar, Anil Kumar, Anshul Yadav, and Jerzy Winczek. "Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites." Polymers 13, no. 9 (April 22, 2021): 1369. http://dx.doi.org/10.3390/polym13091369.

Full text
Abstract:
In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.
APA, Harvard, Vancouver, ISO, and other styles
5

Vigneshwaran, G. Veerakumar, Iyyadurai Jenish, and Rajeshwaran Sivasubramanian. "Design, Fabrication and Experimental Analysis of Pandanus Fibre Reinforced Polyester Composite." Advanced Materials Research 984-985 (July 2014): 253–56. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.253.

Full text
Abstract:
Due to the light weight, high strength to weight ratio, corrosion resistance and other advantages, natural fibre based composites are becoming important composite materials in mechanical engineering fields. The current project emphasizes the newly identified Pandanus Fibre (Pandanus Fascicularis) which is extracted from the stem of screw pine tree by the manual water treatment process. The mechanical properties of chopped Pandanus fibre by Polyester composites are investigated and compared with the similar natural fibres in the fibre reinforced composite material field. The composite plates were fabricated with raw pandanus fibres by compression moulding method with varying weight percentage and lengths of fibre.
APA, Harvard, Vancouver, ISO, and other styles
6

Chavan, Vithal Rao, K. R. Dinesh, K. Veeresh, Veerabhadrappa Algur, and Manjunath Shettar. "Influence of post curing on GFRP hybrid composite." MATEC Web of Conferences 144 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201814402011.

Full text
Abstract:
Composite materials for the most part depicted as the mixes of two or more materials that outcome in the unmistakable properties than that of guard materials. Fibre strengthened plastics have been all around utilized for get-together flying machine and transport key parts as a delayed consequence of their specific mechanical and physical properties, for example, high particular quality and high particular robustness. Another pertinent application for fibre maintained polymeric composites (particularly glass fibre strengthened plastics) is in the electronic business, in which they are utilized for passing on printed wiring sheets. The utilization of polymer composite materials is winding up being powerfully essential. The present work delineates the change and mechanical portrayal of new polymer composites including glass fibre fortress, epoxy and maple cellulose fibre. The starting late made composites are delineated for their mechanical properties. The composite spreads were set up by utilizing hand layup framework. The experiments were conducted on and studied the effect of post curing on hybrid composites. The result reveals that the samples only with natural fibre have more promising results compared with synthetic fibre. The synthetic fibres get wrinkled due to post curing were as no such visuals in the natural fibres.
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Jie, Han Shi, Lei Tao, Liangliang Qi, Wei Min, Hui Zhang, Muhuo Yu, and Zeyu Sun. "Effect of Fibres on the Failure Mechanism of Composite Tubes under Low-Velocity Impact." Materials 13, no. 18 (September 17, 2020): 4143. http://dx.doi.org/10.3390/ma13184143.

Full text
Abstract:
Filament-wound composite tubular structures are frequently used in transmission systems, pressure vessels, and sports equipment. In this study, the failure mechanism of composite tubes reinforced with different fibres under low-velocity impact (LVI) and the radial residual compression performance of the impacted composite tubes were investigated. Four fibres, including carbon fiber-T800, carbon fiber-T700, basalt fibre, and glass fibre, were used to fabricate the composite tubes by the winding process. The internal matrix/fibre interface of the composite tubes before the LVI and their failure mechanism after the LVI were investigated by scanning electric microscopy and X-ray micro-computed tomography, respectively. The results showed that the composite tubes mainly fractured through the delamination and fibre breakage damage under the impact of 15 J energy. Delamination and localized fibre breakage occur in the glass fibre-reinforced composite (GFRP) and basalt fibre-reinforced composite (BFRP) tubes when subjected to LVI. While fibre breakage damage occurs globally in the carbon fibre-reinforced composite (CFRP) tubes. The GFRP tube showed the best impact resistance among all the tubes investigated. The basalt fibre-reinforced composite (BFRP) tube exhibited the lowest structural impact resistance. The impact resistance of the CFRP-T700 and CFRP-T800 tube differed slightly. The radial residual compression strength (R-RCS) of the BFRP tube is not sensitive to the impact, while that of the GFRP tube is shown to be highly sensitive to the impact.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Chenkai, Jingjing Li, Mandy Clement, Xiaosu Yi, Chris Rudd, and Xiaoling Liu. "The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites." Journal of Fire Sciences 37, no. 3 (May 2019): 257–72. http://dx.doi.org/10.1177/0734904119849395.

Full text
Abstract:
This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.
APA, Harvard, Vancouver, ISO, and other styles
9

Siregar, Januar Parlaungan, Tezara Cionita, Dandi Bachtiar, and Mohd Ruzaimi Mat Rejab. "Tensile Properties of Pineapple Leaf Fibre Reinforced Unsaturated Polyester Composites." Applied Mechanics and Materials 695 (November 2014): 159–62. http://dx.doi.org/10.4028/www.scientific.net/amm.695.159.

Full text
Abstract:
In recent years natural fibres such as sisal, jute, kenaf, pineapple leaf and banana fibres appear to be the outstanding materials which come as the viable and abundant substitute for the expensive and non-renewable synthethic fibre. This paper investigate the effect of fibre length and fibre content on the tensile properties of pineapple leaf fibre (PALF) reinforced unsaturated polyester (UP) composites. PALF as reinforcement agent will be employed with UP to form composite material specimens. The various of fiber length (<0.5, 0.5–1, and 1-2 mm) and fibre content (0, 5, 10 and 15 % by volume) in UP composite have been studied. The fabrication of PALF/UP composites used hand lay-up process, and the specimens for tensile test prepared follow the ASTM D3039. The result obtained from this study show that the 1-2 mm fibre length has higher tensile strength (42 MPa) and tensile modulus (1344 MPa) values compared to fibre length of <0.5 mm (30 MPa and 981 MPa) and 0.5-1 mm (35.40 MPa and 1020 MPa) respectively. Meanwhile, for the effect of various fibre content in study has shown that the increase of fibre content has decreased in tensile strength dan tensile modulus of composites. The increase of fibre content due to poor interfacial bonding and poor wetting of the fibre by unsaturated polyster. The treatment of natural fibre are suggested in order to improve the interfacial adhesion between natural fibre and the unsaturated polyester.
APA, Harvard, Vancouver, ISO, and other styles
10

Prasad, Lalta, Shiv Kumar, Raj Vardhan Patel, Anshul Yadav, Virendra Kumar, and Jerzy Winczek. "Physical and Mechanical Behaviour of Sugarcane Bagasse Fibre-Reinforced Epoxy Bio-Composites." Materials 13, no. 23 (November 27, 2020): 5387. http://dx.doi.org/10.3390/ma13235387.

