Academic literature on the topic 'Fiber optic displacement sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber optic displacement sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fiber optic displacement sensor"
Kleiza, V., and J. Verkelis. "Some Advanced Fiber-Optical Amplitude Modulated Reflection Displacement and Refractive Index Sensors." Nonlinear Analysis: Modelling and Control 12, no. 2 (April 25, 2007): 213–25. http://dx.doi.org/10.15388/na.2007.12.2.14712.
Full textMurthy, S. A. N., and B. B. Padhy. "Fiber Optic Displacement Sensor." Journal of Optics 29, no. 4 (December 2000): 179–91. http://dx.doi.org/10.1007/bf03354684.
Full textZhao, Jinlei, Tengfei Bao, and Tribikram Kundu. "Wide Range Fiber Displacement Sensor Based on Bending Loss." Journal of Sensors 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/4201870.
Full textWu, Chi. "Fiber optic angular displacement sensor." Review of Scientific Instruments 66, no. 6 (June 1995): 3672–75. http://dx.doi.org/10.1063/1.1145486.
Full textPotapov, V. T., D. A. Sedykh, and A. A. Sokolovskii. "Fiber-optic interferometric displacement sensor." Measurement Techniques 31, no. 6 (June 1988): 561–63. http://dx.doi.org/10.1007/bf00867531.
Full textLi, Yujie, Ming Zhang, and Yu Zhu. "Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor." Mechanics & Industry 22 (2021): 48. http://dx.doi.org/10.1051/meca/2021047.
Full textWylie, Michael T. V., Bruce G. Colpitts, and Anthony W. Brown. "Fiber Optic Distributed Differential Displacement Sensor." Journal of Lightwave Technology 29, no. 18 (September 2011): 2847–52. http://dx.doi.org/10.1109/jlt.2011.2165527.
Full textZhu, Hong Hu, Jian Hua Yin, Hua Fu Pei, Lin Zhang, and Wei Shen Zhu. "Fiber Optic Displacement Monitoring in Laboratory Physical Model Testing." Advanced Materials Research 143-144 (October 2010): 1081–85. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.1081.
Full textYugay, V. V., P. Sh Madi, S. B. Ozhigina, D. A. Gorokhov, and A. D. Alkina. "Questions of application of fiber-optic sensors for monitoring crack growth during rock deformations." Journal of Physics: Conference Series 2140, no. 1 (December 1, 2021): 012037. http://dx.doi.org/10.1088/1742-6596/2140/1/012037.
Full textМеkhtiyev, А. D., E. G. Neshina, P. Sh Madi, and D. A. Gorokhov. "Automated Fiber-Optic System for Monitoring the Stability of the Pit Quarry Mass and Dumps." Occupational Safety in Industry, no. 4 (April 2021): 19–26. http://dx.doi.org/10.24000/0409-2961-2021-4-19-26.
Full textDissertations / Theses on the topic "Fiber optic displacement sensor"
Sakamoto, João Marcos Salvi. "Laser ultrasonics system with a fiber optic angular displacement sensor." Instituto Tecnológico de Aeronáutica, 2012. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2146.
Full textZhang, Kuiwei. "Surface roughness and displacement measurements using a fibre optic sensor and neural networks." Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246145.
Full textJason, Johan. "Fibre-Optic Displacement and Temperature Sensing Using Coupling Based Intensity Modulation and Polarisation Modulation Techniques." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-18964.
