Academic literature on the topic 'Fiber-reinforced concrete Effect of temperature on Testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber-reinforced concrete Effect of temperature on Testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

Mukhtar, Faisal M., and Olaniyi Arowojolu. "Recent developments in experimental and computational studies of hygrothermal effects on the bond between FRP and concrete." Journal of Reinforced Plastics and Composites 39, no. 11-12 (March 22, 2020): 422–42. http://dx.doi.org/10.1177/0731684420912332.

Full text
Abstract:
The performance of fiber reinforced polymer externally bonded to concrete is greatly influenced by the environmental conditions to which it is exposed during service. Temperature and humidity are the two common environmental factors that alter the bond behavior of externally bonded fiber reinforced polymer. This paper reviews the experimental and computational approaches used to evaluate the hygrothermal effects—that is, the effect of temperature and humidity—on the durability of the fiber reinforced polymer–concrete bond, as well as on the bond’s performance under loading conditions. Some experimental testing conducted in the laboratory and in situ are critically reviewed and presented. Implemented approaches for improving bond performance under hygrothermal conditions and their modeling techniques are also presented. The paper concludes by discussing the review’s salient issues. The ongoing wide application of externally bonded fiber reinforced polymer creates opportunities for new research on improving and predicting the bond strength of fiber reinforced polymer concrete under hygrothermal conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Xiao, Kai Tao, Jia Zheng Li, and Hua Quan Yang. "Study of Crack Resistance Property of Polyvinyl Alcohol Fiber Reinforced Concrete." Advanced Materials Research 287-290 (July 2011): 178–82. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.178.

Full text
Abstract:
The strength, ultimate tensile value, compressive elastic modulus and drying shrinkage of polyvinyl alcohol fiber reinforced concrete were studied by tests, and its crack resistance property was also studied by plate method and temperature stress testing machine. The test results showed that PVA fiber could improve the tensile strength and ultimate tensile value of concrete, lower its compressive elastic modulus and drying shrinkage, restrain its early plastic shrinkage and drying shrinkage cracks, reduce its cracking temperature and improve the crack resistance property of concrete, moreover, the effect of long PVA fiber was better.
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Xian Hui, Li Xia Zheng, and Zhuo Qiu Li. "Temperature Compensation in Deformation Testing for Smart Concrete Structures." Key Engineering Materials 326-328 (December 2006): 1503–6. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1503.

Full text
Abstract:
Carbon fiber reinforced concrete (CFRC) structures exhibit both strain sensibility and temperature sensibility, which are coupled with each other when used in traffic or health monitoring for concrete structures. This coupling property results in inaccurateness of measured deformation. In this paper Four-probe Difference Method is used to detach the above two effects according to loaded conditions of structures and different characteristics of the two effects. The theoretical and experimental results indicate that the method is feasible and effective.
APA, Harvard, Vancouver, ISO, and other styles
4

Elbadry, Mamdouh M., Hany Abdalla, and Amin Ghali. "Effects of temperature on the behaviour of fiber reinforced polymer reinforced concrete members: experimental studies." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 993–1004. http://dx.doi.org/10.1139/l00-013.

Full text
Abstract:
Thermal characteristics of fiber reinforced polymer (FRP) reinforcement can be substantially different from those of concrete and conventional steel reinforcement. The influence of this difference on the behaviour of FRP reinforced concrete members is studied in this paper. Concrete beams reinforced with different types of FRP rebars are tested under the effects of temperature gradient while the rotation at the two ends of the beam are restrained. The bending moments and cracking developed by the thermal gradient are monitored. The results are compared with those obtained from tests on beams of the same dimensions but reinforced with steel bars. The behaviour of thermally cracked members is also investigated under mechanical load effects at both service and ultimate load levels. The potential cracking of the concrete cover caused by the transverse thermal expansion of FRP bars is examined by testing concrete cylinders. The experiments show the difference in thermal behaviour of glass and carbon FRP and steel bars.Key words: bond, concrete, cracking (fracturing), fiber reinforced polymers, loads (forces), reinforcement, temperature, tensile strength, thermal expansion, thermal stresses.
APA, Harvard, Vancouver, ISO, and other styles
5

Niu, Xu Jing, Qing Xin Zhao, and Ying Nie. "Effect of Polypropylene Macro-Fiber on Properties of High-Strength Concrete at Elevated Temperatures." Key Engineering Materials 629-630 (October 2014): 284–90. http://dx.doi.org/10.4028/www.scientific.net/kem.629-630.284.