Full text
Abstract:
In this study, experiments are performed to study the physical and mechanical behaviour of chemically-treated sugarcane bagasse fibre-reinforced epoxy composite. The effect of alkali treatment, fibre varieties, and fibre lengths on physical and mechanical properties of the composites is studied. To study the morphology of the fractured composites, scanning electron microscopy is performed over fractured composite surfaces. The study found that the variety and lengths of fibres significantly influence the physical and mechanical properties of the sugarcane bagasse-reinforced composites. From the wear study, it is found that the composite fabricated from smaller fibre lengths show low wear. The chemically-treated bagasse-reinforced composites fabricated in this study show good physical and mechanical properties and are, therefore, proposed for use in applications in place of conventional natural fibres.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fibre composite"

1

Farooq, Mohammed. "Development of FRP based composite fibre for fibre reinforced cementitious composites." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57668.

Full text
Abstract:
This thesis describes a method of development of a novel fibre based on fibre reinforced polymers (FRP), for use fibre reinforcement in concrete. Thermosetting epoxy resin matrix were reinforced with E-glass, S-glass, and Carbon fibre to produce different types of composite fibres. The FRP panels were produced using the Vacuum Infusion technique, and then cut to different fibre sizes. The volume fractions of reinforcements within the FRP fibre were controlled by using woven and unidirectional fabrics. The number of layers of reinforcing fibres were also changed, to obtain the optimal thickness of the fibres. The FRP material was characterized by means of tensile tests and microscope image analysis. Four different compositions of FRP were produced with tensile strengths ranging from 195 MPa to 950 MPa. The different combinations in geometry broadened the total number of fibres investigated to 12. Single fibre pullout tests were performed to obtain the fundamental fibre-matrix interfacial bond parameters for the different FRP fibres. The FRP fibres, being hydrophilic, along with having a unique rough surface texture, showed a good bond with cement matrix. A bond strength superior to industrially available straight steel fibres and crimped polypropylene fibres has been observed. The 3 best fibres were then chosen to examine the flexural behaviour FRP fibre reinforced concrete beams. The optimized FRP fibres, one each of Glass FRP and Carbon FRP were then further investigated to study the effect of matrix maturity, temperature, fibre inclination, and loading rate on the fibre-matrix interfacial behaviour using single fibre pullout tests. Scanning Electron Microscope (SEM) analysis was carried out to identify the effect of above-mentioned factors on the surface characteristics of the fibre. An attempt was also made to optimize the fibre-matrix interface to achieve an optimized failure mechanism by coating the fibre with oil. The ability of the fibre to transfer stresses across a cracked section over extended periods has been investigated by means of fibre-relaxation tests. Finally, to assess durability, the fibres were conditioned at high pH and high temperature after which single fibre pullout, direct tension tests, & SEM analysis were conducted.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
2

Thanomsilp, Chuleeporn. "Toughening composites for liquid composite moulding." Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wood, Geoffrey Michael. "Treatment of polyethylene fibre for improved fibre to resin adhesion in composite applications." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28528.

Full text
Abstract:
Tensile properties of polyethylene fibres are shown to be very good in comparison to properties of other advanced composite reinforcing fibres. Nevertheless, the use of polyethylene fibres in polymeric matrix composites suffers due to a poor fibre to resin adhesion. However, its ballistic properties are excellent because of the poor adhesion and also fibre ductility. Applications involving structural use of polyethylene fibres are limited by, among others, the low compressive and shear strengths. These are affected strongly by the degree of adhesion. Improvements in bonding are expected to result in greater commercial appeal for the fibres as the property limitations are reduced. Ultra Violet radiation has been shown previously, in laboratory scale batch studies, to induce graft co-polymerization of monomers to polyethylene films. Improvements in wettability and adhesion result when the grafted polymer is compatible to the bonding medium. In this study the technique was adapted to bench scale, continuous fibre treatment, whereby the monomer was surface grafted to the polyethylene substrate. Acrylic acid monomer was used for this due to its relative safety, small molecular size, and high reactivity. Reaction initiation was provided by use of a benzophenone photosensitizer due to the stability of polyethylene to UV radiation. The reaction was performed by pre-coating the fibres with reactants, then exposure to UV radiation. Results of the continuous process for fibre treatment indicate that the monomer concentration and temperature of the preliminary soakings are key variables. Adhesion improvement was measured by single fibre pullout tests and interlaminar shear strength (ILSS) tests. Of these, the ILSS appeared to be more sensitive for judging small improvements. Tensile tests were used to judge property deterioration due to treatment, and flexural property tests gave a preliminary indication of material behavior. The ILSS showed marked improvement from 1.5 ksi for untreated material to over 5.2 ksi for the better treatments. A competing treatment, plasma, shows ILSS values around 3 ksi. The flexural test indicated that failure of UV-grafted polyethylene was in tension, whereas failure of plasma and untreated material was in compression. The study has proven successful in improving the adhesion of polyethylene fibres to an epoxy resin matrix. Commercial viability is currently being developed through decreased process residence times and irradiation exposures.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
4

Goh, Kheng Lim. "Fibre reinforcement in fibre composite materials : effect of fibre shape." Thesis, University of Aberdeen, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395069.