Full textFiberoptiska sensorer används för mätning av ett antal olika fysikaliska parametrar eller för händelsedetektering i larm- och säkerhetssystem. I miljöer med elektromagnetiska störningar, i andra besvärliga miljöer där elektronik inte fungerar samt i tillämpningar där distribuerade sensorer är att föredra, har fiberoptiska lösningar funnit naturliga applikationer. I vissa fall har de ersatt konventionella elektroniska sensorer på grund av bättre prestanda och tillförlitlighet, medan de i andra sammanhang har haft mindre framgång huvudsakligen på grund av den i många fall högre kostnaden för fiberoptiska sensorsystem. Intensitetsmodulerade fiberoptiska sensorer kräver normalt endast billiga utläsningssystem huvudsakligen baserade på lysdioder och fotodioder. Principen för sådana sensorer baserade på koppling mellan fibrer är mycket enkel, och denna typ av sensorer har haft tillämpningar under en lång tid, främst inom mätning av positionsförändring och vibrationer. För distribuerade intensitetsmodulerade sensorer har system baserade på optisk tidsdomän-reflektometer (OTDR) och skräddarsydda sensorkablar funnit tillämpningar i detektion av värme/brand, vattenläckage och kolvätebaserade vätskor. I denna avhandling presenteras, simuleras, testas och utvärderas praktiskt några nya koncept för kopplingsbaserade intensitetsmodulerade fiberoptiska sensorer. Från ett lågkostnads- och standardkomponentperspektiv föreslås och analyseras alternativa lösningar för förbättrad prestanda. Utveckling och installation av en temperatursensor för en industriell tillämpning, innehållande aspekter på sensormultiplexering och nätverksbyggande, behandlas. OTDR-teknik används som en effektiv metod för multiplexering av flera kopplingsbaserade sensorer, och installation av sensornätverk genom användning av blåsfiberteknik och mikrodukter föreslås som ett flexibelt och kostnadseffektivt alternativ till traditionell kabelinstallation. Som en lösning på förekommande upplinjeringsproblem för kopplingsbaserade sensorer, föreslås en ny sensorkonfiguration baserad på koppling mellan en fiber och en multikärnefiber/fiberarray och med ett bildsensorsystem för detektering. Med detta koncept kan ett högpresterande, upplinjeringsfritt sensorsystem med ett stort mätområde åstadkommas. Sensorsystemets prestanda har analyserats teoretiskt med kompletta systemsimuleringar, och en experimentell uppställning baserad på standardfiber och en kamera av standardtyp har gjorts. Simuleringar av möjliga felbidrag visar att systemets experimentella prestanda främst begränsas av skillnader mellan den modellerade och den verkliga optiska effektfördelningen. En förbättrad modell för effektfördelningen föreslås och utvärderas experimentellt. Det visas att prestanda är möjlig att förbättra ner mot den teoretiska gräns på 1 μm som erhållits vid systemsimuleringar. Möjligheterna att använda fyllda hålfibrer och polarisationskänslig mätning för detektering av temperaturgränser studeras i syfte att komplettera befintliga fiberoptiska värmedetektorsystem. Förändringen i fiberns dubbelbrytning vid övergångstemperaturen mellan vätske- och fast fas för ämnet i hålen visas och bestäms experimentellt för hålfibrer fyllda med vattenlösningar respektive en metallegering, och resultaten understöds också av simuleringar. En punktsensor för temperaturdetektering baserad på denna princip föreslås. Vidare visas principerna för distribuerad detektering genom registrering av förändringen i dubbelbrytning med polarisations-OTDR (POTDR). Det visas att OTDR-teknik med hög spatial upplösning behövs för övervakning av de studerade fibrerna, och hålfibrer utformade med lägre dubbelbrytning föreslås för framtida studier av tillämpningen.
Arora, Neha. "Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2347.
Full textThe aim of the thesis is to provide a flexible conveyor system for moving micro-objects. The system may need to be integrated into a micro-factory which requires high reconfigurability and low power consumption. These two criteria have been considered in the design of the conveyor system. The conveyor is based on a planar electromagnetic actuator developed in the Laboratoire Roberval of the UTC, and on smart surface composed of 5 x 5 unit cells; each ceii moves th movable part in the two directions of the plane. An analytical model of the actuator has been developed in order to calculate the electromagnetic forces and the displacement of the mobile part. This modei has been used during the design phase of the conveying system. An experimental prototype is then manufactured and tested which has validated the proposed principle of operation. Experimental tests have shown the ability to perform wide area displacement in both directions of the plane. Numerous experimental tests (control in open loop and closed loop performance characterization as straightness of movement, position repeatability, coupled- decoupled analysis...) have been done to qualify the performance of the conveyor system. Experiments for rotations about the axis perpendicular to the olane have also been performed successfully. Work synthesis: - Static modeling under RADIA was developed in order to design the conveyor surface especially for the transitio zone between two neighboring cells. A dynamic modeling under MATLAB allowed to simulate the behavior of single axis motor in open loop and closed loop control. - A conveyor surface prototype, consisting of a multilayer printed circuit board (4 layers) of dimensions 130 mm x 130 mm, was designed under EAGLE software. The influence of the distance between the first two layers was studied using the developed models to ensure uniform displacement in both the directions. - The experimental tests (with LABVIEW interface) of an elementary cell of the intelligent surface with a moving part composed of two orthogonal magnetic motors has been carried out that allowed to validate the operation of the conveying system in both directions of the plane. - Another series of tests with LABVIEW interface were carried out in order to validate experimentally the displacement of the mobile part with the smart surface at the transition zones between the elementary cells. - These experimental tests showed displacements of great extent in the two directions of the plane and of rotation about the axis perpendicular to the plane. - Long displacements and rotations of the moving part were measured using image processing algorithm developed in MATLAB. - At the same time, a high resolution fiber optic displacement sensor was studied that can be integrated into the conveyor surface locally for the precise positioning. A robust signal processing algorithm for high resolution displacement measurement was developed. In this algorithm, - The optimum position of the movable part is determined in order to obtain a continuous switching betwee the two fiber optic probes ; - The usable parts of the signals obtained from two probes were then filtered to measure the displacement using interpolation method ; The algorithm is implemented under MATLAB and validated by the implementation of the experimental signals. The work have been published in an international journal (Computers in Industry (COMIND)) and presented at international congresses (IEEE Sensors, REM Mechatronics, AIM, IWMF) during the years 2011 to 2016
Beadle, Brad Michael. "Fiber optic sensor for ultrasound." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17869.