Full text
Abstract:
After being subjected to different elevated temperatures, ranging between 200 °C and 800 °C, the flexural strength, matrix mass loss rate and water absorption of polypropylene (PP) macro-fiber reinforced high strength concrete (HSC) were investigated. Moreover, the internal damage of concrete was analyzed by the ultrasonic non-destructive testing technology. The results indicate that PP macro-fiber in HSC has an adverse effect on flexural strength, while the synergistic effect of hybrid fibers (PP micro-fiber plus PP macro-fiber) can minimize this effect. Compared with PP micro-fiber, PP macro-fiber is more effective in increasing the matrix mass loss rate and water absorption of HSC. However, if the dosage of PP macro-fiber is too high, the pressure relief channels formed by fibers melt will be too coarse, and the total porosity of HSC will be increased significantly. Finally, a mathematical model relating the damage degree to temperature was established based on the non-linear fitting of the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
6

Halstead, J. Preston, Jerome S. O’Connor, Khuong Luu, Sreenivas Alampalli, and Amy Minser. "Fiber-Reinforced Polymer Wrapping of Deteriorated Concrete Columns." Transportation Research Record: Journal of the Transportation Research Board 1696, no. 1 (January 2000): 124–30. http://dx.doi.org/10.3141/1696-53.

Full text
Abstract:
The New York State Department of Transportation initiated a fiber-reinforced polymer (FRP) Column Wrap Demonstration Project in March 1998. The purpose of this project is to investigate the effectiveness and efficiency of preserving deteriorated concrete with FRP, its possible detrimental effects, and its viability as an alternative for concrete column repair and rehabilitation without regard to seismic considerations. To the authors’ knowledge, this is the first FRP column wrap demonstration project of its kind to involve most of the FRP wrap suppliers in the United States. A 5-year condition-monitoring program was established to monitor the performance of FRP wrapping in preserving the concrete columns. A baseline condition of the piers was established through testing, including concrete cores for compressive strength, chlorides, pH, and freeze-thaw resistance; hammer soundings; and a tight-grid survey of electric potentials. Concrete spalls were repaired; however, delaminations were not. To monitor corrosion of the column reinforcing steel, corrosion probes using linear polarization technology were embedded in the concrete. Initial corrosion readings were collected before wrapping, enhancing the observed baseline condition data. In addition, concrete humidity and temperature probes were installed through the FRP wraps, and strain gauges were mounted on the FRP wraps. Data will be collected at 3-month intervals for 4 or 5 years. The wraps will be removed after monitoring, and a complete column testing program will be implemented at that time.
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Li, Zhuo Qiu Li, and Xian Hui Song. "A Nondestructive Testing Method for Crack in Carbon Fiber Reinforced Concrete with Infrared Thermography." Key Engineering Materials 297-300 (November 2005): 2128–33. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.2128.

Full text
Abstract:
Based on the functional characteristics of carbon fiber reinforced concrete (CFRC), an improved infrared nondestructive testing method, to detect crack in CFRC by using infrared thermography, is presented in this paper. The principle is that when a CFRC specimen is applied a low voltage, crack existing in the specimen will result in non-homogeneous surface temperature distribution due to the electro-thermal effect of the material. Monitoring the temperature difference on the surface, the crack under the observed surface can be inspected by using infrared thermography. In theory, the mechanism causing the temperature difference comes down to an unsteady heat transfer problem with internal energy sources. In the case of the thermo-physical property of CFRC as given, the sensitivity of this method to the depth of the crack is analyzed by numerical computation.
APA, Harvard, Vancouver, ISO, and other styles
8

Ogrodowska, Karolina, Karolina Łuszcz, and Andrzej Garbacz. "The effect of temperature on the mechanical properties of hybrid FRP bars applicable for the reinforcing of concrete structures." MATEC Web of Conferences 322 (2020): 01029. http://dx.doi.org/10.1051/matecconf/202032201029.