Full text
Abstract:
The aim of this project was to investigate the effects of fibre shape on its ability to reinforce a fibre composite material. Analytical and finite element (FE) models of an axisymmetric fibre composite material were developed and used to achieve this aim. Fibres of cylindrical shape, ellipsoidal shape, with paraboloidal ends and with conical ends were considered: fibre geometry was further characterised by an axial ratio, q. The scope of this study covered elastic and plastic load transfer processes. The former corresponds to the initial loading stage whereby an applied tensile stress acting on a fibre composite causes stress in an elastic matrix to be transferred to an elastic fibre which is embedded in and adheres to the matrix. The latter corresponds to the next stage when, on progressive increase of the applied stress, the matrix yields and turns plastic and failure of adhesion at the fibre-matrix interface occurs. Two approaches were used to develop analytical models. In the first approach, equations were derived for calculating stress and displacement distributions in a general axisymmetric body. This approach was based on a stress function method for structural analysis of a statically indeterminate problem. The equations derived were implemented to model a fibre composite undergoing elastic load transfer by prescribing appropriate boundary conditions. However, the approach led to no useful solutions. In the second approach, first-order ordinary differential equations for solving axial, σz, and surface radial, σr, stresses in a fibre were formulated by considering forces at equilibrium in a stress element in a fibre subjected to a fibre-matrix interfacial stress. Equations for calculating these stresses to study plastic load transfer were derived from the differential equations by prescribing appropriate boundary conditions, σz was assumed to be constant in the radical direction of the fibre. For a cylindrical fibre, σz increases linearly, from zero at the ends, to a maximum value at the centre. At the other extreme, σz in a conical fibre was shown to be constant. The intermediate cases of a paraboloidal and an ellipsoidal fibre showed distribution of σz lying between these two extremes. The effectiveness of a fibre shape for reinforcement was defined for the plastic study. It was found that the conical fibre possessed the highest value; the cylindrical fibre gave the lowest value. From this study, it was concluded that: (1) an important property of all the tapers considered is to make the distribution of σz in a fibre more uniform; (2) fibres with conical ends are more effective for reinforcing fibre composite materials than cylindrical fibres.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Ching Hao. "Fire retardant behavior of Kenaf fibre reinforced Floreon composite." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19908/.

Full text
Abstract:
According to the report, more than 41% of fatalities in flight were to find to be caused by fire. In recent years, composites used in aircrafts are carbon fibre/ glass fibre reinforced epoxy, due to light weights and high strength properties. However, these composites are known as highly flammable. Serious fire incident will be created in a short time after a spark of fire. Furthermore, ingredients for fibre and epoxies are, toxic and resulting in the release of toxic gases during fire, and cutting off fresh air to survivors and hindering their escape. In the meantime, biopolymers have attracted considerable attention due to their environmentally friendly and sustainable nature, Kenaf Fibre (KF) is one of the most famous natural fibre used as a reinforcement in Polymer Matrix Composites (PMC). Kenaf is also known as Hibiscus Cannabimus L., and is an herbaceous annual plant that is grown in a wide range of weather conditions, growing more than 3 meters within 3 months. However, the inherent drawbacks associated with Floreon (FLO) based composites include brittleness, lower strength and high moisture sensitivity, which in turn limit their application in the aircraft industry. In order to overcome such drawbacks, two modification techniques were employed in this study: (1) incorporated kenaf fibre into polypropylene polymer with magnesium hydroxide flame retardant and (2) reinforces kenaf fibre and magnesium hydroxide by different combination of volume. Consequently, KF reinforced FLO or polypropylene (PP) composites with magnesium hydroxide (MH) flame retardant specimens were successfully developed using extrusion followed by hot pressing. The increment of KF contents in PP composites had shown higher tensile modulus and decomposed mass loss at onset temperature, but lower values in tensile strength, elongation, flexural strength and onset temperature. In the meantime, 25 wt% KF contented PP composite shown a slightly higher flexural strength, while the higher volume of MH filler in composites caused lower strength, tensile modulus, elongation, but with higher onset temperature and the 2nd peak temperature in thermogravimetric analysis (TGA) testing. Furthermore, increasing the KF contents in PP matrix has found lower mass residue. However, increasing of KF contents in MH contented composite had increased the mass residue at the end of the testing. On the other hand, the increment of the melt flow properties (MVR and MFR) was found for the KF or MH insertion, due to the hydrolytic degradation of the polylactic acid (PLA) in FLO. The deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. In the meantime, increasing the KF loadings caused the higher melt flow properties while the FLO composites with higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence, recorded lower melt flow properties. However, the complicated melt flow behavior of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading, causing lower melt flow properties. Besides that, insufficient resin for fibre wetting, hydrolytic degradation on the biopolymer and poor interfacial bonding were attributed to low strength profile. Yet, further addition of KF increased the tensile strength and flexural. Nevertheless, inserting KF and MH filler have shown positive outcome on flexural modulus. Insertion of KF and MH showed the deterioration of impact strength, while the addition of KF increased the impact strength. Meanwhile, FLO is a hydrophobic biopolymer which showed only a little of total water absorption. In this regard, for the first 24 hours, the water absorption rates were high for all bio-composites. Hence, it is worth mentioning that the high contents of KF in bio-composites shown higher saturation period and higher total amount of water absorption while MH caused shorter saturation period but lower total amount of water absorption. However, interface bonding incompatibility has increased the water absorption of KF/FLO/MH composites. Moreover, some synergistic effect was located in char formation, Tg reduction and a lower tan δ peak shown in the three-phase system (KF/FLO/MH). The MH filler was found to be more significant in enhancing mass residual. The Tg were show deterioration for all samples compared to pure FLO biopolymer. The melting temperature has found no meaningful change for either insertion of KF or MH or both. The values of co-coefficient, C recorded decreasing as increasing the fibre loading. This showing the fibres transfer the loading effectively. As conclusion, although 10KF5MH specimen does not have the best performance in mechanical properties, a higher flame retardancy shall provide KF reinforced FLO composite with MH filler for more applications in advanced sector especially, in hazardous environment.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Jing. "Différents traitements de surface des fibres de carbone et leur influence sur les propriétés à l'interface dans les composites fibres de carbone/résine époxyde." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2012. http://www.theses.fr/2012ECAP0038/document.

