Academic literature on the topic 'Fetal cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fetal cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fetal cell"
McCook, Alison. "Fetal Cell Setback." Scientific American 284, no. 5 (May 2001): 25. http://dx.doi.org/10.1038/scientificamerican0501-25c.
Full textCassar-Malek, Isabelle, Brigitte Picard, Catherine Jurie, Anne Listrat, Michel Guillomot, Pascale Chavatte-Palmer, and Yvan Heyman. "Myogenesis Is Delayed in Bovine Fetal Clones." Cellular Reprogramming 12, no. 2 (April 2010): 191–201. http://dx.doi.org/10.1089/cell.2009.0065.
Full textBrodowski, L., B. Schröder-Heurich, C. A. Hubel, T. H. Vu, C. S. von Kaisenberg, and F. von Versen-Höynck. "Role of vitamin D in cell-cell interaction of fetal endothelial progenitor cells and umbilical cord endothelial cells in a preeclampsia-like model." American Journal of Physiology-Cell Physiology 317, no. 2 (August 1, 2019): C348—C357. http://dx.doi.org/10.1152/ajpcell.00109.2019.
Full textKATLAN, Doruk Cevdi, and Feride SÖYLEMEZ. "Cell-Free Fetal DNA in Prenatal Screening." Turkiye Klinikleri Journal of Health Sciences 2, no. 3 (2017): 165–73. http://dx.doi.org/10.5336/healthsci.2016-51564.
Full textKearney, J., F. Martin, C. Benedict, and A. Oliver. "Fetal B cell development." Immunology Letters 56 (May 1997): 98. http://dx.doi.org/10.1016/s0165-2478(97)85389-8.
Full textKearney, J. "Fetal B cell development." Immunology Letters 56, no. 1-3 (May 1997): 98. http://dx.doi.org/10.1016/s0165-2478(97)87227-6.
Full textTiblad, Eleonor, and Magnus Westgren. "Fetal stem-cell transplantation." Best Practice & Research Clinical Obstetrics & Gynaecology 22, no. 1 (February 2008): 189–201. http://dx.doi.org/10.1016/j.bpobgyn.2007.07.007.
Full textFrost, Mackenzie S., Aqib H. Zehri, Sean W. Limesand, William W. Hay, and Paul J. Rozance. "Differential Effects of Chronic Pulsatile versus Chronic Constant Maternal Hyperglycemia on Fetal Pancreaticβ-Cells." Journal of Pregnancy 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/812094.
Full textZhao, Xiao Xi, Nobuhiro Suzumori, Yasuhiko Ozaki, Takeshi Sato, and Kaoru Suzumori. "Examination of Fetal Cells and Cell-Free Fetal DNA in Maternal Blood for Fetal Gender Determination." Gynecologic and Obstetric Investigation 58, no. 1 (2004): 57–60. http://dx.doi.org/10.1159/000078577.
Full textNg, Melissa, Theodore Roth, Ventura Mendoza, Alexander Marson, and Trevor Burt. "Helios predisposes human fetal CD4+ naive T cells towards regulatory T cell differentiation." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 124.9. http://dx.doi.org/10.4049/jimmunol.202.supp.124.9.
Full textDissertations / Theses on the topic "Fetal cell"
Götherström, Cecilia. "Characterisation of human fetal mesenchymal stem cells /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-139-3/.
Full textWeinhaus, Anthony James. "Physiology of the fetal B-cell." Thesis, The University of Sydney, 1994. https://hdl.handle.net/2123/26826.
Full textCowan, Gillian. "Fetal germ cell differentiation and the impact of the somatic cells." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4164.
Full textLi, Qinggang. "In vitro regulation of fetal bovine erythropoiesis." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42078.
Full textA clonal assay system for bovine fetal liver cells was developed to further characterize the erythropoietic effects of IGF II, the most important of the isolated factors. It was found that bovine fetal erythroid colonies could not be developed at low concentrations of FBS, unless they were grown over stromal cells. Bovine fetal liver stromal cell lines could support erythroid growth through secreting soluble factor(s) and by direct contact to erythroid cells. It was clear that IGFs stimulated erythropoiesis in this system.
Saleh, A. W. "Modulation of fetal hemoglobin in sickle cell anemia." Maastricht : Maastricht : Universiteit Maastricht ; University Library, Maastricht University [Host], 1998. http://arno.unimaas.nl/show.cgi?fid=8498.
