Academic literature on the topic 'Ferroelectrics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ferroelectrics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ferroelectrics"
Zhang, Xinhao, and Bo Peng. "The twisted two-dimensional ferroelectrics." Journal of Semiconductors 44, no. 1 (January 1, 2023): 011002. http://dx.doi.org/10.1088/1674-4926/44/1/011002.
Full textWANG, JIE, and TONG-YI ZHANG. "PHASE FIELD STUDY OF POLARIZATION VORTEX IN FERROELECTRIC NANOSTRUCTURES." Journal of Advanced Dielectrics 02, no. 02 (April 2012): 1241002. http://dx.doi.org/10.1142/s2010135x12410020.
Full textMA, WENHUI. "FLEXOELECTRIC EFFECT IN FERROELECTRICS." Functional Materials Letters 01, no. 03 (December 2008): 235–38. http://dx.doi.org/10.1142/s179360470800037x.
Full textHuyan, Huaixun, Linze Li, Christopher Addiego, Wenpei Gao, and Xiaoqing Pan. "Structures and electronic properties of domain walls in BiFeO3 thin films." National Science Review 6, no. 4 (July 1, 2019): 669–83. http://dx.doi.org/10.1093/nsr/nwz101.
Full textKe, Changming, Jiawei Huang, and Shi Liu. "Two-dimensional ferroelectric metal for electrocatalysis." Materials Horizons 8, no. 12 (2021): 3387–93. http://dx.doi.org/10.1039/d1mh01556g.
Full textKimura, Tsuyoshi. "Current Progress of Research on Magnetically-induced Ferroelectrics." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C6. http://dx.doi.org/10.1107/s2053273314099938.
Full textLiu, Meiying, Jingjing Liang, Yadong Tian, and Zhiliang Liu. "Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance." CrystEngComm 24, no. 4 (2022): 724–37. http://dx.doi.org/10.1039/d1ce01567b.
Full textGao, Liang, Ben-Lin Hu, Linping Wang, Jinwei Cao, Ri He, Fengyuan Zhang, Zhiming Wang, Wuhong Xue, Huali Yang, and Run-Wei Li. "Intrinsically elastic polymer ferroelectric by precise slight cross-linking." Science 381, no. 6657 (August 4, 2023): 540–44. http://dx.doi.org/10.1126/science.adh2509.
Full textPARK, Min Hyuk. "Renaissance of Ferroelectric Memories: Can They Be a Game-changer?" Physics and High Technology 30, no. 9 (September 30, 2021): 16–23. http://dx.doi.org/10.3938/phit.30.028.
Full textChen, Zibin, Fei Li, Qianwei Huang, Fei Liu, Feifei Wang, Simon P. Ringer, Haosu Luo, Shujun Zhang, Long-Qing Chen, and Xiaozhou Liao. "Giant tuning of ferroelectricity in single crystals by thickness engineering." Science Advances 6, no. 42 (October 2020): eabc7156. http://dx.doi.org/10.1126/sciadv.abc7156.
Full textDissertations / Theses on the topic "Ferroelectrics"
Ivry, Yachin. "Nano ferroelectrics." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609375.
Full textTavernor, Andrew. "Modelling relaxor ferroelectrics." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305874.
Full textHuber, J. E. "Ferroelectrics : models and applications." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604713.
Full textJung, Dong Jin. "Characterizations of integrated ferroelectrics." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613808.
Full textLiu, Qida. "Electromechanical creep in ferroelectrics." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613330.
Full textFlores, Suarez Rosaura. "Three-dimensional polarization probing in polymer ferroelectrics, polymer-dispersed liquid crystals, and polymer ferroelectrets." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2012/6017/.
Full textIn dieser Arbeit wird eine zerstörungsfreie Technik zur Analyse, Optimierung, und Entwicklung neuer funktioneller Materialien für Sensoren, Wandler, Speicher und elektrooptische Anwendungen vorgestellt. Die Wärmepuls-Tomographie (engl. Thermal-Pulse Tomography, TPT) liefert dreidimensionale Abbildungen hoher Auflösung von elektrischen Feldern und Polarisationsverteilungen eines Materials. Bei dieser thermischen Methode wird ein fokussierter, gepulster Laserstrahl durch eine undurchsichtige Oberflächenelektrode absorbiert, welche sich dadurch aufheizt. Die einsetzende Wärmediffusion führt – aufgrund der Wärmeausdehnung des Materials – zu Änderungen der Probengeometrie, welche in pyroelektrischen Materialien einen Kurzschlussstrom oder eine Änderung des Oberflächenpotentials zur Folge hat. Diese wiederum enthalten wichtige Informationen über die räumliche Verteilung elektrischer Dipole und Raumladungen im untersuchten Material. Aus dem gemessenen Kurzsschlussstrom kann anschließend das interne elektrische Feld und die Polarisationsverteilung im Material mittels verschiedener Skalentransformations- und Regularisierungsmethoden rekonstruiert werden. Auf diese Weise ermöglichte die TPT-Methode erstmals die Darstellung inhomogener ferroelektrischer Schaltvorgänge in polymeren ferroelektrischen Filmen, welche mögliche Materialien für die Datenspeicherung sind. Die Ergebnisse zeigen eine typische Haftschicht im ferroelektrischen Polymer und unterstützen die Hypothese einer ferroelektrischen Umpolung auf einer der Korngröße äquivalenten Längenskala über Keimbildung und anschließendes Wachstum. Um die Lateral- und Tiefenauflösung zu untersuchen, wurden sowohl die TPT-Methode als auch die äquivalente Methode in der Zeitdomäne (Focused Laser Intensity Modulation Method, FLIMM) auf ferroelektrischen Filme mit Gitterelektroden angewendet. Die Ergebnisse beider Techniken zeigen nach der Datenauswertung mit unterschiedlichen Regularisierungs- und Scale-Methoden eine vollkommene Übereinstimmung. Des Weiteren stellte sich heraus, dass bisherige Untersuchungen der lateralen Auflösung von FLIMM diese möglicherweise überschätzen. Damit behauptet sich TPT als effiziente und verlässliche thermische Methode. Nach einer Optimierung der Optik wurde die TPT-Methode in polymerdispergierten Flüssigkristallen (polymer-dispersed liquid crystals, PDLC), welche in elektrooptischen Anwendungen von Interesse sind, angewendet. Die Ergebnisse deuten auf eine mögliche elektrostatischeWechselwirkung zwischen den COH-Gruppen des Flüssigkristalls und den Fluoratomen der verwendeten ferroelektrischen Matrix hin. Die durch rasterelektronenmikroskopische Aufnahmen (scanning electron microscopy, SEM) gewonnenen geometrischen Parameter der Flüssigkristalltröpfchen konnten mittels TPT reproduziert werden. Für weitere Anwendungen werden schwach ferroelektrische Polymermatrices vorgeschlagen. Im Bestreben neue polymere Ferroelektrete zu entwickeln und deren Eigenschaften zu optimieren, wurden neuartige Mehrschichtsysteme untersucht. Die Ergebnisse aus der TPT-Methode zeigen eine Abweichung der Uniformität der inneren Verteilung des elektrischen Feldes in den geformten Makrodipolen, was auf eine Instabilität der Probe hindeutet. Ebenfalls wurden weitere Untersuchungen an Mehrschicht-Ferroelektreten und die Anwendung von halbleitenden Polymerschichten vorgeschlagen.
Rowley, Stephen Edward. "Quantum phase transitions in ferroelectrics." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/252224.
Full textByrne, D. F. "Domain states in nanoscale ferroelectrics." Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546018.
Full textNahas, Yousra. "Gauge theory for relaxor ferroelectrics." Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-01003357.
Full textShieh, Jay. "Ferroelectrics : switching and cyclic behaviour." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619624.
Full textBooks on the topic "Ferroelectrics"
Bain, Ashim Kumar, and Prem Chand. Ferroelectrics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527805310.
Full textLallart, Mickaël. Ferroelectrics - material aspects. Rijeka: InTech, 2011.
Find full textLallart, Mickaël. Ferroelectrics - physical effects. Rijeka: InTech, 2011.
Find full textSchool of Ferroelectrics Physics (8th 1987 Wrocław, Poland). Ferroelectrics physics: Proceedings of the VIII School of Ferroelectrics Physics. Edited by Fiedor Karol and Cach Ryszard. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 1987.
Find full textPhysics, School of Ferroelectrics. Ferroelectrics physics: Proceedings of the XIV School of Ferroelectrics Physics. Edited by Cach Ryszard. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 1988.
Find full textAlgueró, Miguel, J. Marty Gregg, and Liliana Mitoseriu, eds. Nanoscale Ferroelectrics and Multiferroics. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118935743.
Full textNeutron scattering by ferroelectrics. Singapore: World Scientific, 1990.
Find full textLallart, Mickae l. Ferroelectrics - characterization and modeling. Rijeka: InTech, 2011.
Find full textWilliamsburg, Workshop on Fundamental Experiments in Ferroelectrics (11th 2001 Williamsburg Virginia). Fundamental physics of ferroelectrics 2001: 11th Williamsburg Ferroelectrics Workshop : Williamsburg, Virginia, 4-7 February 2001. Melville, N.Y: American Institute of Physics, 2001.
Find full textParinov, Ivan A. Ferroelectrics and superconductors: Properties and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textBook chapters on the topic "Ferroelectrics"
Tagantsev, A. K. "Weak Ferroelectrics." In Ferroelectric Ceramics, 147–61. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-7551-6_5.
Full textCross, L. E. "Relaxor Ferroelectrics." In Piezoelectricity, 131–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68683-5_5.
Full textScott, J. F. "Nano-Ferroelectrics." In Nanostructures: Synthesis, Functional Properties and Applications, 584–600. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1019-1_34.
Full textRüdiger, Andreas, and Rainer Waser. "Nanoscale Ferroelectrics." In Advances in Science and Technology, 2392–99. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2392.
Full textSepliarsky, Marcelo, Marcelo G. Stachiotti, and Simon R. Phillpot. "Interatomic Potentials: Ferroelectrics." In Handbook of Materials Modeling, 527–45. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3286-2_27.
Full textCao, Wenwu. "Defects in Ferroelectrics." In Disorder and Strain-Induced Complexity in Functional Materials, 113–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20943-7_7.
Full textMitsui, Toshio. "Ferroelectrics and Antiferroelectrics." In Springer Handbook of Materials Data, 901–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_24.
Full textPatterson, James, and Bernard Bailey. "Dielectrics and Ferroelectrics." In Solid-State Physics, 513–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02589-1_9.
Full textFang, Liang, Lu You, and Jun-Ming Liu. "Ferroelectrics in Photocatalysis." In Ferroelectric Materials for Energy Applications, 265–309. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807505.ch9.
Full textPatterson, James D., and Bernard C. Bailey. "Dielectrics and Ferroelectrics." In Solid-State Physics, 613–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75322-5_9.
Full textConference papers on the topic "Ferroelectrics"
Gookin, Debra M., and G. W. Gross. "Effect of applied electric fields on beam coupling in ferroelectrlcs." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mv5.
Full textBakker, H. J., S. Hunsche, and H. Kurz. "Microscopic study of ferroelectrics with ultrashort phonon polaritons." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.md.9.
Full textRamesh, Prashanth, and Gregory Washington. "Analysis and Design of Smart Electromagnetic Structures." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-603.
Full textYin, Q. R., H. F. Yu, H. R. Zeng, G. R. Li, and A. L. Ding. "High Resolution Acoustic Microscopy with Low Frequency and Its Applications in Analysis of Ferroelectrics." In ISTFA 2005. ASM International, 2005. http://dx.doi.org/10.31399/asm.cp.istfa2005p0228.
Full textMorozovska, Anna N., and Vyacheslav V. Obukhovsky. "Autowaves in ferroelectrics." In SPIE Proceedings, edited by Gertruda V. Klimusheva, Andrey G. Iljin, and Sergey A. Kostyukevych. SPIE, 2003. http://dx.doi.org/10.1117/12.545858.
Full textAleksandrovski, A. L., and I. I. Naumova. "Bulk crystals of ferroelectric niobates with periodic domain pattern." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf49.
Full textWarkentin, Andreas, and Andreas Ricoeur. "A MULTISCALE MODELING APPROACH ON MODELING VISCO–FERROELECTRIC SELF HEATING IN FERROELECTRICS." In 10th ECCOMAS Thematic Conference on Smart Structures and Materials. Patras: Dept. of Mechanical Engineering & Aeronautics University of Patras, 2023. http://dx.doi.org/10.7712/150123.9970.444496.
Full textKitamura, Kenji, Xiaoyan Liu, and Kazuya Terabe. "Frozen Ferroelectrics to Mobile Ferroelectrics ~New views of LiNbO3 domain engineering~." In Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/pr.2007.sub7.
Full textKolpak, Alexie M., Ilya Grinberg, Andrew M. Rappe, and Shawn T. Brown. "New Ferroelectrics for Naval SONAR and Modeling of Nanoscale Ferroelectric Nonvolatile Memory Materials." In 2006 HPCMP Users Group Conference. IEEE, 2006. http://dx.doi.org/10.1109/hpcmp-ugc.2006.50.
Full textVan Houdt, Jan. "3D Memories and Ferroelectrics." In 2017 IEEE International Memory Workshop (IMW). IEEE, 2017. http://dx.doi.org/10.1109/imw.2017.7939066.
Full textReports on the topic "Ferroelectrics"
Ponomareva, Inna. Fundamental Physics of Ferroelectrics 2019. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1618110.
Full textShrout, Thomas R., and Sei-Joo Jang. Relaxor Ferroelectrics for Electrostrictive Transducer. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada248671.
Full textEgami, Takeshi. Atomic Structure of Mixed Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254369.
Full textPrice, John C. Tunable Antennas Using Thin Film Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada299576.
Full textHoover, B. D., B. A. Tuttle, W. R. Olson, D. M. Goy, R. A. Brooks, and C. F. King. Evaluation of field enforced antiferroelectric to ferroelectric phase transition dielectrics and relaxor ferroelectrics for pulse discharge capacitors. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/537385.
Full textHarmer, Martin P., and Donald M. Smyth. Nanostructure and Defect Chemistry of Relaxor Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada207217.
Full textEckhardt, Craig J. Crystal Engineering in Two Dimensions: Friction and Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada396447.
Full textSmith, Ralph C., and Craig L. Hom. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada452005.
Full textBhattacharya, K., and G. Ravichandran. A Novel Approach to Large Electrostriction in Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada418181.
Full textLandis, Chad M. Computational Model for Domain Structure Evolution in Ferroelectrics. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada575644.
Full text