Academic literature on the topic 'Fiberboards'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiberboards.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fiberboards"
Huang, Erzhuo, Yanwei Cao, Xinpeng Duan, Yutao Yan, Zhe Wang, and Chunde Jin. "Cross-Linked Chitosan as an Eco-Friendly Binder for High-Performance Wood-Based Fiberboard." International Journal of Polymer Science 2021 (July 1, 2021): 1–7. http://dx.doi.org/10.1155/2021/8671384.
Full textMoezzipour, Bita, and Aida Moezzipour. "Thermal Behavior of Insulation Fiberboards Made from MDF and Paper Wastes." Drvna industrija 72, no. 3 (July 22, 2021): 245–54. http://dx.doi.org/10.5552/drvind.2021.2019.
Full textGuo, Ming Hui, Yong Wang, and Fang Yan Liu. "Performance Analysis of Ammonium Lignosulfonate/Urea Formaldehyde-Free Fiberboards." Advanced Materials Research 113-116 (June 2010): 1774–78. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.1774.
Full textPark, Se-Hwi, Min Lee, Pureun-Narae Seo, Eun-Chang Kang, and Chun-Won Kang. "Acoustical properties of wood fiberboards prepared with different densities and resin contents." BioResources 15, no. 3 (May 20, 2020): 5291–304. http://dx.doi.org/10.15376/biores.15.3.5291-5304.
Full textRamos, Diego, Nour-Eddine El Mansouri, Francesc Ferrando, and Joan Salvadó. "All-lignocellulosic Fiberboard from Steam Exploded Arundo Donax L." Molecules 23, no. 9 (August 21, 2018): 2088. http://dx.doi.org/10.3390/molecules23092088.
Full textHua, Guang Jun, Wei Min Fei, Ze Shun Liao, and Yong Xie. "Numerical Assessment on Edgewise Compressive Strength of Heavy Sandwich Fiberboard." Applied Mechanics and Materials 724 (January 2015): 74–78. http://dx.doi.org/10.4028/www.scientific.net/amm.724.74.
Full textAntov, Petar, L’uboš Krišt’ák, Roman Réh, Viktor Savov, and Antonios N. Papadopoulos. "Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate." Polymers 13, no. 4 (February 21, 2021): 639. http://dx.doi.org/10.3390/polym13040639.
Full textWang, Jiajun, Bo Wang, Junliang Liu, Lin Ni, and Jianzhang Li. "Effect of Hot-Pressing Temperature on Characteristics of Straw-Based Binderless Fiberboards with Pulping Effluent." Materials 12, no. 6 (March 20, 2019): 922. http://dx.doi.org/10.3390/ma12060922.
Full textZhou, Xiaoyan, Lijuan Tan, Weidong Zhang, Chenglong Lv, Fei Zheng, Rong Zhang, Guanben Du, Bijun Tang, and Xueyuan Liu. "Enzymatic hydrolysis lignin derived from corn stover as an intrinsic binder for bio-composites manufacture: Effect of fiber moisture content and pressing temperature on boards’ properties." BioResources 6, no. 1 (December 4, 2010): 253–64. http://dx.doi.org/10.15376/biores.6.1.253-264.
Full textJin, Chun De, Jian Li, and Rui Xian Zheng. "Study on the Interface Character of Drying Binderless Fiberboard." Advanced Materials Research 113-116 (June 2010): 1518–23. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.1518.
Full textDissertations / Theses on the topic "Fiberboards"
Cock, Alexander. "The high temperature erosion of coated thermal barrier tiles." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301871.
Full textLi, Xin. "Mechanical properties and water resistance of cellulosic fiberboards with soybean protein based adhesives." Thesis, Kansas State University, 2009. http://hdl.handle.net/2097/13539.