Full textMaciaczyk, Jaroslaw. "Human fetal neural precursor cells: a putative cell source for neurorestorative strategies." [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-57885.
Full textDitadi, Andrea. "Cell therapy approach for hematopoietic diseases using fetal cells issued from amniotic fluid." Paris 5, 2008. http://www.theses.fr/2008PA05T036.
Full textIn the present study we investigated the possibility of differentiating AFS cells towards the hematopoietic pathway. We achieved a reproducible erythroid differentiation by culturing hAFSCs as embryoid bodies (EBs) under serum free conditions with haematopoietic cytokines. Furthermore, human erythrocytes (human CD235a) were isolated from bone marrow and spleen of sublethally irradiated NOD/SCID mice at 3 months after the injection of hAFSCs. We compared the hematopoietic potential of mAFKL and mAmKL to Fetal Liver KL, the main source of fetal HSC. When cultivated immediatly after their sorting, freshly isolated murine AFKL and AmKL cells gave rise to all the different hematopoietic lineages both in vitro and in vivo. Experiments with freshly isolated hAFKL gave good results in the in vitro assays being able to give rise to erythroid, myeloid and lymphoid lineages, but failed to reconstitute the hematopoietic system in irradiated NOD/SCID mice, probably due to the poor amount of cells injected. This is the first report demonstrating that AFKL and AmKL do have an haematopoietic potential, supporting the idea that AF and Am may be an excellent source for therapeutic application
Huygens, Ariane. "Fetal T cell response to human congenital cytomegalovirus infection." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209450.
Full textLes lymphocytes T CD4+ Th1 et les lymphocytes T CD8+ cytotoxiques jouent un rôle crucial dans le contrôle des pathogènes intracellulaires dont le HCMV fait partie. La littérature montre une capacité limitée des enfants congénitalement infectés par le HCMV à développer des réponses T CD4+ spécifiques du HCMV. En contraste, des réponses de lymphocytes T CD8+ spécifiques du HCMV ont été rapportées chez des enfants infectés in utero, mais ces réponses n’ont pas été comparées en détails à celles de l’adulte. De plus, notre connaissance des réponses T spécifiques du HCMV durant l’infection primaire par ce virus est limitée. Des études antérieures ont rapporté un défaut de prolifération et de production d’IL-2 des lymphocytes T spécifiques du HCMV chez des adultes avec durant la phase primaire de l’infection, mais les mécanismes restent non-élucidés.
Nous avons caractérisé les réponses de lymphocytes T CD4+ et CD8+ spécifiques du HCMV provenant du sang de cordon de nouveau-nés congénitalement infectés par le HCMV, et nous avons comparé ces réponses à celles de leurs mamans diagnostiquées avec une infection primaire par le HCMV durant la grossesse. En plus, nous avons comparé les réponses T CD4+ et CD8+ de ces mamans à celles d’adultes infectés chroniquement par le virus. Chez les nouveau-nés, nous avons démontré que des lymphocytes T CD4+ de sang de cordon exprimant un phénotype de différentiation spécifique du HCMV (CD27-CD28-) ainsi qu’un phénotype Th1 similaire à celui des cellules maternelles étaient induits in utero lors de l’infection congénitale par le HCMV. De plus, la détection d’expansions oligoclonales suggérait fortement une expansion antigène-spécifique de ces cellules. Cependant, les T CD4+ de nouveau-nés présentaient une capacité fortement réduite à produire des cytokines anti-virales (IFN-γ, TNF-α et MIP-1β) en réponse à une stimulation ex vivo avec les antigènes du HCMV, par rapport aux cellules maternelles. Les lymphocytes T (CD27-CD28-) CD4+ de nouveau-nés produisaient également des niveaux plus bas de cytokines antivirales en réponse à des stimulations polyclonales avec l’anti-CD3 et la PMA/ionomycine, suggérant des altérations en amont et en aval de la voie de signalisation du TCR. Nos résultats suggèrent que ces altérations pourraient impliquer la diminution de l’expression de molécules impliquées dans cette voie de signalisation. De la même manière, nous
avons montré que chez le nouveau-né, la fonction des T CD8+ spécifiques du HCMV était altérée par rapport à celle de l’adulte. Nous avons observé des proportions similaires de T CD8+ (CD27-CD28-) chez les nouveau-nés et les adultes. De plus, l’analyse du répertoire du TCR Vβ de ces cellules par séquençage haut-débit a révélé une capacité similaire à générer un répertoire T diversifié dans les deux groupes. Comme rapporté précédemment, nous avons détecté des fréquences similaires de lymphocytes T CD8+ spécifiques pour l’antigène immunodominant pp65. Cependant, lorsque les stimulations ont été étendues à d’autres antigènes du HCMV, nous avons observé que le répertoire antigénique reconnu par ces cellules était significativement réduit chez les nouveau-nés, en association avec une diminution de la polyfonctionalité et de la production de cytokines par cellule.
Nous avons également montré que, dans une moindre mesure, la fonction des lymphocytes T spécifiques du HCMV était diminuée durant l’infection primaire chez l’adulte. Comme reporté précédemment, les T CD4+ spécifiques du HCMV proliféraient moins et produisaient moins d’IL-2 par rapport à des individus dans la phase chronique de l’infection. Ce défaut de production d’IL-2 affectait à la fois les populations de cellules CD28+ et CD28-, montrant que l’accumulation de lymphocytes T CD4+ ayant perdu l’expression de la molécule CD28 (un signal de co-stimulation important pour la production d’IL-2) est seulement un des facteurs contribuant à la diminution de la production d’IL-2 par les cellules spécifiques du HCMV. En accord avec cette observation, nous avons montré une diminution de la production par cellule d’IFN-γ et de TNF-α touchant également à la fois les populations de T CD4+ CD28+ et CD28- durant la phase primaire de l’infection, un défaut associé avec une avidité fonctionnelle diminuée de ces cellules. De la même manière, la polyfonctionalité et la production de cytokines par cellule des lymphocytes T CD8+ spécifiques du HCMV étaient également diminuées chez les adultes durant la phase d’infection primaire.
En résumé, nos résultats montrent que la fonction des lymphocytes T spécifiques du HCMV de nouveau-nés et d’adultes est altérée durant l’infection primaire par rapport à des individus infectés chroniquement par le virus. Nous montrons que cette régulation fonctionnelle ressemble à l’exhaustion fonctionnelle des lymphocytes T observée durant les infections virales chroniques associées à des charges virales élevées. L’infection primaire par le HCMV est caractérisée par une réplication virale intense qui dure pendant plusieurs mois suivant l’infection. Nous émettons l’hypothèse que les hauts taux de réplication virale observés durant l’infection congénitale et chez l’adulte durant l’infection primaire par le HCMV pourraient interférer avec certaines fonctions des lymphocytes T./Neonates and young infants have a higher susceptibility to infections compared to older infants or adults. This feature is in part attributed to the immaturity of their immune system associated with a limited capacity to mount cellular-mediated immune responses. Congenital human cytomegalovirus (HCMV) infection is the most common cause of congenital infection worldwide and a major cause of hearing loss and mental retardation. In Belgium, antenatal screening of pregnant women for primary HCMV infection offers an opportunity to study neonatal immune responses to the virus and to compare them to those of their mother.
T lymphocytes are major players of the immune system. In particular, Th1 CD4+ T cells and CD8+ cytotoxic T cells play a crucial role in the control of intracellular pathogens, including HCMV infection. Previous literature has reported a limited capacity of infants born with congenital HCMV infection to mount HCMV-specific CD4+ T cell responses. In contrast, fetal antigen-specific CD8+ T cell responses have been reported following in utero HCMV infection, but these responses have not been compared in detail to those of adults with primary infection. In addition, our knowledge regarding adult HCMV-specific T cell responses during primary HCMV infection is limited. Previous studies have reported defective T cell proliferation and IL-2 production in adults with primary HCMV infection, showing that some of the T cell functions are altered during primary infection.
In this study, we have characterized neonatal HCMV-specific CD4+ and CD8+ T cell responses from the cord blood of newborns with congenital HCMV infection, and we have compared these responses to that of their mothers diagnosed with primary HCMV infection during pregnancy. Also, we compared CD4+ and CD8+ T cell responses of adults with primary HCMV infection to that of adults with chronic infection.
In newborns, it was not known if the defective CD4+ T cell responses could be attributed to the absence of HCMV-specific cells or to the induction of dysfunctional cells. We demonstrate that neonatal CD4+ T cells with a differentiation phenotype typical of HCMV infection (CD27-CD28-) and expressing a Th1 phenotype similar to that of maternal cells can differentiate in utero following HCMV infection. In addition, the detection of oligoclonal expansions by spectratyping and flow cytometry analyses strongly suggests antigen-specific responses. However, neonatal CD4+ T cells were markedly less able to produce antiviral cytokines (IFN-γ, TNF-α and MIP-1β) following ex vivo stimulation with HCMV antigens, compared to maternal cells. Also, neonatal CD27-CD28- CD4+ T cells produce lower levels of antiviral cytokines in response to polyclonal stimulations with anti-CD3 and PMA/ionomycin, suggesting alterations up-stream and down-stream of the TCR signaling pathway. Our results suggest that these alterations could involve the down-regulation of the expression of molecules that are part of the TCR signaling pathway. Similarly, we show that the function of
neonatal HCMV-specific CD8+ T cells is impaired compared to adults. Similar proportions of (CD27-CD28-) CD8+ T cells, typical of HCMV infection, were detected in newborns and adults. Analysis of the TCR Vβ repertoire of neonatal and maternal (CD27-CD28-) CD8+ T cells by high-throughput sequencing revealed a similar capacity to generate a diverse clonal repertoire. As previously reported, we detected similar frequencies of HCMV-specific CD8+ T cells specific for the immunodominant viral antigen pp65. However, when extending ex vivo stimulations to other HCMV antigens, we observed that the antigenic repertoire recognized by these cells was significantly reduced in newborns. In addition, neonatal CD8+ T cells had a reduced polyfunctionality and per cell cytokine production.
To a lower extent, the function of adult HCMV-specific T cells was also impaired during primary infection. As previously reported, maternal HCMV-specific CD4+ T cells were markedly less able to produce IL-2 and to proliferate compared to individuals in the chronic stage of the disease. Both CD28+ and CD28- T cell subsets produced decreased levels of IL-2. This observation shows that the accumulation of HCMV-specific CD4+ T cells having lost the expression of the CD28 molecule (an important co-stimulatory signal for IL-2 production) during primary infection is only one of the factors contributing to the decreased IL-2 production. Accordingly, both CD28+ and CD28- CD4+ T cell subsets had a decreased per cell production of IFN-γ and TNF-α during primary HCMV infection. This defect was associated with a lower functional avidity of these cells. Similarly, the polyfunctionality and per cell cytokine production of adult HCMV-specific CD8+ T cells was also impaired compared to adults with chronic infection.
Altogether, our results show that adult and neonatal HCMV-specific T cell responses are impaired during primary infection, compared to individuals with chronic infection. We show that this functional regulation resembles that of functional T cell exhaustion observed during chronic viral infections that are associated with high levels of viral replication. Primary HCMV infection is characterized by an intense viral replication lasting for several months post-infection. We hypothesize that the high levels of viral replication observed during congenital and adult primary HCMV infection could interfere with some of the T cell functions.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Schneidereith, Tonya A. "The pharmacogenetics of fetal hemoglobin and f-cell variation." Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/308076.
Full textFerreira, Leonardo. "Transcriptional Control of Maternal-Fetal Immune Tolerance." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493333.
Full textBiology, Molecular and Cellular
Books on the topic "Fetal cell"
Fetal Cell Workshop (11th 2000 Basel, Switzerland). Fetal cells and fetal DNA in maternal blood: New developments for a new millennium : 11th Fetal Cell Workshop, Basel, April 15, 2000. Edited by Hahn Sinuhe and Holzgreve Wolfgang. Basel: Karger, 2001.
Find full textA, Cohen Shara B., ed. Cord blood characteristics: Role in stem cell transplantation. London: Dunitz, 2000.
Find full textArthur, Ann V. Analysis of fetal globin gene expression in Kuwaitis with sickle cell disease. [New Haven: s.n.], 1990.
Find full text1943-, Simpson Joe Leigh, Elias Sherman, and New York Academy of Sciences., eds. Fetal cells in maternal blood: Prospects for noninvasive prenatal diagnosis. New York: New York Academy of Sciences, 1994.
Find full textMagin, Angela Susanne. Humane Primärzellen als Feederzellen für die Kokultur mit hämatopoetischen Stammzellen aus Nabelschnurblut. Jülich: Forschungszentrum Jülich, Zentralbibliothek, 2006.
Find full textVinnedge, Debra L. Aborted fetal cell line vaccines and the Catholic family: A moral perspective. Largo, Fla: Children of God for life, 2003.
Find full textWolfgang, Holzgreve, and Lessl M. 1966-, eds. Stem cells from cord blood, in utero stem cell development, and transportation-inclusive gene therapy /cW. Holzgreve, M. Lessl, editors. New York: Springer, 2001.
Find full textFrontiers in cord blood science. London: Springer, 2009.
Find full text1955-, Freeman Thomas B., and Widner Hakan, eds. Cell transplantation for neurological disorders: Toward reconstruction of the human central nervous system. Totowa, N.J: Humana Press, 1998.
Find full textUnited, States Congress Senate Committee on Health Education Labor and Pensions. Stem Cell Therapeutic and Research Act of 2005: Report (to accompany S. 1317). [Washington, D.C: U.S. G.P.O., 2005.
Find full textBook chapters on the topic "Fetal cell"
Sumitran-Holgersson, Suchitra, Meghnad Joshi, and Michael Olausson. "Fetal Liver Cell Transplantation." In Human Fetal Tissue Transplantation, 219–35. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4171-6_17.
Full textAlbanna, Mohammad Z., and Erik J. Woods. "Fetal Stem Cell Banking." In Fetal Stem Cells in Regenerative Medicine, 295–316. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3483-6_16.
Full textParrish, Marc R., and John C. Morrison. "Sickle cell disease." In Clinical Maternal-Fetal Medicine Online, 19.1–19.7. 2nd ed. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003222590-17.
Full textGao, Zimeng. "Sickle Cell Disease." In Maternal-Fetal Evidence Based Guidelines, 153–60. 4th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003099062-15.
Full textKondo, Yasushi, Tsuyoshi Okuno, Sayaka Asari, and Shin-ichi Muramatsu. "Cell Therapy for Parkinson’s Disease." In Human Fetal Tissue Transplantation, 193–203. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4171-6_15.
Full textDarbinian, Nune, Armine Darbinyan, Kamel Khalili, and Shohreh Amini. "Fetal Brain Injury Models of Fetal Alcohol : Examination of Neuronal Morphologic Condition Using Sholl Assay." In Neuronal Cell Culture, 195–201. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1437-2_16.
Full textMandel, Thomas E. "Fetal tissue transplantation." In Yearbook of Cell and Tissue Transplantation 1996–1997, 107–16. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_10.
Full textLim, Jeong Mook, and Ji Yeon Ahn. "Fetal Cell Reprogramming and Transformation." In Fetal Stem Cells in Regenerative Medicine, 101–30. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3483-6_6.
Full textFlomerfelt, Francis A., and Ronald E. Gress. "Bone Marrow and Fetal Liver Radiation Chimeras." In T-Cell Development, 109–15. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2809-5_9.
Full textTeixeiro, Emma, and Mark A. Daniels. "Fetal Thymic Organ Culture and Negative Selection." In T-Cell Development, 293–302. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2740-2_18.
Full textConference papers on the topic "Fetal cell"
Turzhitsky, Vladimir, Lei Zhang, Lianyu Guo, Edward Vitkin, Le Qiu, Irving Itzkan, Kee-Hak Lim, and Lev T. Perelman. "Single Cell Spectroscopy for Isolating Fetal Cells from Maternal Blood." In Biomedical Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/biomed.2014.bm2b.2.
Full textVogelgesang, Anja, Caroline Barone, Frauke G. Gerdts, Anna Blumental-Perry, and Christiane Dammann. "Will Maternal Smoking During Pregnancy Influence Fetal-Maternal Cell Trafficking?" In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a4197.
Full textEl-Maarri, Osman, Muhammad Ahmer Jamil, Heike Singer, Rawya Al-Rifai, and Johannes Oldenburg. "Molecular Profiling of Fetal and Adult Liver Sinusoidal Endothelial Cells: A F8 Secreting Cell." In Hamburger Hämophilie Symposion Hamburg, Germany. Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1721572.
Full textMarawan, Radwa. "137 Circulating maternal total cell-free DNA, cell-free fetal dna and soluble endoglin levels in preeclampsia: predictors of adverse fetal outcome? a cohort study." In British Cardiovascular Society Annual Conference ‘High Performing Teams’, 4–6 June 2018, Manchester, UK. BMJ Publishing Group Ltd and British Cardiovascular Society, 2018. http://dx.doi.org/10.1136/heartjnl-2018-bcs.134.
Full textKieffer, N., L. Edelman, P. Edelman, C. Legrand, J. Breton-Gori us, and W. Vainchenker. "A MONOCLONAL ANTIBODY AGAINST AN ERYTHROID ONTOGENIC ANTIGEN IDENTIFIES GP IV ON HUMAN PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643532.
Full textPham, Lucia D., Sana Mujahid, Sandy L. Murray, MaryAnn V. Volpe, and Heber C. Nielsen. "Androgen Inhibits TACE-Mediated Components Of Fetal Type II Cell Surfactant Synthesis." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a3761.
Full textDeCoux, Ashley, Jennifer Chaplin, Glen Wilson, John Benjamin, and Sarah A. Gebb. "Hyperoxia-Induced Toll-Like Receptor-2 Signaling Causes Fetal Lung Mesenchymal Cell Dysfunction." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1227.
Full textBrockmeyer, T., R. Williams, AB Knoll, S. Murray, HC Nielsen, and CE Dammann. "Effects of Fetal Rat Lung Type II Cells and Fibroblasts on Bone Marrow Mesenchymal Stem Cell Behavior." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3275.
Full textMitra, Siddhartha S., Sharareh Gholamin, Abdullah Feroze, Samuel H. Cheshier, and Irving L. Weissman. "Abstract 5007: Delineating human fetal CNS stem cell hierarchy reveals a progenitor cell of origin for human Gliobastoma Multiforme." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5007.
Full textSuparto, Irma H., Chandra Nur Khalam, Willy Praira, and Dondin Sajuthi. "Silkworm (Bombyx mori) hemolymph unable to substitute fetal bovine serum in insect cell culture." In 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2012): Science for Health, Food and Sustainable Energy. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4868803.
Full textReports on the topic "Fetal cell"
Henderson, R. F., J. J. Waide, and J. F. Lechner. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/381391.
Full textPaul, Satashree. Turning Back the Sickle Cell Disease: A New Drug into Play. Science Repository OÜ, May 2021. http://dx.doi.org/10.31487/sr.blog.38.
Full textDurgud, Meriem R., Vili K. Stoyanova, Nikolay T. Popov, Danail S. Minchev, Hristo Y. Ivanov, Ivan N. Minkov, and Tihomir I. Vachev. Non-invasive Prenatal Sex Identification Using Cell-free Fetal DNA in Maternal Circulation. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2018. http://dx.doi.org/10.7546/crabs.2018.12.14.
Full textChepko, Gloria, and Leena Hilakivi-Clarke. Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse Mammary Epithelium. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada471087.
Full textPailino, Lia, Lihua Lou, Alberto Sesena Rubfiaro, Jin He, and Arvind Agarwal. Nanomechanical Properties of Engineered Cardiomyocytes Under Electrical Stimulation. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009775.
Full textHalevy, Orna, Zipora Yablonka-Reuveni, and Israel Rozenboim. Enhancement of meat production by monochromatic light stimuli during embryogenesis: effect on muscle development and post-hatch growth. United States Department of Agriculture, June 2004. http://dx.doi.org/10.32747/2004.7586471.bard.
Full textFields, Michael J., Mordechai Shemesh, and Anna-Riitta Fuchs. Significance of Oxytocin and Oxytocin Receptors in Bovine Pregnancy. United States Department of Agriculture, August 1994. http://dx.doi.org/10.32747/1994.7568790.bard.
Full textGillor, Osnat, Stefan Wuertz, Karen Shapiro, Nirit Bernstein, Woutrina Miller, Patricia Conrad, and Moshe Herzberg. Science-Based Monitoring for Produce Safety: Comparing Indicators and Pathogens in Water, Soil, and Crops. United States Department of Agriculture, May 2013. http://dx.doi.org/10.32747/2013.7613884.bard.
Full textSchwartz, Bertha, Vaclav Vetvicka, Ofer Danai, and Yitzhak Hadar. Increasing the value of mushrooms as functional foods: induction of alpha and beta glucan content via novel cultivation methods. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600033.bard.
Full text