Full text
Abstract:
One of the most common causes of the deterioration of concrete structures is the corrosion of steel reinforcement. Reinforcement made from fiber reinforced polymers (FRP) is considered to be an attractive substitution for traditional reinforcement. The most popular FRP reinforcing bars are made of glass fibers. Basalt fiber reinforced polymer (BFRP) is a relatively new material for reinforcing bars. The main drawback of BFRP bars is their low modulus of elasticity. A new type of bar made from hybrid fiber reinforced polymer (HFRP) in which a proportion of the basalt fibers are replaced with carbon fibers can be considered as a solution to this issue; such a bar is presented in this work. The HFRP bars might be treated as a relatively simple modification to previously produced BFRP bars. A different technical characteristic of the fibre reinforced polymer makes the designing of structures with FRP reinforcement differ from conventional reinforced concrete design. Therefore, it is necessary to identify the differences and limitations of their use in concrete structures, taking into account their material and geometric features. Despite the predominance of FRP composites in such aspects as corrosion resistance, high tensile strength, and significant weight reductions of structures – it is necessary to consider the behavior of FRP composites at elevated temperatures. In this paper, the effect of temperature on the mechanical properties of FRP bars was investigated. Three types of FRP bar were tested: BFRP, HFRP in which 25% of basalt fibers were replaced with carbon fibers and nHFRP in which epoxy resin was additionally modified with a nanosilica admixture. The mechanical properties were determined using ASTM standard testing for transverse shear strength. The tests were performed at -20°C, +20°C, +80°C for three diameters of each types of bar.
APA, Harvard, Vancouver, ISO, and other styles
9

Protchenko, Kostiantyn, and Elżbieta Szmigiera. "Post-Fire Characteristics of Concrete Beams Reinforced with Hybrid FRP Bars." Materials 13, no. 5 (March 10, 2020): 1248. http://dx.doi.org/10.3390/ma13051248.

Full text
Abstract:
One of the main concerns of experimental and numerical investigations regarding the behavior of fiber-reinforced polymer reinforced concrete (FRP-RC) members is their fire resistance to elevated temperatures and structural performance at and after fire exposure. However, the data currently available on the behavior of fiber-reinforced polymer (FRP) reinforced members related to elevated temperatures are scarce, specifically relating to the strength capacity of beams after being subjected to elevated temperatures. This paper investigates the residual strength capacity of beams strengthened internally with various (FRP) reinforcement types after being subjected to high temperatures, reflecting the conditions of a fire. The testing was made for concrete beams reinforced with three different types of FRP bars: (i) basalt-FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibers (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the rebar. Tested beams were first loaded at 50% of their ultimate strength capacity, then unloaded before being heated in a furnace and allowed to cool, and finally reloaded flexurally until failure. The results show an atypical behavior observed for HFRP bars and nHFRP bars reinforced beams, where after a certain temperature threshold the deflection began to decrease. The authors suggest that this phenomenon is connected with the thermal expansion coefficient of the carbon fibers present in HFRP and nHFRP bars and therefore creep can appear in those fibers, which causes an effect of “prestressing” of the beams.
APA, Harvard, Vancouver, ISO, and other styles
10

Protchenko, Kostiantyn. "Residual Fire Resistance Testing of Basalt- and Hybrid-FRP Reinforced Concrete Beams." Materials 15, no. 4 (February 17, 2022): 1509. http://dx.doi.org/10.3390/ma15041509.

Full text
Abstract:
The fire resistance of fiber-reinforced polymer reinforced concrete (FRP-RC) elements depends on the temperature performance of the original concrete member, the fire scenario, and FRP reinforcement behavior. In this study, fire resistance tests are described, along with the characteristics obtained during and after applying elevated temperatures, simulating the effects of fire. The tested beams were reinforced with basalt (BFRP) bars and with a hybrid composite of carbon fibers and basalt fibers (HFRP) bars. Fire tests were performed on full-scale beams, in which the midsections of the beams were heated from below (tension zone) and from the sides for two hours, after which the beams were cooled and subjected to flexural testing. BFRP-RC beams failed before the heating time was completed; the best failure was associated with a BFRP reinforced beam that failed approximately 108 min after heating. Contrary to the BFRP-RC samples, HFRP-RC beams were capable of resisting exposure to elevated temperatures for two hours, but showed a 70% reduction in strength capacity when compared to non-heated reference beams. According to the author, the higher resistance of HFRP-RC beams was the result of the thermal expansion coefficient of carbon fibers employed in HFRP, which “prestresses” the beams and enables smaller deflections. The preliminary findings of this study can increase the feasibility of using FRP materials for engineering purposes.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

Pati, Ardeep Ranjan. "Effects of Rebar Temperature and Water to Cement Ratio on Rebar-Concrete Bond Strength of Concrete Containing Fly Ash." Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc28460/.

Full text
Abstract:
This research presents the results on an experimental investigation to identify the effects of rebar temperature, fly ash and water to cement ratio on concrete porosity in continuously reinforced concrete pavements (CRCP). Samples were cast and analyzed using pullout tests. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40 for both fly ash containing and non fly ash control samples. There was a reduction in the peak pullout load as the rebar surface temperature increased from 77o F to 150o F for the cast samples. A heated rebar experiment was performed simulating a rebar exposed to hot summer days and the rebar cooling curves were plotted for the rebar temperatures of 180o F - 120o F. Fourier transform infrared spectroscopy was performed to show the moisture content of cement samples at the rebar-concrete interface. Mercury intrusion porosimetry test results on one batch of samples were used for pore size distribution analysis. An in-depth analysis of the morphological characteristics of the rebar-concrete interface and the observation of pores using the scanning electron microscope (SEM) was done.
APA, Harvard, Vancouver, ISO, and other styles
2

Mansour, Marwan. "Experimental tests on the effect of temperature on the short term behavior of FRC beams." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
The effect of temperature under short term behavior on macro-synthetic polypropylene fibers reinforced concrete (MSFRC) was evaluated, to understand how this condition may affect the performance of this material. An experimental campaign of three-point bending, compressive tests and elastic modulus tests have been performed on prisms, cubes and cylinders cured at 6 temperatures, ranging from -30°C to +60°C. The results highlighted that, for the material tested, the increment of temperature causes a decrement of the peak and post-peak flexural strength. Further analysis have been done on the fibers number and failure type.
APA, Harvard, Vancouver, ISO, and other styles
3

Ashour, Ashraf F., and Ilker F. Kara. "Size effect on shear strength of FRP reinforced concrete beams." 2013. http://hdl.handle.net/10454/7606.

Full text
Abstract:
yes
This paper presents test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer (CFRP) bars and without vertical shear reinforcement. All beams were tested under a two-point loading system to investigate shear behavior of CFRP reinforced concrete beams. Beam depth and amount of CFRP reinforcement were the main parameters investigated. All beams failed due to a sudden diagonal shear crack at almost 45°. A simplified, empirical expression for the shear capacity of FRP reinforced concrete members accounting for most influential parameters is developed based on the design-by-testing approach using a large database of 134 specimens collected from the literature including the beams tested in this study. The equations of six existing design standards for shear capacity of FRP reinforced concrete beams have also been evaluated using the large database collected. The existing shear design methods for FRP reinforced concrete beams give either conservative or unsafe predictions for many specimens in the database and their accuracy are mostly dependent on the effective depth and type of FRP reinforcement. On the other hand, the proposed equation provides reasonably accurate shear capacity predictions for a wide range of FRP reinforced concrete beams.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

Zudong, Shi, ed. Experiment and calculation of reinforced concrete at elevated temperatures. Waltham, MA: Butterworth-Heinemann, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guo, Zhenhai, and Xudong Shi. Experiment and Calculation of Reinforced Concrete at Elevated Temperatures. Elsevier Science & Technology Books, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Zhenhai, and Xudong Shi. Experiment and Calculation of Reinforced Concrete at Elevated Temperatures. Butterworth-Heinemann Limited, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

"Tensile Testing at Low Temperatures." In Tensile Testing, 239–49. 2nd ed. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.tt2.t51060239.

Full text
Abstract:
Abstract This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.
APA, Harvard, Vancouver, ISO, and other styles
2

Chandra Chakraborty, Bikash. "FRP for Marine Application." In Fiber-Reinforced Plastic [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101332.