Full textDepartment of Grain Science and Industry
Xuzhi Susan Sun
Large amount of fiberboard are used for packaging applications every year, which generate a large amount of solid wastes causing environmental pollution if these packaging materials are not recycled. Also, a large amount of wood are needed for making fiberboard, which is limited resource in the earth. Reducing the weight of fiberboard and recycling the fiberboard materials are two methods to save quantities of wood fiber in fiberboard manufacture, which benefit the environment and economy. Besides, most adhesives used for producing the fiberboard contain environmental hazardous chemicals. It is necessary to develop new technology to produce cellulosic fiberboards with environmental friendly bio-based adhesives. The soybean is an agricultural product, and its resource is abundant. Soybean protein is a bio- material that offers an alternative to the existing synthetic adhesives to reduce petroleum dependence of the U.S. energy strategy. The newly developed soy-based adhesive is also competitive in cost. Material cost based on food-grade soybean protein is around 20 cents/Lb. The cost of commercial PF resin is about 14 ~ 17 cents/Lb. Price of hot-melt adhesive for fiberboard is around $6/Lb. In this study, soybean protein was modified with sodium dodecyl sulfate as an adhesive for two bio-based fiberboards products, medium density fiberboard by dry processing and light weight cardboard by wet processing. The mechanical and water soaking properties of these cellulosic fiberboards were stronger than or as same as commercial solid fiberboard. This research suggests that these cellulosic fiberboards with modified soybean protein based adhesive have great potential as alternative to current commercial fiberboard.
Theng, Dyna. "Feasibility of incorporating treated lignin and cellulose nanofiber in fiberboards made from corn stalk and rice straw." Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/461717.
Full textEls residus agrícoles tenen un gran interès per ser un material abundant , barat, àmpliament disponible a tot el món i renovable. Es tracta d'una bona opció per substituir la fusta, i presenta característiques físiques i químiques similars a aquesta. La present tesi doctoral estudia la possibilitat de substituir la fusta i els aglutinants sintètics per residus de cultius i adhesius naturals respectivament en la producció panell de fibres. La biomassa de blat de moro i arròs sotmesa a un tractament termomecànic (TMP)es va seleccionar com a matèria primera. El panell de fibra resultant d'ambdós residus sense cap tipus d'aglutinant presentaven propietats mecàniques més baixes que els panells comercials (que contenien un lligant sintètic). Respecte a les propietats físiques, es va observar un augment de volum i espessor al absorbir aigua menors en el panell de fibres naturals que no pas en els comercials. En general, el present estudi mostra una forma més sostenible i efectiva de produir panells de fibra a base de cel·lulosa sense utilitzar aglutinant sintètic, fet que contribueix a la millora d’aspectes tècnics i ambientals en el procés de fabricació dels panells de fibra
Mancera, Arias Camilo. "Binderless fiberboard production from Cynara cardunculus and Vitis vinifera." Doctoral thesis, Universitat Rovira i Virgili, 2008. http://hdl.handle.net/10803/8494.
Full textTwo lignocellulosic materials, Cynara cardunculus and Vitis vinifera, were pretreated and used to produce fiberboards without synthetic adhesives. The lignocellulosic materials were steam exploded through a thermo-mechanical vapor process in a batch reactor. After pretreatment the materials were dried, ground and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical and physicomechanical properties of the fiberboards were evaluated and the conditions that optimize these properties were found. Response surface methodology based on a central composite design and multiple response optimization were used. The variables studied were: pretreatment temperature, pretreatment time, pressing temperature, pressing pressure, and pressing time.
Binderless fiberboards produced from Cynara cardunculus stalks at the optimum conditions found fulfilled the European standards for boards of internal use. Nevertheless, binderless fiberboards produced from Vitis vinifera prunings at the optimum conditions found for this material did not completely met the European standards; modulus of rupture and internal bond values for these boards were lower than required minimums.