Full text
Abstract:
Les matériaux composites à base de fibres de carbone (CF) sont actuellement très utilises dans le domaine de l’aérospatiale, de la construction et du sport grâce à leurs excellentes propriétés mécaniques, une faible densité et une haute stabilité thermique. Les propriétés des composites dépendent fortement de la nature et de la qualité de l’interface fibre/matrice. Une bonne adhérence interfaciale permet un meilleur transfert de charge entre la matrice et les fibres. Les CFs sans traitement sont chimiquement inertes et présentent donc une faible adhérence vis-à-vis de la résine époxyde. Par ailleurs, les faibles propriétés transversales et interlaminaires limitent sensiblement la performance et la durée de vie des composites. Par conséquent, un type de renfort à base de fibres traitées est fortement souhaité pour améliorer les propriétés globales des composites, en particulier l'adhésion interfaciale entre les fibres et la matrice. Dans cette thèse, trois types de traitement de surface, l’ensimage, le traitement thermique et la croissance de nanotubes (CNTs), ont été appliqués aux CFs. En particulier, les CFs greffées de CNTs, se combinant avec les deux autres traitements, montrent la meilleure adhérence interfaciale avec la matrice époxyde. L’ensimage proposé peut améliorer la performance du CNT-CF hybride et minimiser les dommages aux fibres lors de la manipulation ultérieure tels que le transport et la préparation de composites. Tout d’abord, l’ensimage a été réalisé sur la surface des fibres par dépôt de résine époxyde en solution. L’ensimage permet de protéger les filaments au cours de la mise en oeuvre et favorise également la liaison fibre/matrice. Différentes formulations d’ensimage selon les proportions époxy/durcisseur ont été utilisées. La quantité d'ensimage déposée sur les fibres de carbone a été contrôlée en faisant varier la concentration de la solution d’ensimage. Ensuite, un traitement thermique, effectué sous un mélange de gaz à 600-750 oC, a permis de modifier la surface des CFs. L'influence de la composition du gaz, du temps de traitement et de la température sur les propriétés interfaciales des composites CFs/époxy a été systématiquement quantifiée. Enfin, des CNTs ont été greffés sur les CFs par une méthode de dépôt chimique en phase vapeur en continu afin d’obtenir un nouveau type de renfort hybride multi-échelle. Les CNTs greffés permettent d’augmenter la surface de contact et d’améliorer l’accrochage mécanique de la fibre avec la résine. De plus, ils pourraient améliorer la résistance au délaminage, les propriétés électriques et thermiques des composites. Les CFs greffées de CNTs de différentes morphologies et densités ont été produites en faisant varier les conditions de croissance. Après le traitement de surface, les essais de fragmentation ont été menés afin d’évaluer la résistance au cisaillement interfacial (IFSS) des composites CFs/époxy. Par rapport aux fibres vierges, l’ensimage et le traitement thermique ont contribué à une augmentation de l'IFSS de 35% et de 75%, respectivement. L'adhésion interfaciale entre la matrice époxyde et les fibres greffées avec CNTs pourrait être adaptée en faisant varier la morphologie, la densité de nombre et la longueur de CNT. Les CFs greffées avec 2% en masse de CNTs (10nm de diamètre) ont entraîné une amélioration de l'IFSS de 60%. Un traitement thermique et un ensimage pourraient contribuer à une augmentation supplémentaire de 108%. Il convient de mentionner que la dégradation des fibres n’a pas été observée après les divers traitements précédemment évoqués. Les résultats de ces travaux pourraient mener au développement de ces techniques à plus grande échelle pour la conception de structures à base de composites CFs/époxy
Carbon fiber (CF)-reinforced polymer composites are widely used in aerospace, construction and sporting goods due to their outstanding mechanical properties, light weight and high thermal stabilities. Their overall performance significantly depends on the quality of the fiber-matrix interface. A good interfacial adhesion provides efficient load transfer between matrix and fiber. Unfortunately, untreated CFs normally are extremely inert and have poor adhesion to resin matrices. Meanwhile, poor transverse and interlaminar properties greatly limit the composite performance and service life. Therefore, a new kind of fiber-based reinforcement is highly desired to improve the overall composite properties, especially the interfacial adhesion between fiber and matrix. In this thesis, three kinds of surface treatment, including sizing, heat treatment and carbon nanotube (CNT) growth, were applied to CFs. In particular, CFs grafted with CNTs, combining with the other two treatments demonstrate superior interfacial adhesion to the tested epoxy matrix. The proposed epoxy sizing can improve the CNT-CF hybrid performance and prevent fiber damage during the subsequent handling such as transport and composite preparation. Firstly, epoxy-based sizing was applied onto the CF surface by the deposition from polymer solutions. Sizing could not only protect the carbon fiber surface from damage during processing but also improve their wettability to polymer matrix. A detailed study was conducted on the influence of the ratio of epoxy and amine curing agent in the sizing formulation. The sizing level on the fiber surface was controlled by varying the concentration of polymer solutions. Secondly, heat treatment in a gas mixture at 600-750 oC was used to modify the carbon fiber surface. The effect of gas mixture composition, treatment time and temperature on the interface was evaluated systematically. Thirdly, CNTs were in-situ grafted on the carbon fiber surface by a continuous chemical vapour deposition (CVD) process to obtain hierarchical reinforcement structures. These hybrid structures have the potential to improve the interfacial strength of fiber/epoxy composites due to the increased lateral support of the load-bearing fibers. Meanwhile, the CNT reinforcement could improve the composite delamination resistance, electrical and thermal properties. The CF grown with CNTs of different morphologies and densities were produced by varying CVD conditions. After the surface treatment, single fiber fragmentation test was used to assess the interfacial shear strength (IFSS) of carbon fiber/epoxy composites. Compared with the as-received CFs, the epoxy sizing and the heat treatment contributed to an improvement in IFSS of up to 35% and 75%, respectively. The interfacial adhesion between epoxy matrix and CNT-grafted fibers could be tailored by varying the CNT morphology, number density and length. The CFs grafted with 2 wt% CNTs of 10 nm in diameter resulted in an improvement in IFSS of around 60%. A further heat treatment and epoxy sizing could contribute to an additional increase of 108%. It’s worth to mention that no significant strength degradation of the fibers was observed after the surface treatments. This work could support the development of large-scale approach to CF surface treatment, and throw light on the design of structurally efficient CF/epoxy composites
APA, Harvard, Vancouver, ISO, and other styles
7