Full text
Abstract:
Fiber Reinforced Plastics (FRPs) are widely used in marine sector owing to their high specific strength and resistance to marine corrosion. For naval application, additional advantages are transparency to radar wave and better vibration damping than metals. The use of various FRPs in off-shore structures and marine vessels needs analysis of desired properties considering the types of matrices and fiber. The common consideration is effect of sea water on the properties of the FRP. This chapter gives a brief on use of different FRPs in various areas such as off-shore pillars, Reinforced Cement Concrete (RCC) enclosers, primary and secondary marine components. A brief discussion is included here on diffusion models and estimation of durability by a time-temperature superposition principle applied to water ingress and corresponding change in mechanical strength of FRPs with examples. The effect of microbial activity on the damage of FRP is not very much reported in literature. It is known that sulfate-reducing bacteria (SRB) are the most damaging microbes for FRP. In conclusion, it is highlighted that vinyl-ester-based FRPs using glass and carbon fibers are best for marine application. To determine the realistic service life in marine environment, Vinyl Ester- FRP (VE-FRP) are to be simultaneously studied for damage due to sea water and the microbes such SRB.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

Fořt, Jan, Eva Vejmelková, Milena Pavlíková, Anton Trník, David Čítek, Jiří Kolísko, Robert Černý, and Zbyšek Pavlík. "High-temperature testing of high performance fiber reinforced concrete." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Safi, Brahim. "STRENGTH DEVELOPMENT OF FIBER REINFORCED SELF-COMPACTING CONCRETE (RFSCC): TEMPERATURE EFFECT ON MECHANICAL PROPERTIES." In 14th SGEM GeoConference on NANO, BIO AND GREEN � TECHNOLOGIES FOR A SUSTAINABLE FUTURE. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b62/s26.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qasim, Ola Adel. "Nonlinear finite element analysis of effect of temperature on self-compacted steel fiber reinforced concrete slabs." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE (IConMEAS 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bayar, Selen, Feridun Delale, and Benjamin Liaw. "Temperature Effect on Low Velocity Impact of Nanoclay Reinforced Polymers." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88200.

Full text
Abstract:
The main objective of this study is to ascertain the effect of temperature on nanoclay reinforced polymers subjected to low velocity impact loads. Most of the studies for low velocity drop weight tests are on fiber or fabric reinforced polymers. In recent years nanoadditives such as nanoclay have been used to improve the fire retardation of composites. The low velocity drop weight testing undertaken under this research has the distinct goal of obtaining base line data for impact analysis of nanoclay reinforced polymers. First, polypropylene 3371 (PP) resin specimens with dimensions of 4″×4″×(1/8)″ reinforced with varying weight fractions of nanoclay (0%, 0.2%, 1%, 3%, 6% and 10%) and instrumented with strain gages were subjected to low velocity impact tests. The low velocity impact tests were carried out at an energy level appropriate for nanoadditive reinforced polymers and at various temperatures, from −65°F (−54°C) to 160°F (71°C). The variation of contact force, specimen deflection and energy imparted to the specimen with time and the variation of contact force with displacement were obtained at each temperature. Depending on the drop height, the weight used and the percentage of nanoclay reinforcement, the following was observed: some specimens were penetrated (P), some cracked (F) and some visually remained virtually intact (NP), that is, they were not penetrated. The results of the low velocity impact tests indicate that high temperatures affect polypropylene significantly and practically eliminate the effect of nanoclay reinforcement. As a consequence the specimens show ductile behavior and were not penetrated. However, at room and low temperatures the effect of nanoclay reinforcement is discernable and addition of nanoclay makes the specimens more brittle, resulting in penetration of most of them.
APA, Harvard, Vancouver, ISO, and other styles
5

Longbiao, Li. "Temperature-Dependent Fatigue Damage Evolution of Fiber-Reinforced Ceramic-Matrix Composites." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14144.

Full text
Abstract:
Abstract In this paper, the temperature-dependent fatigue damage evolution of fiber-reinforced ceramic-matrix composites (CMCs) is investigated. The fatigue loading/unloading constitutive model considering the effect of temperature is developed based on the damage mechanisms of matrix cracking, interface debonding, and repeated sliding between the fiber and the matrix. The relationships between the fatigue loading/unloading hysteresis loops, testing temperature, applied cycle number, peak stress, and fiber/matrix interface debonding and sliding are established. The evolution of fatigue loading/unloading hysteresis loops, interface debonding and sliding length with applied cycle number is analyzed. The effects of temperature, peak stress level, applied cycle number, interface shear stress, and interface debonding energy on the fatigue damage evolution are discussed based on the developed temperature-dependent fatigue loading/unloading constitutive model. The experimental fatigue damage evolution of SiC/SiC composite at 600°C, 800°C, and 1000°C in inert atmosphere, 1000°C in air and in steam atmosphere, and 1300°C in air atmosphere are predicted. The interface shear stress of SiC/SiC composite decreases with temperature, and the degradation rate of interface shear stress increases with temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

Nazaripoor, Hadi, John Sunny, Ahmed Hammami, and Pierre Mertiny. "Mechanical Performance of Aged Long Fibers: Direct Water Exposure and Temperature Effect." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-83931.