Simultaneously, commercial Kraft lignin was reacted in an alkaline medium to enhance its adhesive properties. Chemical changes in reacted Kraft lignins that include ash content, Klason lignin, acid-soluble lignin and sugars were determined, as well as, structural characteristics of these lignins in terms of phenolic hydroxyl, aliphatic hydroxyl, methoxyl, carbonyl, Mw, Mn and polydispersity. The effects of reaction temperature and reaction time on lignin properties were studied using response surface methodology, and optimal reaction conditions were found.
Two different types of Kraft lignin were used, alkali treated Kraft lignin and crude acid-washed Kraft lignin, as additives to enhance the physicomechanical properties of binderless fiberboards produced from Vitis vinifera to reach and overcome the European standards completely. At the end fiberboards produced with 20% of Vitis vinifera fibers replaced by crude acid-washed Kraft lignin were able to meet the European standards completely.
This research work was an effort to reduce our dependency upon petroleum derivates, to diminish deforestation and to increase the use of renewable and biodegradable materials with the intention of preserving the environment and to encourage a sustainable development of our society.
Producción de Tableros de Fibras a partir de Cynara cardunculus y Vitis vinifera
En el presente estudio trozos Cynara cardunculus y Vitis vinifera fueron pretratados, y usados para producir tableros de fibras sin adhesivos sintéticos. Estos materiales lignocelulósicos se explotaron con vapor a través de un proceso termomecánico de vapor en un reactor por lotes. Después del pretratamiento el material fue secado, molido y prensado en caliente para producir los tableros. Se evaluaron los efectos de los factores del pretratamiento (temperatura de reacción y tiempo de reacción) y las condiciones de prensado (presión de prensado, temperatura y tiempo) sobre las propiedades químicas y físico-mecánicas de los tableros de fibras y se establecieron las condiciones que optimizan dichas propiedades. Las propiedades físico-mecánicas de los tableros de fibras que fueron estudiadas son: densidad, módulo de elasticidad (MOE), módulo de ruptura (MOR), enlace interno (IB), absorción de agua (WA) y hinchazón en hinchazón (TS) y las propiedades químicas estudiadas de la materia prima y el material pretratado fueron las siguientes: Cenizas, contenido de lignina Klason, contenido de celulosa y contenido de hemicelulosas. Se uso una metodología de superficie de respuesta basada en un diseño de experimentos del tipo central compuesto y una metodología de optimización de respuesta múltiple.
Los tableros de fibras sin adhesivos sintéticos producidos a partir de tallos de Cynara cardunculus a las condiciones óptimas encontradas cumplieron con las normas europeas para los tableros de uso interno. Sin embargo, los tableros de fibras sin adhesivos sintéticos producidos a partir de podas de Vitis vinifera a las condiciones óptimas encontradas para este material no cumplieron totalmente las normas europeas; los valores del módulo de ruptura y del enlace interno para estos tableros fueron inferiores a los mínimos requeridos.
Una lignina Kraft comercial fue sometida a reacción en un medio alcalino para mejorar sus propiedades adhesivas. Se determinaron los cambios químicos en las ligninas Kraft tratadas, las propiedades medidas fueron: contenido en cenizas, lignina Klason, lignina soluble en ácido y azúcares, también se determinaron las características estructurales de estas ligninas en términos de hidroxilos fenólicos, hidroxilos alifáticos, metóxilos, carbonilos, Mw, Mn y polidispersidad. Se estudiaron los efectos de la temperatura de reacción y el tiempo de reacción sobre las propiedades de la lignina con una metodología de superficie de respuesta, y se encontraron la condiciones óptimas de reacción.
Se usaron dos tipos diferentes de lignina Kraft, lignina Kraft tratada en medio alcalino y lignina Kraft cruda lavada con ácido, como aditivos para mejorar las propiedades físico-mecánicas de los tableros de fibras sin adhesivos sintéticos producidos a partir de Vitis vinifera, para alcanzar y superar las normas europeas completamente. Al final los tableros de fibras producidos con una substitución del 20% de fibras de Vitis vinifera por lignina Kraft cruda lavada con ácido fueron capaces de satisfacer las normas europeas por completo.Este trabajo de investigación fue un esfuerzo para reducir nuestra dependencia de los derivados del petróleo, para disminuir la deforestación y para aumentar el uso de materiales renovables y biodegradables con la intención de preservar el medio ambiente y fomentar un desarrollo sostenible de nuestra sociedad.