Shuaib, Norshah. "Energy efficient fibre reinforced composite recycling." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/energy-efficient-fibre-reinforced-composite-recycling(554f1670-c818-4c74-9bfc-af3b51317e9b).html.

Full text
Abstract:
Composite materials are widely used in various sectors such as aerospace, automotive and wind energy. Global increase of demand, particularly for fibre reinforced plastic (FRP) composites, unavoidably lead to high volumes of manufacturing and end of life waste. Currently, the most common disposal route for composite waste is through landfill. However, current and impending legislations such as Directive on Landfill of Waste (1999/31/EC) and End of Life Vehicle (ELV) Directive (2000/53/EC), have limited the amount of composite waste permitted for landfilling. In addition, production of virgin composite materials requires higher energy input in comparison to other counterpart materials such as steel and aluminium. This calls for an urgent need for composite waste to be recycled and reused in close loop and cross sector applications. The composite materials have a heterogeneous nature. Thermoset matrixes, which are used in most high grade applications, have three dimensional cross-linked structures which make melting and remoulding impossible. Such complex nature requires appropriate composite recycling technologies, a number of which are currently under research and development. At this early stage it is important to select and develop sustainable solutions in terms of economic performance and reduced environmental impact. Unfortunately at present, there is limited high integrity environmental related data in literature to help assess the life cycle benefits of composite recycling. This information is vital in exploring environmental credentials of composite recycling processes, and to ensure resource efficient use of manufacturing and end of life composite waste. The work reported in this PhD thesis deals with the investigation of energy demand of composite recycling processes. Composite waste and demand in the UK market was captured through Sankey diagrams. The diagrams, combined with environmental footprints of virgin material and recycling processes, were used to identify resource benefits of composite recycling initiatives. Furthermore, environmental data for mechanical recycling of glass fibre composites was derived through new and novel bottom up process science inspired mathematical energy modelling approaches. It was found that the process specific energy demand is dependent on the processing rate. The effects of key process variables in mechanical recycling on process energy demand and recyclate quality were also investigated. This study highlights the importance of selecting the right conditions for running recycling processes and generating recyclate with a high market value. Potential of new recycling techniques, namely high voltage fragmentation, was also assessed. Performance of the method, which was originally developed for fracturing rocks, was compared to the mature mechanical recycling process. The final part of this study used a life cycle assessment method to evaluate end of life options for an automotive composite product with the highlights on positive environmental impacts of recycling scenarios. Collectively, the findings from this study have brought together considerations on environmental and maturity status of composite recycling processes, into a comprehensive and updated analysis. The vision is that the knowledge integration between environmental and performance aspects will promote the concept of sustainable use of composite materials and a circular economy. The new datasets developed will enable end of life options for composite waste to be evaluated in life cycle assessment. In the absence of such information, the life cycle impact of composite material use in products cannot be fully or correctly evaluated.
APA, Harvard, Vancouver, ISO, and other styles
8

Lloyd, Rachel Louise. "Recycling of carbon fibre composite material." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/11356.

Full text
Abstract:
Different routes for recycling carbon fibre composites from the aircraft industry were investigated for feasibility., Literature analysis revealed little previous ·work in this area, with most composite recycling investigations concentrating on automotive industry wastes. The magnitude of disposal of carbon fibre composite materials from the aircraft industry is estimated to be in the region of 350,000 tonnes between the years 2000 and 2050. Landfill cost investigations concluded that the corresponding disposal cost will be in the region of £52 million. Experimentation indicated that the material was stable in landfill conditions, whilst investigations into the health and safety aspects of composite recycling revealed that the materials were harmless unless reduced diameter fibres were released. Activation experiments concluded that the production of commercially viable active carbons was not possible - although the resins activated the carbon fibres did not. Maximum BET surface areas of 170 m2 g- 1 were achieved, despite employing different activation methods and pre-treatments. Therefore, alternative recycling routes were investigated. Two brainstorming sessions generated over forty options. After analysis for of these options were considered most likely to succeed and were investigated in more depth. . Fragment mitigation trials showed a significant reduction in fragment velocity (-20 %) using composite plates of 10.5 mm thickness, liquid-holding boxes resulted in fragment velocity reductions of up to 75 %. Delamination was localised to the area of impact. Literature based investigations of fibre recovery methods identified fluidised bed and high-pressure steam as the most likely to be viable, with fluidised bed plants breaking even at throughputs under 9,000 t/yr. Chemical digestion and resin burn off produced significantly weakened fibres, swelling resulted in the freeing of pre-preg layers. Artificial reef investigations showed that although the material did not appear to degrade in marine environments, it was unsuitable for organism growth. No organisms were attached after a period of 1 year. Pyrolysis appeared to be a viable option, with plants breaking even at throughputs of approximately 6,000 t/yr. Fragment mitigation, fluidised bed fibre recovery and pyrolysis were considered most likely to offer technically and economically viable recycling 1"9utes, and it is recommended that these routes should be investigated further.
APA, Harvard, Vancouver, ISO, and other styles
9

Fox, David Christopher Alexander. "The fire performance of restrained polymer-fibre-reinforced concrete composite slabs." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/17998.