Full textBeadle, Brad Michael. "Fiber optic sensor for ultrasound." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19173.
Full textMaier, Eric William. "Buried fiber optic intrusion sensor." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/425.
Full textGoyal, Sandeep. "Fiber optic current sensor network." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq24716.pdf.
Full textChen, Qiao. "ESA based fiber optical humidity sensor." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/10134.
Full textMaster of Science
Bangert, Adam. "Fiber optic sensor prototype for breast cancer imaging." Connect to resource, 2006. http://hdl.handle.net/1811/6455.
Full textTitle from first page of PDF file. Document formatted into pages: contains 33 p.; also includes graphics. Includes bibliographical references (p. 20). Available online via Ohio State University's Knowledge Bank.
Books on the topic "Fiber optic displacement sensor"
Ross, Cameron D. Distributed single-mode microbend fiber-optic sensor. Sudbury, Ont: Laurentian University Press, 1996.
Find full textChik, Danny Ka Hon. Application of long gauge fiber optic measurement system: Long gauge fiber optic sensor. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.
Find full textDunphy, J. R. Development of a fiber optic sensor for turbine disk diagnostics. New York: AIAA, 1985.
Find full textHogg, William Daylesford. Strain and temperature measurements using a localised polarimetric fibre optic sensor. [Downsview, Ont.]: University of Toronto, 1989.
Find full textPacific Northwest Fiber Optic Sensor Workshop (1995 Troutdale, Or.). Pacific Northwest Fiber Optic Sensor Workshop: 3-4 May 1995, Troutdale, Oregon. Edited by Udd Eric, Society of Photo-optical Instrumentation Engineers., and Blue Road Research. Bellingham, Wash: The Society, 1995.
Find full textEric, Udd, Blue Road Research, and Society of Photo-optical Instrumentation Engineers., eds. Second Pacific Northwest Fiber Optic Sensor Workshop, 8-9 May 1996, Troutdale, Oregon. Bellingham, Wash: The Society, 1996.
Find full textPacific Northwest Fiber Optic Sensor Workshop (4th 1998 Troutdale, Or.). Fourth Pacific Northwest Fiber Optic Sensor Workshop: 6-7 May 1998, Troutdale, Oregon. Edited by Udd Eric, Jung Chuck C, Blue Road Research, and Society of Photo-optical Instrumentation Engineers. Bellingham, Wash., USA: SPIE, 1998.
Find full textPacific, Northwest Fiber Optic Sensor Workshop (3rd 1997 Troutdale Or ). Third Pacific Northwest Fiber Optic Sensor Workshop: 6-7 May 1997, Troutdale, Oregon. Bellingham, Wash., USA: SPIE, 1997.
Find full textEric, Udd, Kreger Stephen T, Bush Jeff 1977-, Blue Road Research, and Society of Photo-optical Instrumentation Engineers., eds. Sixth Pacific Northwest Fiber Optic Sensor Workshop: 14-15 May 2003, Troutdale, Oregon, USA. Bellingham, Wash: SPIE, 2003.
Find full textPacific Northwest Fiber Optic Sensor Workshop. Sixth Pacific Northwest Fiber Optic Sensor Workshop: 14-15 May 2003, Troutdale, Oregon, USA. Bellingham, WA: SPIE, 2003.
Find full textBook chapters on the topic "Fiber optic displacement sensor"
Grahn, Rick, Hussain Karimi, Kyle Wilson, Erik Moro, and Anthony Puckett. "Performance Comparison of Fiber Optic Tips in Interferometric Displacement Measurements." In Sensors, Instrumentation and Special Topics, Volume 6, 227–35. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9507-0_22.
Full textEcke, W., K. H. Jäckel, P. Pfeifer, J. Schauer, and R. Willsch. "Fibre Optic Remote Displacement Sensor for Seismic Events at High Temperature." In Applications of Photonic Technology 2, 771–76. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_116.
Full textWeik, Martin H. "fiber optic sensor." In Computer Science and Communications Dictionary, 595. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7011.
Full textBlake, J. "Fiber optic gyroscopes." In Optical Fiber Sensor Technology, 303–28. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5787-6_9.
Full textWeik, Martin H. "Sagnac fiber optic sensor." In Computer Science and Communications Dictionary, 1511. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_16566.
Full textCulshaw, Brian. "Fiber-Optic Sensor Networks." In Sensors, 515–28. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620173.ch20.
Full textMagill, J. V. "Integrated optic sensors." In Optical Fiber Sensor Technology, 113–32. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2484-5_6.
Full textHartog, A. H. "Distributed fiber-optic sensors." In Optical Fiber Sensor Technology, 347–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1210-9_11.
Full textBerthold, John W. "Microbend fiber optic sensors." In Optical Fiber Sensor Technology, 225–40. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-6077-4_8.
Full textGrattan, K. T. V., and Z. Y. Zhang. "Fiber optic luminescence thermometry." In Optical Fiber Sensor Technology, 133–203. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2484-5_7.
Full textConference papers on the topic "Fiber optic displacement sensor"
Davis, Pepe G., Jeff Bush, and Gregory S. Maurer. "Fiber optic displacement sensor." In Pacific Northwest Fiber Optic Sensor Workshop, edited by Chuck C. Jung and Eric Udd. SPIE, 1998. http://dx.doi.org/10.1117/12.323427.
Full textAndriesh, Andrei M., Ion P. Culeac, V. A. Binchevici, Vladimir G. Abaschin, and V. N. Schitsco. "Fiber optic displacement sensor." In Optics Quebec, edited by Roger A. Lessard. SPIE, 1994. http://dx.doi.org/10.1117/12.166336.
Full textFisher, Karl A., and Jacek Jarzynski. "Fiber optic multimode displacement sensor." In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50340.
Full textSpillman, Jr., W. B., and P. L. Fuhr. "Fiber Optic Rotary Displacement Sensor with Wavelength Encoding." In Optical Fiber Sensors. Washington, D.C.: OSA, 1988. http://dx.doi.org/10.1364/ofs.1988.thcc14.
Full textDuplain, G., C. Belleville, S. Bussière, and P. A. Bélanger. "Absolute Fiber-Optic Linear Position and Displacement Sensor." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.otud5.
Full textHowe, R. D., and G. Kychakoff. "Reflection based fiber-optic displacement sensor." In ICALEO® ‘86: The Changing Frontiers of Optical Techniques for Industrial Measurement and Control. Laser Institute of America, 1986. http://dx.doi.org/10.2351/1.5057825.
Full textShribak, Michael I., Victor L. Kolpashchikov, and Oleg G. Martynenko. "Fiber optic sensor of linear displacement." In Photonics China '96, edited by Kim D. Bennett, Byoung Yoon Kim, and Yanbiao Liao. SPIE, 1996. http://dx.doi.org/10.1117/12.252151.
Full textSpillman, Jr., W. B., P. L. Fuhr, and P. J. Kajenski. "Self-Referencing Fiber Optic Rotary Displacement Sensor." In O-E/Fiber LASE '88, edited by Ramon P. DePaula and Eric Udd. SPIE, 1989. http://dx.doi.org/10.1117/12.948873.
Full textSpillman, Jr., William B., Robert E. Rudd III, Frederick G. Hoff, Douglas R. Patriquin, and Jeffrey R. Lord. "Wavelength-encoded fiber optic angular displacement sensor." In Microlithography '91, San Jose,CA, edited by Ramon P. DePaula and Eric Udd. SPIE, 1991. http://dx.doi.org/10.1117/12.24744.
Full textNilsson, Bruno, Dan Tilert, Attila Temun, Torgny Carlsson, and Lars Mattsson. "Fast low-cost fiber-optic displacement sensor." In Bruges, Belgium - Deadline Past. SPIE, 2005. http://dx.doi.org/10.1117/12.623631.
Full textReports on the topic "Fiber optic displacement sensor"
Green, R. E. L., and A. I. Poutiatine. Fiber-optic displacement sensors on the Hunters Trophy UGT impulse gauge experiments. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/28389.
Full textMoro, Erik A. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1048657.
Full textRabold, D. Fiber optic temperature sensor. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/145843.
Full textButler, M. A., R. Sanchez, and G. R. Dulleck. Fiber optic hydrogen sensor. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/251330.
Full textWeiss, J. Fiber-optic shock position sensor. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6721455.
Full textZiegler, K. E. Fiber-Optic Laser Raman Spectroscopy Sensor. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815181.
Full textMenking, Darrel E., Jonathan M. Heitz, Roy G. Thompson, and Deborah G. Thompson. Antibody-Based Fiber Optic Evanescent Wave Sensor. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada299937.
Full textTung, D., L. Bertram, R. Hillaire, S. Anderson, S. Leonard, and S. Marburger. Fiber optic sensor: Feedback control design and implementation. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/554748.
Full textDay, G. W. Fiber optic and sensor technology support. Project progress report. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/71361.
Full textZhang, Yuke, W. R. Seitz, Donald C. Sundberg, and Clarence L. Grant. Preliminary Development of a Fiber Optic Sensor for TNT. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada195869.
Full text