Sauget, Alix. "Développement de matériaux composites fibreux hautes perfomances à matrice bio-sourcée." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0085/document.
Full textChanging our industrial activities towards sustainable development is one of the major human concerns of the 21th century. The use of biomass in various areas like energy, construction and materials is an answer to the future scarcity of fossil resources and to the ecological risks. The objectives of this thesis are to create new materials with the highest bio-based content possible and then to optimize these materials properties for a potential industrial use. The work presented here is about the fabrication of composite materials reinforced with natural fibers, using bio-based resins as a matrix. The main vegetable resources studied here are tannins, used to make: - Tannin – hexamine matrix composites - Tannin – resorcinol – aldehyde matrix composites Vegetable tannins were also studied to prepare tannin – furfuryl alcohol bio-plastics that may be used in the composites fabrication. The composites boards were made in laboratory and mechanically analyzed based on European norms methods. Resins were also characterized using various techniques such as thermomechanical analysis (TMA) or MALDI-ToF mass spectrometry. The end results of this work is the fabrication of highly bio-based composite materials, with homogenous and repeatable properties that furthermore satisfy several European norms requirements
Van, Rooyen Petrus Mynhardt. "Is it feasable to increase the medium density fibreboard manufacturing capability in South Africa?" Thesis, Port Elizabeth Technikon, 2004. http://hdl.handle.net/10948/255.
Full textEugênio, Rafael Augusto Pinholati [UNESP]. "Painéis de medium density fiberboard produzidos com adesivo alternativo." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/145030.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-09T12:54:47Z (GMT) No. of bitstreams: 1 eugenio_rap_me_bauru.pdf: 3957807 bytes, checksum: 74c157bc6d300c719cca57459b4455da (MD5)
Made available in DSpace on 2016-12-09T12:54:47Z (GMT). No. of bitstreams: 1 eugenio_rap_me_bauru.pdf: 3957807 bytes, checksum: 74c157bc6d300c719cca57459b4455da (MD5) Previous issue date: 2016-12-02
O trabalho consistiu na produção de painéis de MDF (Medium Density Fiberboard) em escala laboratorial utilizando o adesivo PVA (Poliacetato de Vinila), variando suas concentrações e realizando misturas com a resina comumente empregada neste processo, o adesivo a base de uréia-fomaldeído, onde foi avaliado além das características físicas e mecânicas dos painéis produzidos, também teve o intuito de verificar o desprendimento de formaldeído para o ambiente quando aplicado juntamente com a resina uréia-fomaldeído, e a avaliação dos perfis de densidades dos traços. As amostras foram confeccionadas com fibra de eucalipto, onde as dosagens do adesivo PVA seguiram as seguintes proporções: 30%, 50% e 70%, e para efeito de comparação com as amostras produzidas com a mistura de PVA foram fabricadas provas em branco com 100% uréia-formaldeído. No total foram produzidas 16 amostras, quatro painéis de cada traço, e retirados os corpos de prova que posteriormente foram avaliados conforme a NBR 15316-2:2015 para as condições secas. Todos os insumos foram fornecidos pelo fabricante de painéis Duratex SA, e os testes foram realizados nos laboratórios da empresa. O adesivo PVA mostrou-se bastante favorável, apresentando grande compatibilidade com os demais componentes da formulação, apresentando potencial para fabricação de MDF. Diversos traços conseguiram atender os requisitos da norma, com destaque para módulo de ruptura (MOR), módulo de elasticidade (MOE), obtidos atraves do ensaio de flexão estática, e o teor de umidade. Houve também uma discreta redução na emissão de formol em dois traços (T3 e T4), e na avaliação dos perfis de densidade foi constatado que a formulação dos traços não impactou nas densidades médias da espessura dos painéis.
The work consisted in the production of MDF (Medium Density Fiberboard) in laboratory scale using PVA adhesive (Polyacetate Vinyl Chloride), varying their concentrations and performing mixtures with commonly used resin in this process, the adhesive base of ureafomaldehyde, which was evaluated in addition to the physical and mechanical characteristics of the panels produced, also aimed to check the formaldehyde release to the environment when applied together with resin urea-fomaldehyde, and evaluation of the densities of the features profiles. The samples were made from eucalyptus fibers where PVA adhesive doses followed the following proportions: 30%, 50% and 70%, and for the purpose of comparison with the samples produced with the mixture of PVA blank tests were made with 100 % ureaformaldehyde. In total, we produced 16 samples, four panels of each stroke, and removed the specimens which were then evaluated according to NBR 15316-2: 2015 for dry conditions. All inputs were provided by the panel manufacturer Duratex SA, and the tests were performed in the company's laboratories. PVA adhesive proved to be very favorable, with high compatibility with the other components of the formulation, with potential for the production of MDF. Many features were able to meet the standard requirements, particularly modulus of rupture (MOR), modulus of elasticity (MOE), obtained through the bending, and moisture content test. There was also a slight reduction in formaldehyde emissions by two dashes (T3 and T4), and evaluation of density profiles was found that the formulation of the traits did not affect the average thickness of the thickness of the panels.
Eugênio, Rafael Augusto Pinholati. "Painéis de medium density fiberboard produzidos com adesivo alternativo /." Bauru, 2016. http://hdl.handle.net/11449/145030.
Full textBanca: Rosane Aparecida G. Basttistelle
Banca: Alexandre Jorge Duarte Souza
Resumo: O trabalho consistiu na produção de painéis de MDF (Medium Density Fiberboard) em escala laboratorial utilizando o adesivo PVA (Poliacetato de Vinila), variando suas concentrações e realizando misturas com a resina comumente empregada neste processo, o adesivo a base de uréia-fomaldeído, onde foi avaliado além das características físicas e mecânicas dos painéis produzidos, também teve o intuito de verificar o desprendimento de formaldeído para o ambiente quando aplicado juntamente com a resina uréia-fomaldeído, e a avaliação dos perfis de densidades dos traços. As amostras foram confeccionadas com fibra de eucalipto, onde as dosagens do adesivo PVA seguiram as seguintes proporções: 30%, 50% e 70%, e para efeito de comparação com as amostras produzidas com a mistura de PVA foram fabricadas provas em branco com 100% uréia-formaldeído. No total foram produzidas 16 amostras, quatro painéis de cada traço, e retirados os corpos de prova que posteriormente foram avaliados conforme a NBR 15316-2:2015 para as condições secas. Todos os insumos foram fornecidos pelo fabricante de painéis Duratex SA, e os testes foram realizados nos laboratórios da empresa. O adesivo PVA mostrou-se bastante favorável, apresentando grande compatibilidade com os demais componentes da formulação, apresentando potencial para fabricação de MDF. Diversos traços conseguiram atender os requisitos da norma, com destaque para módulo de ruptura (MOR), módulo de elasticidade (MOE), obtidos atraves do ensaio de flexã... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The work consisted in the production of MDF (Medium Density Fiberboard) in laboratory seade using PVA adhesive (Polyacetate Chloride), varying their concentration and perfomring mixtures with commonly used resin in this process the adhesive base of urea-fomaldehyde, which was evaluated in addition to the physical and mechanical characteristics of the panels produced, also aimed to check the formaldehyde release to the environment when applied together with resin urea-formaldehyde, and evaluation of the desnsities of the features profiles. The samples were made from eucalyptus fibers where PVA adhesive doses followed proportions: 30%, 50% and 70%, and for the purpose of comparison with the samples produced with the samples produced with the mixture of PVA blank tests were made with 100% urea-formaldehyde. In total, we produced 16 samples, four panels of each stroke, and removed the speciments which then evaluated according to NBR 15316-2:2015 for dry conditions. All inputs were provided by the panel manufacturer Duratex SA, and the tests were performed in the company's laboratories. PVA adhesive proved to be very favorable, with high compatibility with the other components of the formulation, with potential for the production of MDF. Many features were able to meet the standard requirements, particularly modulus of rupture (MOR), modulus of elasticity (MOE), obtained through the bending, and moisture content test. There was also a slight reduction in formaldehyde emissions by two dashes (T3 and T4), and evaluation of density profiles was found that the formulation of the traits did not affect the average thickness of the thickness of the panels
Mestre
Cui, Zhiying. "Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1505281/.
Full textDing, Zhiguang. "Electromagnetic Shielding Properties of Iron Oxide Impregnated Kenaf Bast Fiberboard." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699998/.
Full textBooks on the topic "Fiberboards"
Myers, Gary C. Characterization of fiberboard pulp. [Madison, WI: Forest Products Laboratory, 1987.
Find full textModern particleboard & dry-process fiberboard manufacturing. San Francisco: Miller Freeman, 1993.
Find full textHust, J. G. Glass fiberboard SRM for thermal resistance. Gaithersburg, Md: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHust, J. G. Glass fiberboard SRM for thermal resistance. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textHurst, Jerome G. Glass fiberboard SRM for thermal resistance. Washington: National Bureau of Standards, 1985.
Find full textSuchsland, Otto. Fiberboard manufacturing practices in the United States. [Washington, D.C.?]: U.S. Dept. of Agriculture, Forest Service, 1987.
Find full textMyers, Gary C. Fiberboard and hardboard research at the Forest Products Laboratory: A 50-year summary. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Find full textSuchsland, Otto. Fiberboard manufacturing practices in the United States. [Washington, D.C.?]: U.S. Dept. of Agriculture, Forest Service, 1987.
Find full textSachs, I. B. Microscopic observations during longitudinal compression loading of single pulp fibers. Madison, Wis: USDA Forest Service, Forest Products Laboratory, 1986.
Find full textSachs, I. B. Microscopic observations during longitudinal compression loading of single pulp fibers. Madison, Wis: USDA Forest Service, Forest Products Laboratory, 1986.
Find full textBook chapters on the topic "Fiberboards"
Gooch, Jan W. "Fiberboard." In Encyclopedic Dictionary of Polymers, 300. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4857.
Full textBajpai, Pratima. "Enzyme Application in Fiberboard." In Biotechnology for Pulp and Paper Processing, 273–80. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7853-8_13.
Full textVazquez-Loureiro, P., F. Salgado, A. Rodríguez Bernaldo de Quirós, and R. Sendón. "Medium Density Fiberboard as Food Contact Material." In Food Packaging, 347–68. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429322129-13.
Full textNasir, Mohammed, Mohammad Asim, and Kaushal Singh. "Fiberboard Manufacturing from Laccase Activated Lignin Based Bioadhesive." In Eco-Friendly Adhesives for Wood and Natural Fiber Composites, 51–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4749-6_3.
Full textRazali, Nur Amalina, Nur Atiqah Nabilah Johari, Wan Mohd Nazri Wan Abdul Rahman, Jamaludin Kasim, and Suffian Misran. "Fibre Morphology of Leucaena leucocephala Wood: Effects on Fiberboard." In Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016), 817–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0074-5_79.
Full textYin, Xing, Zhiqiang Chen, Shuangshuang Liu, and Xiaoxiu Hao. "Research on Polyvinyl Alcohol Reinforcing Board and Corrugated Fiberboard." In Advances in Graphic Communication, Printing and Packaging Technology and Materials, 458–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0503-1_67.
Full textNg, Boon-Chai, Craig Bradfield, Roy Pritish, and Marlene Murray. "Potential Fiberboard Material from Cow Manure and Disposable Water Bottle." In Supplemental Proceedings, 119–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch16.
Full textGuan, Shuyue, Dawei Qi, and Yu Han. "Automatic Fiberboard Density Testing Based on Application of Computed Tomography." In Information and Business Intelligence, 614–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29084-8_95.
Full textJancík, Juraj, Paulína Magdolenová, and Frank Markert. "Comparison of Cone Calorimetry and FDS Model of Low-Density Fiberboard Pyrolysis." In Wood & Fire Safety, 144–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_22.
Full textBabu, Libin K., Kunal Mishra, and Raman P. Singh. "Influence of Crumb Rubber Reinforcement on the Properties of Medium Density Fiberboard." In Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, 257–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95510-0_32.
Full textConference papers on the topic "Fiberboards"
"Medium Density Fiberboards from Date Palm Residues a Strategic Industry in the Arab World." In By-Products of Palm Trees and Their Applications. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900178-6.
Full textNechepurenko, E. V. "The physical-mechanical process of obtaining a wood-fiber semi-finished product in the production of fiberboards in wet mode." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2018. http://dx.doi.org/10.18411/lj-05-2018-91.
Full textJackson, Daniel, Tom Bartindale, and Patrick Olivier. "FiberBoard." In the ACM International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1731903.1731908.
Full textJackson, Daniel, Tom Bartindale, and Patrick Olivier. "FiberBoard." In the ACM International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1731903.1731954.
Full textDaugherty, W. L., K. A. Dunn, J. L. Murphy, and E. R. Hackney. "Effects of Moisture in the 9975 Shipping Package Fiberboard Assembly." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25087.
Full textSmith, Allen C., Philip R. Vormelker, Glenn K. Chapman, Greg D. Creech, Jamil Khan, Mir Zahedul Huq Khandkar, and Kenneth W. Miller. "Effect of Temperature and Humidity on Crush Strength of Cellulose Fiberboard Assemblies." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1612.
Full textTamburello, David, Matthew Kesterson, and Steven Hensel. "Thermal Analysis of the 9975 Package Used for Long Term Nuclear Material Storage." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93058.
Full textDaugherty, W. L. "Properties of Fiberboard Overpack Material in the 9975 Shipping Package Following Thermal Aging." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26114.
Full textVormelker, P. R., and W. L. Daugherty. "Thermal Properties of Fiberboard Overpack Materials in the 9975 Shipping Package." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71569.
Full textDaugherty, W. L., and P. R. Vormelker. "Mechanical Properties of Fiberboard Overpack Materials in the 9975 Shipping Package." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71568.
Full textReports on the topic "Fiberboards"
Leader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/402292.
Full textNorton, Carol. Performance Testing of Fiberboard Shipping Containers. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada373787.
Full textDaugherty, W. L. Fiberboard humidity data for 9975 shipping packages. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1209029.
Full textDaugherty, W. Fiberboard Humidity Data for 9975 Shipping Packages. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1209051.
Full textDaugherty, W. L. Fiberboard humidity data for 9975 shipping packages. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1209034.
Full textRatto, Jo Ann, Richard Farrell, Nandika D'Souza, Koffi Dagnon, Susan Sun, Jason Niedzwiecki, and Jeanne Lucciarini. Lightweight and Compostable Fiberboard for the Military. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada564025.
Full textDaugherty, W. EXAMINATION OF FIBERBOARD FROM SHIPPING PACKAGE 9975-01819. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951555.
Full textDaugherty, W. L. Humidity data for 9975 shipping packages with cane fiberboard. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1252422.
Full textDaugherty, W. L. Humidity Data for 9975 Shipping Packages with Softwood Fiberboard. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1340199.
Full textSilberstein, Samuel. Predicting formaldehyde concentrations in manufactured housing resulting from medium-density fiberboard. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3761.
Full text