Full text
Abstract:
Composite slab flooring systems for steel-framed buildings consist of a profiled steel deck and a cast in-situ slab. The slab traditionally includes a layer of light gauge steel mesh reinforcement. This mesh is placed near the surface, which controls the early-age cracking caused by concrete drying and shrinkage. The steel mesh also performs a vital structural role at high temperatures. Structural fire tests and numerical investigations over the last 15 years have established that the mesh can provide enhanced fire resistance. A load-carrying mechanism occurs in fire with the mesh acting as a tensile catenary, spanning between perimeter supports. This structural mechanism is currently utilised regularly in the performance-based fire engineering design of steel-framed buildings. In a recent development, this mesh can be removed by using concrete with dispersed polymer fibre reinforcement to form the composite slab. The polymer-fibre-reinforced concrete (PFRC) is poured onto the deck as normal, and the fibres resist early crack development. For developers this technique has several advantages over traditional reinforcing mesh, such as lower steel costs, easier site operations and faster construction. However, to date the fire resistance of such slabs has been demonstrated only to a limited extent. Single element furnace tests with permissible deflection criteria have formed the basis for the fire design of such slabs. But these have not captured the full fire response of a structurally restrained fibre-reinforced slab in a continuous frame. The polymer fibres dispersed throughout the slab have a melting point of 160ºC, and it is unclear how they contribute to overall fire resistance. In particular, there has been no explanation of how such slabs interact with the structural perimeter to maintain robustness at high deflections. This project was designed to investigate the structural fire behaviour of restrained polymer-fibre-reinforced composite slabs. An experimental series of six slab experiments was designed to investigate the effects of fibre reinforcement and boundary restraint. A testing rig capable of recording the actions generated by the heat-affected slab was developed and constructed. Model-scale slab specimens were tested with different reinforcement and perimeter support conditions, to establish the contributions to fire resistance of the polymer fibres and applied structural restraint.
APA, Harvard, Vancouver, ISO, and other styles
10

Leung, Ian Kin-Hay Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Development of composite cavity fibre lasers for fibre laser hydrophone systems." Publisher:University of New South Wales. Electrical Engineering & Telecommunications, 2008. http://handle.unsw.edu.au/1959.4/41248.

Full text
Abstract:
In this thesis, my main focus was to establish a novel composite-cavity fibre laser (CCFL) and to apply it in sensing, particularly in the hydrophone application. The CCFL that I have proposed is formed by writing three wavelength matched fibre Bragg gratings directly into a continuous length of doped fibre. I have also examined the relative advantages and disadvantages of interferometric and intensity-based hydrophone systems, and have established a hydrophone system that can be switched between the two modes of operation, by making use of digital signal processing. I have established a theoretical model to study the lasing and spectral characteristics of the CCFL. My analysis showed that whilst the CCFL have significantly different phase and threshold conditions from the common semiconductor diode lasers with external cavity, the CCFL also have mode-limiting properties that are often sought after. Through simulations, I was able to identify that a non-uniform straining scheme, that is, when one of the sub-cavities of the CCFL is restrained from strain, can improve the sensitivity with respect to existing single cavity fibre lasers, in both the frequency and intensity domains. My simulations also showed that the sensitivity of such a straining scheme can be optimised by tuning the reflectivity of the gratings, sub-cavity lengths, doping concentration and pump power. I have fabricated multiple CCFLs using the in-house grating writing facilities, and have experimentally assessed their power and spectral related lasing characteristics. Whilst having a significantly longer total cavity length compared to typical fibre lasers, the CCFLs demonstrated stable single longitudinal mode operation and narrow linewidth in the order for a few tens of kHz. Asymmetric output power and frequency as a result of unequal sub-cavity lengths were also examined. Finally, I conducted sensing experiments by applying the CCFLs in strain monitoring and intensity-based hydrophone. My results showed that the non-uniform straining scheme had significantly improved the intensity response of the CCFL, and that the acoustic pressure and frequency can be determined by directly sampling and applying Fourier transform to the output intensity of the fibre laser.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fibre composite"

1

Piggott, Michael R. Load bearing fibre composites. 2nd ed. Boston: Kluwer Academic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yallee, Rahman Bin. Single-fibre composite micromechanics. Manchester: UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Haddad Y., and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Advanced multilayered and fibre-reinforced composites. Dordrecht: Kluwer Academic, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Micromechanics of composites: Composite properties of fibre and matrix constituents. Munich: Hanser, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metals, Institute of, ed. Wood: Nature's cellular, polymeric, fibre-composite. London: Institute of Metals, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1953-, Renard J., ed. Fundamentals of fibre reinforced composite materials. Bristol: Institute of Physics Publishing, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kullaa, Jyrki. Constitutive modelling of fibre-reinforced brittle materials. Espoo, Finland: VTT, Technical Research Centre of Finland, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garroch, Christopher. Thermoelastic assessment of moulded fibre-reinforced composite materials. Manchester: University of Manchester, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Babayan, Aram M. Resorbable short-fibre reinforced composite for fracture fixation. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Cardon A., and Verchery G, eds. Mechanical characterisation of load bearing fibre composite laminates. London: Elsevier Applied Science Publishers, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fibre composite"

1

Bolton, William, and R. A. Higgins. "Fibre-reinforced composite materials." In Materials for Engineers and Technicians, 335–50. Seventh edition. | Abingdon, Oxon ; New York, NY : Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9781003082446-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liceaga, J. F., and J. J. Imaz San Miguel. "Reprocessing of Carbon Fibre/PEEK Laminates." In Composite Structures 4, 210–17. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3457-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robins, P. J., and S. A. Austin. "Melt Extract Fibre Reinforced Sprayed Concrete." In Composite Structures 3, 242–53. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4952-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robins, P. J., S. A. Austin, and C. H. Peaston. "Toughness Testing of Fibre Reinforced Concrete." In Composite Structures 5, 729–42. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1125-3_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ben, and Hang Gao. "Fibre Reinforced Polymer Composites." In Advances in Machining of Composite Materials, 15–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71438-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Molyneaux, A. K., and A. R. Curtis. "Buckling and Postbuckling of Carbon Fibre PEEK Composite Panels." In Composite Structures, 325–37. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3662-4_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohamed, H., D. W. Bao, and R. Snooks. "Super Composite: Carbon Fibre Infused 3D Printed Tectonics." In Proceedings of the 2020 DigitalFUTURES, 297–308. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4400-6_28.