Full text
Abstract:
Abstract Long fiber-reinforced composite materials consist of continuous fibers with high strength and modulus embedded in either a thermoset or thermoplastic matrix. The resulting composite material provides a combination of properties that cannot be achieved with either of the constituents acting alone. In composite structures, fibers are the primary load-carrying element, whereas the matrix transfers stress to and between the fibers while protecting them from adverse environmental conditions and mechanical damages. While thermosetting matrices provide a high level of protection against water permeation, exposure to moisture may still be significant in certain thermoplastics. Therefore, the effect of moisture on the reinforcing elements and the degradation rate may be considerable. The presented study investigated the effects of environmental aging conditions on different commercially available continuous fibers, i.e., glass fiber, carbon fiber, and basalt fiber. The fibers were soaked in water at room and elevated temperature to investigate the degradation mechanisms and, ultimately, the mechanical performance of the fibers. Mechanical testing was performed with wet fibers and dried fibers after aging. In addition, scanning electron microscopy was employed to explore the responsible mechanism for fiber degradation by environmental aging.
APA, Harvard, Vancouver, ISO, and other styles
7

Stefan, Maas, Nguyen Viet-Hà, Kebig Tanja, Schommer Sebastian, and Zürbes Arno. "Ambient vs Forced Excitation & Continuous vs Discrete Sampling of Data for Structural Health Monitoring." In IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.367.

Full text
Abstract:
Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. As local stiffness loss itself cannot directly be measured, the modal parameters i.e. eigenfrequencies, damping, modeshapes with modal masses allow to obtain residua of the transfer matrix. One row of transfer matrix is equivalent to physical description based on mass-, damping- and stiffness-matrix, where the latter is of interest to identify and localize changes due to damage. Today several practical options for tracking modal parameters are used. Changing ambient temperature has important influence on modal parameters and hence on stiffness, which should be separated from damage. Furthermore, reinforced concrete shows dependency on excitation force, which is a non-linear phenomenon to be considered. After presenting these effects, the paper will focus on ambient excitation compared to forced excitation including appropriate exciters. Then continuous monitoring will be discussed versus discrete testing in distinct timeintervals. The intention is to give an overview to localize and quantify damage later on.
APA, Harvard, Vancouver, ISO, and other styles
8

BANIK, ARNOB, M. H. KHAN, and K. T. TAN. "IMPACT PERFORMANCE COMPARISON OF FIBER REINFORCED COMPOSITE SANDWICH STRUCTURES IN ARCTIC CONDITION." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36380.

Full text
Abstract:
About 40% of sea ice-covered areas have been reduced over the last three decades due to the effect of global warming. The Northern Sea route has been considered as a more effective, quicker, and economical sea route for marine vessels. But it is not safe to operate in such a cold and harsh environment due to the potential risk of collision with ice chunks, resulting in damages in the marine structures. It is therefore important to understand the behavior of marine composites at low temperatures, with the overarching goal that leads to improved design for marine structures and materials that can operate safely and effectively in the Arctic environment. This study investigates the low-velocity impact performance and damage mechanisms of woven carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), and carbon-glass fiber hybrid face sheets sandwich panel at both room temperature (23 °C) and low temperature (-70 °C) to mimic the Arctic environment. A series of low-velocity impact tests (3.46 m/s and 4.92 m/s) is performed at 15 J and 30 J energy using a drop tower testing machine. A relative comparison of the impact response due to different face sheet materials is presented in terms of force, displacement, and energy. Force-time and force-displacement plots show that GFRP sandwich composites have the highest damage initiation force and peak force values across different temperatures and impact energies. Furthermore, the lowest energy absorption for GFRP composites is found responsible for the least impact-induced damage. X-ray microcomputed tomography reveals severe fiber breakage on the compression side of CFRP sandwich panel and back face spitting at both temperatures for 30 J impacts. By replacing carbon fibers with glass fibers, the damage mechanism switches from fiber breakage to delamination as the dominant failure mode. The findings from this work will aid in a better understanding of the impact failure modes of composite sandwich structures at extremely low-temperature conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Ainsworth, Stephen D., and Robert A. Latour. "Design Optimization of a Composite Splint Material for Strength and Thermoformability." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0332.

Full text
Abstract:
Abstract The development of a short fiber reinforced, low temperature thermoplastic splint material has potential to improve the ease, cost and efficiency of splinting and casting musculoskeletal problems. Design optimization of the fiber/matrix system is a key step in the development process of this new material. The tensile strength, flexural strength, and elastic moduli were found for 2-D randomly oriented short E-glass fiber reinforced polycaprolactone at both room temperature and at 170°F. The effect of fiber length and fiber volume fraction on the previously mentioned properties were studied by testing a range of fiber volume fractions (0.0 to 0.10) with fiber lengths of 3 mm and 7 mm. The results of this study show potential for increasing strength and rigidity of the low temperature thermoplastic through fiber reinforcement, while maintaining some degree of thermoformability.
APA, Harvard, Vancouver, ISO, and other styles
10

BANIK, ARNOB, CHAO ZHANG, and K. T. TAN. "EFFECT OF IMPACTOR MASS ON CFRP IN ARCTIC CONDITION UNDER LOW-VELOCITY IMPACT." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35806.

Full text
Abstract:
This study investigates the impact response and damage characterization of carbon fiber reinforced polymer (CFRP) under low-velocity impact by impactors of different masses and velocities at 62J. Low-velocity impacts are conducted at room temperature (23ºC) as well as low temperature (-70ºC) conditions in the thermal chamber of the drop tower testing machine, Instron CEAST 9350. The aim is to observe composite behavior in the cold Arctic environment due to equal energy impacts. Moreover, a 3mm thickness of ice is created on the CFRP samples at -12ºC after 24 hours of freezing and impacted at -70ºC. The goal is to elucidate the contribution of surface ice on the overall impact damage of composites. X-ray micro-computed tomography is utilized to reveal the inner damages of the composite structures. Intralaminar damage in the form of fiber breakage is found as the dominant failure mode on the CFRP samples from 62J impacts. But differences in the delamination and matrix crack formation are identified for different mass-velocity configurations and environmental conditions. Results show that low mass impactors produce a larger damage initiation force on the composites at all temperatures, whereas no specific trend is observed in the peak force values due to severe fiber failure. Although higher mass impactors show longer impact duration, lower mass impactors develop greater damage on the CFRP, as seen by a greater reduction in specimen stiffness. Furthermore, the presence of ice is observed to have a minimal effect on the damage behavior of composites. But ice layer assists to reduce the amplitude of initial load drop by the low mass impactor and as such, less permanent displacement is identified in the CFRP specimens than both room temperature and low-temperature conditions. This study explores the understanding of the dynamic behavior of composites under low-temperature icy conditions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fiber-reinforced concrete Effect of temperature on Testing"

1

Weiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.

Full text
Abstract:
A patented active porcelain enamel coating improves both the bond between the concrete and steel reinforcement as well as its corrosion resistance. A Small Business Innovation Research (SBIR) program to develop a commercial method for production of porcelain-coated fibers was developed in 2015. Market potential of this technology with its steel/concrete bond improvements and corrosion protection suggests that it can compete with other fiber reinforcing systems, with improvements in performance, durability, and cost, especially as compared to smooth fibers incorporated into concrete slabs and beams. Preliminary testing in a Phase 1 SBIR investigation indicated that active ceramic coatings on small diameter wire significantly improved the bond between the wires and the concrete to the point that the wires achieved yield before pullout without affecting the strength of the wire. As part of an SBIR Phase 2 effort, the University of Louisville under contract for Ceramics, Composites and Coatings Inc., proposed an investigation to evaluate active enamel-coated steel fibers in typical concrete applications and in masonry grouts in both tension and compression. Evaluation of the effect of the incorporation of coated fibers into Ultra-High Performance Concrete (UHPC) was examined using flexural and compressive strength testing as well as through nanoindentation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography