Academic literature on the topic 'Fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fibers"
Parasakthibala, Ms G., and Mrs A. S. Monisha. "A Review on Natural Fibers; Its Properties and Application Over Synthetic Fibers." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (August 31, 2022): 1894–97. http://dx.doi.org/10.22214/ijraset.2022.46530.
Full textKumar,, Ravikant, and Rahul Sharma. "A Comparative Study of the Use of Concrete Mix Using Jute Fibers." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 511–15. http://dx.doi.org/10.22214/ijraset.2022.42207.
Full textZhou, Rong, and Ming Xia Yang. "Research on Mechanical Properties of Several New Regenerated Cellulose Fibers." Advanced Materials Research 332-334 (September 2011): 489–95. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.489.
Full textBORISADE, Sunday Gbenga, Isiaka Oluwole OLADELE, Oyetunji AKINLABI, Abdullahi Olawale ADEBAYO, and Olaoluwa Abraham OLUWASANMI. "IMPACT OF ALKALINE TREATMENT ON THE CONSTITUENTS, STRENGTH AND MORPHOLOGICAL CHARACTERISTICS OF BANANA FIBER." European Journal of Materials Science and Engineering 8, no. 2 (June 20, 2023): 102–7. http://dx.doi.org/10.36868/ejmse.2023.08.02.102.
Full textPalanikumar, K., Elango Natarajan, Kalaimani Markandan, Chun Kit Ang, and Gérald Franz. "Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites." Fibers 11, no. 5 (May 9, 2023): 43. http://dx.doi.org/10.3390/fib11050043.
Full textManshor, R. M., Hazleen Anuar, Wan Busu Wan Nazri, and M. I. Ahmad Fitrie. "Preparation and Characterization of Physical Properties of Durian Skin Fibers Biocomposite." Advanced Materials Research 576 (October 2012): 212–15. http://dx.doi.org/10.4028/www.scientific.net/amr.576.212.
Full textZhang, Wei, Xu Wang, and Hong Wei Xing. "Numerical Simulation of the Cooling Process of the Blast Furnace Slag Fiber." Advanced Materials Research 934 (May 2014): 223–29. http://dx.doi.org/10.4028/www.scientific.net/amr.934.223.
Full textAngel, Allen, and Kathryn A. Jakes. "Preparation And elemental analysis of ancient fibers." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 410–11. http://dx.doi.org/10.1017/s0424820100126846.
Full textReddy, K. Tharun Kumar, and Srikanth Koniki. "Mechanical properties of concrete reinforced with graded pva fibers." E3S Web of Conferences 309 (2021): 01177. http://dx.doi.org/10.1051/e3sconf/202130901177.
Full textLiu, Xue-Yan, Yu Ye, Ke Li, and Yun-Qi Wang. "Stress Path Efforts on Palm Fiber Reinforcement of Clay in Geotechnical Engineering." Water 15, no. 23 (November 22, 2023): 4053. http://dx.doi.org/10.3390/w15234053.
Full textDissertations / Theses on the topic "Fibers"
Santos, Eliane Moura dos. "Processos relacionados a inserção de fluidos para sensoriamento com fibras de cristal fotônico." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278251.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-11T19:12:29Z (GMT). No. of bitstreams: 1 Santos_ElianeMourados_M.pdf: 4020531 bytes, checksum: 57766702771129e7f4bfe1d0c7852f67 (MD5) Previous issue date: 2007
Resumo: Este trabalho apresenta estudos de como inserir fluidos (líquidos e gases) em fibras ópticas microestruturadas, especialmente fibras de cristal fotônico, também conhecidas como PCF¿s (do inglês Photonic Crystal Fibers). Estas fibras possuem buracos de ar que percorrem todo seu comprimento. Elas podem ser divididas em dois grandes grupos: as de núcleo sólido que guiam luz por reflexão interna total e as de núcleo oco que guiam luz por um mecanismo conhecido como photonic bandgap. Ambos os tipos de fibras permitem várias aplicações em áreas como óptica e fotônica e nos dedicamos aqui à área de sensoriamento a fibra. Nesta área, usamos os microburacos para inserir fluido e dessa maneira manipular as propriedades de guiamento (em fibras de núcleo líquido), deixar a fibra mais sensível a algum parâmetro externo ou para sensoriar o fluido em questão. Nos três casos, precisamos estudar os processos de preenchimentos de fibras microestruturadas. Para este fim, estudamos e desenvolvemos maneiras de inserir fluidos em fibras de núcleos sólidos ou ocos. Usando preenchimento seletivo, produzimos fibras com núcleo líquido, criando uma região de alta interação entre luz e material. Neste trabalho, estudamos diferentes técnicas de preenchimento. A primeira, para fibras de núcleo líquido, é um preenchimento seletivo que pode ser feito usando uma máquina de emendas (splicer) ou um polímero para bloquear os microburacos. O outro consiste em manter as pontas das fibras livres (para medidas ópticas) enquanto o preenchimento é feito. Por fim, usamos o conhecimento desses processos em aplicações como sensoriamento de fluidos ou parâmetros externos e manipulação de propriedades de guiamento da luz
Abstract: This work presents studies of how to insert fluids (liquid and gas) into microstructured optical fibers, especially photonic crystal fibers, also known as PCF¿s. These optical fibers possess air holes that run along its entire length. They can be divided into two major groups: solid core fibers that guide light by total internal reflection and hollow core fibers that guide light by photonic bandgap. Both types of fibers allow several applications in areas such as optics and photonics and we dedicated this work to the fiber-sensing field. In this area we use the micro holes to insert fluids and in this way to manipulate the guidance properties in liquid core fibers, to leave the fiber more sensitive to some external parameter or to sensing the fluid. In these three cases we need to study the filling procedures in microstructured fibers. For this purpose, we studied and developed ways of inserting fluids in hollow and solid core fibers. We produced liquid core fibers, creating a high light-material overlap, using a selective filling technique. In this work we studied different filling techniques. The first one, for liquid core fibers, is a selective filling, which can be done by using a splicer machine or a polymer to block the fiber micro holes. The last one consists of keeping the fiber tips free (for optical measurements) while the filling is done. And finally we used the filling process knowledge in applications like sensing of fluids or external parameters and manipulation of guidance properties
Mestrado
Física Geral
Mestre em Física
MURA, EMANUELE. "PHOPSHATE OPTICAL FIBERS FOR IR FIBER LASERS." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2544536.
Full textPaye, Corey. "An Analysis of W-fibers and W-type Fiber Polarizers." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/32474.
Full textMaster of Science
Washburn, Brian Richard. "Dispersion and nonlinearities associated with supercontinuum generation in microstructure fibers." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/30964.
Full textPolley, Arup. "High performance multimode fiber systems a comprehensive approach /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31699.
Full textCommittee Chair: Ralph, Stephen; Committee Member: Barry, John; Committee Member: Chang, G. K.; Committee Member: Cressler, John D.; Committee Member: Trebino. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Rugeland, Patrik. "Applications of monolithic fiber interferometers and actively controlled fibers." Doctoral thesis, KTH, Laserfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118750.
Full textSyftet med denna avhandling var att utveckla tillämpningar av monolitiska fiber komponenter samt aktivt kontrollerbara fiber. En speciell tvillingkärnefiber, även kallad ’Geminifiber’ användes för att konstruera fiber interferometrar med identisk armlängd som ej påverkas av termiska och mekaniska variationer. En bredbanding utbytarmultiplexor konstruerades genom att skriva in fiber Bragg gitter inuti grenarna på en Gemini Mach-Zehnder interferometer. Geminifibrer med interna metallelektroder användes för att konstruera en bredbandig nanosekundsnabb interferometrisk fiberomkopplare. Därtill användes en tvillingkärnefiber som en hög-temperatursensor. Även om komponenten direkt kan användas upp till 300 °C, måste den värmebehandlas för att kunna användas upp till 700 °C. Arbetet har innefattat utveckling, konstruktion och utvärdering av komponenterna parallellt med numeriska simuleringar för att analysera deras beteenden samt få insikt om de underliggande fysikaliska processerna. Avhandlingen behandlar även tillämpningar av en elektriskt styrbar fiber för att filtrera radiofrekvenser. Ett ultrasmalt fasskiftat fiber Bragg gitter skrevs in i en fiber med interna elektroder och användes som ett svepande filter för att mäta modulationsfrekvensen på en optisk bärfrekvens. Ett liknande gitter användes inuti en laserkavitet för att generera två olika våglängder samtidigt. Dessa två våglängder användes sedan för att generera en svävningsfrekvens i mikrovågsbandet. De undersökta monolitiska fiberinterferometrarna och de aktivt styrbara fibrerna erbjuder en utmärkt byggsten inom så pass skiljda områden som Mikrovågsfotonik, Telekommunikation, Sensorer samt Höghastighets-omkopplare och bör kunna användas inom många olika tillämpningar i framtiden.
QC 20130226
Kominsky, Daniel. "Development of Random Hole Optical Fiber and Crucible Technique Optical Fibers." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28949.
Full textPh. D.
Richmond, Eric William. "Birefringent single-arm fiber optic enthalpimeter for catalytic reaction monitoring." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07282008-135248/.
Full textAcera, Fernandez José. "Modification of flax fibres for the development of epoxy-based biocomposites : Role of cell wall components and surface treatments on the microstructure and mechanical properties." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS218.
Full textNatural fibres can be considered as a relevant alternative to glass fibres in the manufacture of composite materials. Indeed, they present interesting physical characteristics, such as low density and good specific mechanical properties, which can compete with glass fibre reinforced composites. Moreover, natural fibres are obtained from renewable resources, and generally present lower environmental impacts during their production and use phases and their end of life. Unlike glass fibres, natural fibres, such as flax fibres, are complex hierarchical materials composed essentially of cellulose, hemicellulose, lignin, peptics cements and lipophilic extractives (waxes, fatty acids, etc.). This composition varies among species, collection site, plant maturity, batches, etc. Besides, the biochemical composition and structure of flax products and sub-products undergo wide variations according to the transformation steps from stems to yarns and fabrics. This influences greatly the final properties of flax fibres and their biocomposites. The first part of this study is focused on the characterization of flax fibres during their successive transformation steps. A homogenization of the chemical composition is observed at the final transformation steps, as well as an increment of the longitudinal tensile properties of flax yarns. The second part deals with the use of different washing treatments applied on flax tow fabrics and their influence on the extraction of flax cell wall components and the resulting microstructure and mechanical properties of epoxy/flax fibres reinforced biocomposites. It is shown that cell wall components play a key role in the flax yarns and elementary fibres dispersion and transverse mechanical behaviour of biocomposites. Finally, the application of different functionalization treatments onto flax fibres fabrics is investigated in order to improve the interfacial adhesion between fibres and matrix. The use of non-bio-based organosilane molecules (aminosilane, epoxysilane) and bio-based molecules (amino-acids and polysaccharides) is studied. Improvedstiffness in longitudinal tension test and stiffness and tensile strength in transverse tension test are observed due to the improvement of interfacial adhesion by surface functionalization of the fibres with both bio-based and non-bio-based molecules
Osório, Jonas Henrique 1989. "Specialty optical fibers for sensing = Fibras ópticas especiais para sensoriamento." [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/330348.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-02T14:50:23Z (GMT). No. of bitstreams: 1 Osorio_JonasHenrique_D.pdf: 57449332 bytes, checksum: 92f06bf0e96b31630478243a818a7fd6 (MD5) Previous issue date: 2017
Resumo: Nesta tese, fibras ópticas especiais são estudadas para fins de sensoriamento. Primei-ramente, propomos a estrutura denominada fibra capilar com núcleo embutido (embedded-core capillary fibers) para realização de sensoriamento de pressão. Estudos numéricos e analíticos foram realizados e mostraram que altas sensibilidades a variações de pressão poderiam ser al-cançadas com esta estrutura simplificada, que consiste de um capilar dotado de um núcleo, dopado com germânio, em sua parede. Experimentos permitiram medir uma sensibilidade de (1.04 ± 0.01) nm/bar, que é um valor alto quando comparado a outros sensores de pressão ba-seados em fibras microestruturadas. Ademais, estudamos fibras do tipo surface-core, que são fibras cujos núcleos são colocados na superfície externa da fibra. Nesta abordagem, redes de Bragg foram utilizadas para obter sensores de índice de refração ¿ fazendo-se uso da interação entre o campo evanescente do modo guiado no núcleo e o ambiente externo à fibra ¿ e de cur-vatura ¿ ao se explorar o fato de que, nestas fibras, o núcleo se encontra fora do centro geomé-trico da mesma. As sensibilidades a variações de índice de refração e curvatura medidas, 40 nm/RIU em torno de 1.41 e 202 pm/m-1 comparam-se bem a outros sensores baseados em redes de Bragg. Outrossim, fibras capilares poliméricas foram investigadas como sensores de temperatura e pressão. Para a descrição do sensor de temperatura, usou-se um modelo analítico para simular o espectro de transmissão dos capilares e a sua dependência com as variações de temperatura. No que tange à aplicação de sensoriamento de pressão, variações nas espessuras dos capilares devido à ação da pressão foram calculadas e relacionadas à sensibilidade da me-dida de monitoramento. Nestas duas aplicações, realizações experimentais também são repor-tadas. Finalmente, oportunidades adicionais de sensoriamento ao se utilizar fibras ópticas es-peciais são apresentadas, a saber, um sensor de pressão para dois ambientes baseados em fibras de cristal fotônico, um sensor de três parâmetros baseado em redes de Bragg, fibras afinadas e interferência multimodal, um sensor de nível de líquido baseado em redes de Bragg e interfe-rência multimodal e um sensor de temperatura baseado em fibras embedded-core preenchidas com índio. Os resultados aqui reportados demonstram o potencial das fibras ópticas em forne-cerem plataformas de sensoriamento para alcançar medidas de diferentes tipos de parâmetros com alta sensibilidade e resolução adequada
Abstract: In this thesis, specialty optical fibers for sensing applications are investigating. Firstly, we propose the embedded-core capillary fiber structure for acting as a pressure sensor. Analyt-ical and numerical studies were performed and showed that high pressure sensitivity could be achieved with this simplified fiber structure, which consists of a capillary structure with a germanium-doped core placed within the capillary wall. Experiments allowed measuring a sensitivity of (1.04 ± 0.01) nm/bar, which is high when compared to other microstructured optical fiber-based pressure sensors. Moreover, we studied the so-called surface-core optical fibers, which are fibers whose cores are placed at the external boundary of the fiber. In this approach, Bragg gratings were used to obtain refractive index ¿ making use of the interaction between the guided mode evanescent field and the external medium ¿ and directional curva-ture sensors ¿ by exploring the off-center core position. The measured refractive index and the curvature sensitivities, respectively 40 nm/RIU around 1.41 and 202 pm/m-1, compares well to other fiber Bragg grating-based sensors. Additionally, antiresonant polymer capillary fibers were investigated as temperature and pressure sensors. For the temperature sensing descrip-tion, one used an analytical model to simulate the transmission spectra of such fibers and the dependence on temperature variations. Regarding the pressure sensing application, pressure-induced capillary wall thickness variations were analytically accounted and related to the sys-tem pressure sensitivity. In both these applications, experimental data were presented. Finally, additional opportunities using specialty optical fibers were presented, namely, a photonic-crystal fiber-based dual-environment pressure sensor, a three parameters sensor using Bragg gratings, tapered fibers and multimode interference, a liquid-level sensor based on Bragg grat-ings and multimode interference, and a temperature sensor based in an embedded-core fiber filled with indium. The results reported herein demonstrates the potential of optical fibers for providing sensing platforms to attain measurements of different sort of parameters with highly sensitivity and improved resolutions
Doutorado
Física
Doutor em Ciências
152993/2013-4
CNPQ
Books on the topic "Fibers"
Ilvessalo-Pfäffli, Marja-Sisko. Fiber atlas: Identification of papermaking fibers. Berlin: Springer-Verlag, 1994.
Find full textVeit, Dieter. Fibers. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9.
Full textKnapp, Brian J. Fibers. Henley-on-Thames: Atlantic Europe, 2003.
Find full textCalvin, Woodings, and Textile Institute (Manchester England), eds. Regenerated cellulose fibres. Boca Raton, FL: CRC Press, 2001.
Find full textK, Mohanty Amar, Misra Manjusri, and Druzal Lawrence T, eds. Natural fibers, biopolymers, and biocomposites. Boca Raton, FL: CRC Press, 2005.
Find full textAlexis, Méndez, and Morse T. F, eds. Specialty optical fibers handbook. Amsterdam: Academic Press, 2007.
Find full textShelton, Linda C. Manmade fibers. Washington, DC: Office of Industries, U.S. International Trade Commission, 1995.
Find full textShelton, Linda C. Manmade fibers. Washington, DC: Office of Industries, U.S. International Trade Commission, 1995.
Find full textShelton, Linda C. Manmade fibers. Washington, DC: Office of Industries, U.S. International Trade Commission, 1995.
Find full textNational Institute of Research on Jute & Allied Fibre Technology (India). Perspective plan, 1995-2020. Calcutta: National Institute of Research on Jute & Allied Fibre Technology, Indian Council of Agricultural Research, 1997.
Find full textBook chapters on the topic "Fibers"
Laurikainen, Pekka, Sarianna Palola, Amaia De La Calle, Cristina Elizetxea, Sonia García-Arrieta, and Essi Sarlin. "Fiber Resizing, Compounding and Validation." In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 125–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_7.
Full textGarcía-Arrieta, Sonia, Essi Sarlin, Amaia De La Calle, Antonello Dimiccoli, Laura Saviano, and Cristina Elizetxea. "Thermal Demanufacturing Processes for Long Fibers Recovery." In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 81–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_5.
Full textVeit, Dieter. "Fruit Fibers." In Fibers, 263–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_8.
Full textVeit, Dieter. "Polylactic Acid." In Fibers, 739–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_35.
Full textVeit, Dieter. "Man-Made Fibers: Polymer Formation Processes." In Fibers, 413–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_14.
Full textVeit, Dieter. "Test Methods." In Fibers, 959–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_47.
Full textVeit, Dieter. "Biopolymers." In Fibers, 883–902. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_42.
Full textVeit, Dieter. "History." In Fibers, 9–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_2.
Full textVeit, Dieter. "Polyolefins." In Fibers, 693–720. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_33.
Full textVeit, Dieter. "Processes for the Production of Textile Filament Yarns." In Fibers, 513–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_19.
Full textConference papers on the topic "Fibers"
Ramkumar, S. "Shear Behaviour of Fiber Reinforced Concrete Beams Using Steel and Polypropylene Fiber." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-21.
Full textHaggans, C. W., H. Singh, W. F. Varner, and J. S. Wang. "Analysis of Narrow Depressed-Cladding Fibers for Minimization of Cladding and Radiation Mode Losses in Fiber Bragg Gratings." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.11.
Full textPohl, Alexandre A. P., Roberson A. Oliveira, Kevin Cook, and John Canning. "The Acousto-Optic Effect in Microstructured Optical Fibers." In Workshop on Specialty Optical Fibers and their Applications. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/wsof.2008.osd26.
Full textLANGHORST,, AMY, ELISA HARRISON, ANSHUL SINGHAL, MIHAELA BANU, and ALAN TAUB. "REINFORCEMENT OF NATURAL FIBERS VIA SUPERCRITICAL FLUID INFILTRATION OF NANOPARTICLES." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36411.
Full textRamakrishnan, S. "Comparative Study on the Behavior of Fiber Reinforced Concrete." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-13.
Full textBanerjee, Hritwick, Nicola Bartolomei, and Fabien Sorin. "Soft Microstructured Optical Fibers via Thermal Drawing." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.som2h.1.
Full textKhramov, I., and O. Ryabushkin. "Fiber Laser Power Measurements Using Optical Fibers with Metal Winding." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.soth3g.3.
Full textLyu, Zhouping, and Lyubov V. Amitonova. "Hollow-core fiber imaging." In Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu4i.4.
Full textKnight, J. C. "Optics in Microstructured and Photonic Crystal Fibers." In Workshop on Specialty Optical Fibers and their Applications. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/wsof.2008.ps3.
Full textWang, Pu, Zhen Huang, Jing Jiang, and Yongjun Wu. "Performance of Hybrid Fiber Reinforced Concrete with Steel Fibers and Polypropylene Fibers." In International Conference On Civil Engineering And Urban Planning 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412435.081.
Full textReports on the topic "Fibers"
Ragalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.
Full textNeudecker, Bernd J., Martin H. Benson, and Brian K. Emerson. Power Fibers: Thin-Film Batteries on Fiber Substrates. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada511230.
Full textLi, Che-Yu. Strong fibers. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/5723443.
Full textChae, Han Gi. Nanotailored Carbon Fibers. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada513849.
Full textChae, Han Gi. Nanotailored Carbon Fibers. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada560477.
Full textKoenig, Jack L., and Shari L. Tidrick. Improved Adhesion Performance of Polyamid Fibers in Fiber-Reinforced Composites. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada207979.
Full textAbhiraman, Agaram S. Precursor Structure - Fiber Property Relationships in Polyacrylonitrile- Based Carbon Fibers. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada249888.
Full textGranot, David, Scott Holaday, and Randy D. Allen. Enhancing Cotton Fiber Elongation and Cellulose Synthesis by Manipulating Fructokinase Activity. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7613878.bard.
Full textWeiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.
Full textAuthor, Not Given. (Strong fibers): (Progress report). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6293863.
Full text