Full text
Abstract:
AbstractThis research posits an innovative process of embedding carbon fibre as the primary structure within large-scale polymer 3D printed intricate architectural forms. The design and technical implications of this research are explored and demonstrated through two proto-architectural projects, Cloud Affects and Unclear Cloud, developed by the RMIT Architecture Snooks Research Lab. These projects are designed through a tectonic approach that we describe as a super composite – an approach that creates a compression of tectonics through algorithmic self-organisation and advanced manufacturing. Framed within a critical view of the lineage of polymer 3D printing and high tech fibres in the field of architectural design, the research outlines the limitations of existing robotic processes employed in contemporary carbon fibre fabrication. In response, the paper proposes an approach we describe as Infused Fibre Reinforced Plastic (IFRP) as a novel fabrication method for intricate geometries. This method involves 3D printing of sacrificial formwork conduits within the skin of complex architectural forms that are infused with continuous carbon fibre structural elements. Through detailed observation and critical review of Cloud Affects and Unclear Cloud (Fig. 2), the paper assesses innovations and challenges of this research in areas including printing, detailing, structural analysis and FEA modelling. The paper notes how these techniques have been refined through the iterative design of the two projects, including the development of fibre distribution mapping to optimise the structural performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Wootton, A. J., J. C. Hendry, A. K. Cruden, and J. D. A. Hughes. "Structural Automotive Components in Fibre Reinforced Plastics." In Composite Structures 3, 19–42. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4952-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, R., and J. Paul. "Fibre Composite Repairs to Damaged Structural Components." In Composite Structures 5, 1–37. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1125-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vaziri, R., M. D. Olson, and D. L. Anderson. "Constitutive Modelling of Laminated Fibre-Reinforced Composites." In Composite Structures 5, 715–27. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1125-3_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fibre composite"

1

Schwarzova, Ivana, Nadezda Stevulova, and Tomas Melichar. "Hemp Fibre Reinforced Composites." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.044.

Full text
Abstract:
The conventional homogeneous materials can no longer effectively satisfy the growing demands on product capabilities and performance, due to the advancement in products design and materials engineering. Therefore, the fibre reinforced composites with better properties and desirable applications emerged. Natural fibres have high strength to low weight ratios and have good sound and thermal insulation properties. Combination of organic filler and inorganic matrix creates high-quality products such as fibre boards and composites. The great importance is attached to industrial hemp as source of the rapidly renewable fibres and as non-waste material. Industrial hemp fibre has great potential in composite materials reinforcement. However, improving interfacial bonding between fibres and matrix is an important factor for its using in composites. This paper deals with hemp fibre reinforced composites in civil engineering as component part of sustainable construction. Prepared lightweight composites based on original and pre-treated hemp hurds are characterized by selected physical and mechanical properties (density, thermal conductivity, water absorbability, compressive and tensile strength) in dependence on used inorganic binder (traditional Portland cement and alternative MgO-cement).
APA, Harvard, Vancouver, ISO, and other styles
2

Khaleque, Abdul, and Haroldo T. Hatorri. "Tunable Composite Gratings." In Australian Conference on Optical Fibre Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acoft.2016.jm6a.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Davidson, Roger, Dennis H. Bowen, and Scott S. J. Roberts. "Composite Materials Monitoring Through Embedded Fibre Optics." In Fibre Optics '89, edited by Peter McGeehin. SPIE, 1989. http://dx.doi.org/10.1117/12.960983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prabhakaran, R. T. Durai, James Thomason, and Liu Yang. "Recycled glass fibre/polyester resin system - interface characterization." In Brazilian Conference on Composite Materials. Pontifícia Universidade Católica do Rio de Janeiro, 2018. http://dx.doi.org/10.21452/bccm4.2018.14.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wielage, B., K. Fleisher, and G. Zimmerman. "Investigations on Thermal Sprayed Carbon-Short-Fiber-Reinforced Aluminum Composites." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0349.

Full text
Abstract:
Abstract Composite coatings are increasingly applied for the protection against wear in mechanical constructions. Especially, in the case of abrasion these coatings offer the possibility to protect the base material. The matrix is ductile and the reinforcements cause the higher strength and hardness. A research project presented in this paper dealt with the manufacture of carbon-short-fibre-reinforced aluminum composite coatings by vacuum plasma spraying. The basis of the processing is the agglomeration of aluminum powder and carbon fibres. During the spraying process the aluminum melts, covers the fibres, and so, contributes to the creation of the composite coating and/or the composites. The processing times are so short that the damaging formation of carbides can be suppressed mostly. For the creation of free standing bodies it is necessary to find a qualified core material which allows the removing of the sprayed composites. The investigations on the composites are focused on the metallographical judgement regarding the fibre and void content, the fibre distribution, the characterization of the interface as well as the determination of mechanical properties and the wear resistance.
APA, Harvard, Vancouver, ISO, and other styles
6

Measures, R. M., N. D. W. Glossop, J. Lymer, S. Dubois, W. Tsaw, J. West, and R. C. Tennyson. "Fibre-Optic Impact Damage Detection Of Composite Materials." In Fibre Optics '88, edited by Lionel R. Baker. SPIE, 1988. http://dx.doi.org/10.1117/12.947537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ameri Sianaki, Abolfazl, Brian Evans, Vamegh Rasouli, Reem Roufail, and Gordon Stewart. "Effect of Embedded Electric Sensor on the Structural Strength of Filament Wound Hybrid Composite." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23069.

Full text
Abstract:
Filament wound composites (FWC) consist of multiple layers of carbon/glass fibres within an epoxy matrix at different angles of orientation to achieve required mechanical properties. The type of hybrid composite and method of fabrication may be tailored to develop a smart pipe with embedded sensors for use in mineral exploration drill pipe applications. Experimental work and numerical simulations were performed in order to understand the effect of the filament angle-ply and how embedded sensors altered the overall mechanical structure strength of the angle-ply composite. Numerical analysis was performed using Hypersizer, to understand the stress distribution on each of the laminated layers, their angles, and the presence of a sensor on the strength of the composite’s structure. The experimental work was carried out to validate the numerical analysis results. Experiments on two specimens are reported in this study, being with and without an embedded sensor. Eight plies were fabricated with the characteristic angle-ply of filament, wound in a rhomboid pattern. Due to the electrical conductivity of carbon fibre, the sensors’ performance was anticipated to deteriorate. Consequently a hybrid structure was designed. Glass fibre was wrapped around the sensors for isolation and the glass fibre, along with the sensors were then embedded in the carbon fibre filament wound structure. The fabricated hybrid specimens were then subjected to simple tensile tests in the lab. The mechanical strength of both specimens, with and without sensors, was compared to determine the effect of embedding the sensor within this hybrid composite.
APA, Harvard, Vancouver, ISO, and other styles
8

Demirci, Emrah, Memis¸ Acar, Behnam Pourdeyhimi, and Vadim V. Silberschmidt. "Anisotropic Elastic-Plastic Mechanical Properties of Thermally Bonded Bicomponent Fibre Nonwovens." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24664.

Full text
Abstract:
Having a unique structure, nonwoven fabrics possess distinct mechanical properties dissimilar to those of woven fabrics and composites. Anisotropic elastic-plastic mechanical properties of core/sheath type thermally bonded bicomponent fibre nonwoven textiles are computed based on manufacturing parameters and fibre properties. Initially, tensile tests are performed on nonwoven fabrics and their single fibres to assess their mechanical behaviour and obtain input parameters for the developed algorithms. Random orientation of individual fibres is introduced into the model in terms of the orientation distribution function (ODF). An algorithm, based on the Hough transform, is developed to determine the ODF and calculate the structure’s anisotropy. The nonwoven fabric is modelled as an assembly of two regions — bond points and a fibre matrix, having distinct mechanical properties. Bond points are treated as a deformable bicomponent composite material composed of the sheath material of fibres as matrix reinforced with the core material as fibres with random orientation of reinforcement. On the other hand, the fibre matrix is treated as a composite membrane structure having low stiffness in thickness direction. A second algorithm is developed to calculate anisotropic material properties of these regions based on fibre characteristics and manufacturing parameters; it can be used in numerical modelling as well as product development and optimization of nonwovens.
APA, Harvard, Vancouver, ISO, and other styles
9

Ribeiro Junior, Aluizio H., Juan E. Gomez, Devin W. Hale, Maikson L. P. Tonatto, and Tulio H. Panzera. "Effects of silica microparticles in glass fibre/epoxy laminates." In Brazilian Conference on Composite Materials. Pontifícia Universidade Católica do Rio de Janeiro, 2018. http://dx.doi.org/10.21452/bccm4.2018.13.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ciambella, Jacopo, and David C. Stanier. "Orientation Effects in Short Fibre-Reinforced Elastomers." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40430.

Full text
Abstract:
The large strain behaviour of a short fibre-reinforced composite is studied through numerical simulations. The reinforcing fibres yield the macroscopic response transversely isotropic which is indeed the case of many reinforcements currently used in composites: short carbon fibres, cellulose whiskers, carbon nanotubes. As a result of the analysis, it is shown that the reorientation of the fibres that takes place at large strain has a significant effect on the overall material response by changing the axis of isotropy. This behaviour can be adequately described by using a transversely isotropic model whose strain energy function depends on three invariants: two isotropic and one representing the stretch along the direction of the fibres. To assess its capabilities, the model is compared to the results of experiments carried out by the authors on nickel-coated chopped carbon fibres in a vulcanised natural rubber matrix for which the fibre orientation is achieved by controlling an external magnetic field prior to curing. Possible applications include micro-sized propulsion devices and actuators.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fibre composite"

1

Zhu, Y. T., J. A. Valdez, I. J. Beyerlain, M. G. Stout, S. Zhou, N. Shi, and T. C. Lowe. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/763899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Piggott, Michael R. Mesomechanical Model for Fibre Composites. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burchell, T. D., M. R. Rogers, and A. M. Williams. Carbon fiber composite molecular sieves. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/450756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kimball, Brett. Continuous Fiber Composite Electrofusion Couplers. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1556091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fareed, Ali, and Phillip A. Craig. Continuous Fiber Ceramic Composites. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/834518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morgan, Robert, Brandon McReynolds, Katheryn Husmann, John McCoy, Ryan Maki, Ryan Holguin, John Bernardin, and Antranik Siranosian. Markforged Continuous Fiber Composite Material Testing. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1641543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rawls, G. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Coppola, Anthony, Omar Faruque, James F. Truskin, Derek Board, Martin Jones, Jian Tao, Yijung Chen, and Manish Mehta. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project). Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Westman, Matthew P., Leonard S. Fifield, Kevin L. Simmons, Sachin Laddha, and Tyler A. Kafentzis. Natural Fiber Composites: A Review. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/989448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Caputo, A. J., R. A. Lowden, and H. H. Moeller. Fiber-reinforced ceramic tubular composites. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6525667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography