Journal articles on the topic 'Ferroelectric Curie Temperature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ferroelectric Curie Temperature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xu, Lan, Zujian Wang, Bin Su, Chenxi Wang, Xiaoming Yang, Rongbing Su, Xifa Long, and Chao He. "Origin of Structural Change Driven by A-Site Lanthanide Doping in ABO3-Type Perovskite Ferroelectrics." Crystals 10, no. 6 (May 29, 2020): 434. http://dx.doi.org/10.3390/cryst10060434.
Full textWANG, C. L., and M. L. ZHAO. "BURNS TEMPERATURE AND QUANTUM TEMPERATURE SCALE." Journal of Advanced Dielectrics 01, no. 02 (April 2011): 163–67. http://dx.doi.org/10.1142/s2010135x1100029x.
Full textFantozzi, Gilbert, E. M. Bourim, and Sh Kazemi. "High Damping in Ferroelectric and Ferrimagnetic Ceramics." Key Engineering Materials 319 (September 2006): 157–66. http://dx.doi.org/10.4028/www.scientific.net/kem.319.157.
Full textRandall, C. A., R. Guo, A. S. Bhalla, and L. E. Cross. "Microstructure-property relations in tungsten bronze lead barium niobate, Pb1−xBaxNb2O6." Journal of Materials Research 6, no. 8 (August 1991): 1720–28. http://dx.doi.org/10.1557/jmr.1991.1720.
Full textZhang, J. P., and J. S. Speck. "Identification of the polarized microregions in PLZT." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 556–57. http://dx.doi.org/10.1017/s0424820100170517.
Full textHoffmann, Michael, Prasanna Venkatesan Ravindran, and Asif Islam Khan. "Why Do Ferroelectrics Exhibit Negative Capacitance?" Materials 12, no. 22 (November 13, 2019): 3743. http://dx.doi.org/10.3390/ma12223743.
Full textFang, Chao, and Liang Yan Chen. "Research of the Mechanism of Ferroelectric Phase Transition in Perovskite: Empty Orbital Model." Applied Mechanics and Materials 130-134 (October 2011): 2809–12. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2809.
Full textYoon, Man Soon, and Soon Chul Ur. "Quantitative Analysis of Micro-Macro Domain Transition of PNN-PT-PZ(x) System at Higher PZ Content." Materials Science Forum 510-511 (March 2006): 542–45. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.542.
Full textKumar, Ajay, Sudip Naskar, and Dipankar Mandal. "Synthesis and Investigation of Ferroelectric Curie Transition in BaTiO3." IOP Conference Series: Materials Science and Engineering 1221, no. 1 (March 1, 2022): 012004. http://dx.doi.org/10.1088/1757-899x/1221/1/012004.
Full textHernández-Moreno, Ana Cristina, Armando Reyes-Montero, Brenda Carreño-Jiménez, Mónica Acuautla, and Lorena Pardo. "Ferroelectric, Dielectric and Electromechanical Performance of Ba0.92Ca0.08Ti0.95Zr0.05O3 Ceramics with an Enhanced Curie Temperature." Materials 16, no. 6 (March 11, 2023): 2268. http://dx.doi.org/10.3390/ma16062268.
Full textKOO, JE HUAN, GUANGSUP CHO, and JONG-JEAN KIM. "EFFECTIVE PHOTON EXCHANGE CORRELATIONS IN FERROELECTRICS." International Journal of Modern Physics B 20, no. 22 (September 10, 2006): 3247–55. http://dx.doi.org/10.1142/s0217979206035436.
Full textKuzenko, D. V. "Critical temperature below the Curie temperature of ferroelectric ceramics PZT." Journal of Advanced Dielectrics 11, no. 01 (February 2021): 2150006. http://dx.doi.org/10.1142/s2010135x21500065.
Full textMistewicz, Krystian. "Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation." Journal of Nanomaterials 2018 (November 25, 2018): 1–15. http://dx.doi.org/10.1155/2018/2651056.
Full textLi, Peng-Fei, Wei-Qiang Liao, Yuan-Yuan Tang, Wencheng Qiao, Dewei Zhao, Yong Ai, Ye-Feng Yao, and Ren-Gen Xiong. "Organic enantiomeric high-Tcferroelectrics." Proceedings of the National Academy of Sciences 116, no. 13 (March 8, 2019): 5878–85. http://dx.doi.org/10.1073/pnas.1817866116.
Full textZhang, Xiyuan, Ruixing Xu, Xingyao Gao, Yanda Ji, Fengjiao Qian, Jiyu Fan, Haiyan Wang, Weiwei Li, and Hao Yang. "Negative-pressure enhanced ferroelectricity and piezoelectricity in lead-free BaTiO3 ferroelectric nanocomposite films." Journal of Materials Chemistry C 8, no. 24 (2020): 8091–97. http://dx.doi.org/10.1039/d0tc01556c.
Full textHerber, Ralf-Peter, and Gerold A. Schneider. "Surface displacements and surface charges on Ba2CuWO6 and Ba2Cu0.5Zn0.5WO6 ceramics induced by local electric fields investigated with scanning-probe microscopy." Journal of Materials Research 22, no. 1 (January 2007): 193–200. http://dx.doi.org/10.1557/jmr.2007.0030.
Full textLiu, Arthur Haozhe, Lisa Luhong Wang, and Lingping Kong. "Relaxor ferroelectrics materials under high pressure." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C979. http://dx.doi.org/10.1107/s2053273314090202.
Full textHoron, B. I., O. S. Kushnir, P. A. Shchepanskyi, and V. Yo Stadnyk. "Temperature dependence of dielectric permittivity in incommensurately modulated phase of ammonium fluoroberyllate." Condensed Matter Physics 25, no. 4 (2022): 43704. http://dx.doi.org/10.5488/cmp.25.43704.
Full textZhou, Xiang, Kechao Zhou, Dou Zhang, Chris Bowen, Qingping Wang, Junwen Zhong, and Yan Zhang. "Perspective on Porous Piezoelectric Ceramics to Control Internal Stress." Nanoenergy Advances 2, no. 4 (September 26, 2022): 269–90. http://dx.doi.org/10.3390/nanoenergyadv2040014.
Full textWu, Hong-Hui, Jiaming Zhu, and Tong-Yi Zhang. "Size-dependent ultrahigh electrocaloric effect near pseudo-first-order phase transition temperature in barium titanate nanoparticles." RSC Advances 5, no. 47 (2015): 37476–84. http://dx.doi.org/10.1039/c5ra05008a.
Full textJiang, Q., X. F. Cui, and M. Zhao. "Size effects on Curie temperature of ferroelectric particles." Applied Physics A: Materials Science & Processing 78, no. 5 (March 1, 2004): 703–4. http://dx.doi.org/10.1007/s00339-002-1959-6.
Full textWang, C. L., W. L. Zhong, and P. L. Zhang. "The Curie temperature of ultra-thin ferroelectric films." Journal of Physics: Condensed Matter 4, no. 19 (May 11, 1992): 4743–49. http://dx.doi.org/10.1088/0953-8984/4/19/014.
Full textWang, Xiao-Guang, Ning-Ning Liu, Shao-Hua Pan, and Guo-Zhen Yang. "Curie Temperature for a Finite Alternating Ferroelectric Superlattice." physica status solidi (b) 219, no. 1 (May 2000): 15–21. http://dx.doi.org/10.1002/1521-3951(200005)219:1<15::aid-pssb15>3.0.co;2-7.
Full textPatrusheva, Tamara, Sergey Petrov, Ludmila Drozdova, and Aleksandr Shashurin. "FERROELECTRICS IN ACOUSTOELECTRONICS." VOLUME 39, VOLUME 39 (2021): 217. http://dx.doi.org/10.36336/akustika202139217.
Full textDe, Udayan, Kriti Ranjan Sahu, and Abhijit De. "Ferroelectric Materials for High Temperature Piezoelectric Applications." Solid State Phenomena 232 (June 2015): 235–78. http://dx.doi.org/10.4028/www.scientific.net/ssp.232.235.
Full textMeier, A. L., A. Y. Desai, L. Wang, T. J. Marks, and B. W. Wessels. "Phase stability of heteroepitaxial polydomain BaTiO3 thin films." Journal of Materials Research 22, no. 5 (May 2007): 1384–89. http://dx.doi.org/10.1557/jmr.2007.0178.
Full textZhang, Zhen, Zhaokuan Wen, Ting Li, Zhiguo Wang, Zhiyong Liu, Xiaxia Liao, Shanming Ke, and Longlong Shu. "Flexoelectric aging effect in ferroelectric materials." Journal of Applied Physics 133, no. 5 (February 7, 2023): 054102. http://dx.doi.org/10.1063/5.0134531.
Full textFang, Pin Yang, Zeng Zhe Xi, Wei Long, and Xiao Juan Li. "Structure, Dielectric Relaxor Behavior and Ferroelectric Properties of Sr1-xLaxBi2Nb2-x/5O9 Ferroelectric Ceramics." Advanced Materials Research 975 (July 2014): 16–22. http://dx.doi.org/10.4028/www.scientific.net/amr.975.16.
Full textGao, Zhangran, Yuying Wu, Zheng Tang, Xiaofan Sun, Zixin Yang, Hong-Ling Cai, and X. S. Wu. "Ferroelectricity of trimethylammonium bromide below room temperature." Journal of Materials Chemistry C 8, no. 17 (2020): 5868–72. http://dx.doi.org/10.1039/c9tc07019b.
Full textYadav, M. S., and S. C. Deorani. "Curie-temperature variation and microwave absorption in perovskites containing substitutional impurities." Material Science Research India 7, no. 2 (February 8, 2010): 509–13. http://dx.doi.org/10.13005/msri/070225.
Full textWang, Xiao-Guang, Ning-Ning Liu, Shao-Hua Pan, and Guo-Zhen Yang. "Phase transition properties of a finite ferroelectric superlattice from the transverse Ising model." Australian Journal of Physics 53, no. 3 (2000): 453. http://dx.doi.org/10.1071/ph99080.
Full textKim, Yong Kwan, Kyeong Seok Lee, and Sunggi Baik. "Ferroelectric domain structure of epitaxial (Pb,Sr)TiO3 thin films." Journal of Materials Research 16, no. 9 (September 2001): 2463–66. http://dx.doi.org/10.1557/jmr.2001.0336.
Full textShashikala, M. N., M. R. Srinivasan, and H. L. Bhat. "Dielectric relaxation in ferroelectric TAAP near the Curie temperature." Journal of Physics: Condensed Matter 2, no. 17 (April 30, 1990): 4013–15. http://dx.doi.org/10.1088/0953-8984/2/17/013.
Full textWang, Y. G., W. L. Zhong, and P. L. Zhang. "Size effects on the Curie temperature of ferroelectric particles." Solid State Communications 92, no. 6 (November 1994): 519–23. http://dx.doi.org/10.1016/0038-1098(94)90490-1.
Full textRavez, J., V. Andriamampianina, A. Simon, and S. C. Abrahams. "Ferroelectric curie temperature and chemical bonding in the Pb5Cr3F19family." Ferroelectrics 158, no. 1 (August 1994): 127–32. http://dx.doi.org/10.1080/00150199408216004.
Full textWang, Biao, and C. H. Woo. "Curie temperature and critical thickness of ferroelectric thin films." Journal of Applied Physics 97, no. 8 (April 15, 2005): 084109. http://dx.doi.org/10.1063/1.1861517.
Full textDatta, Anuja, Pedro E. Sanchez-Jimenez, Rabih Al Rahal Al Orabi, Yonatan Calahorra, Canlin Ou, Suman-Lata Sahonta, Marco Fornari, and Sohini Kar-Narayan. "Lead-Free Polycrystalline Ferroelectric Nanowires with Enhanced Curie Temperature." Advanced Functional Materials 27, no. 29 (June 1, 2017): 1701169. http://dx.doi.org/10.1002/adfm.201701169.
Full textRazumnaya, Anna G., Alexey S. Mikheykin, Igor A. Lukyanchuk, Vladimir B. Shirokov, Yury I. Golovko, Vladimir M. Mukhortov, Mimoun El Marssi, and Yury I. Yuzyuk. "Unexpectedly high Curie temperature in weakly strained ferroelectric film." physica status solidi (b) 254, no. 4 (September 8, 2016): 1600413. http://dx.doi.org/10.1002/pssb.201600413.
Full textSu, Y., and G. J. Weng. "The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals." Journal of the Mechanics and Physics of Solids 53, no. 9 (September 2005): 2071–99. http://dx.doi.org/10.1016/j.jmps.2005.03.008.
Full textZhang, Shaodong, Shuangru Li, Lei Wei, Huadi Zhang, Xuping Wang, Bing Liu, Yuanyuan Zhang, Rui Zhang, and Chengcheng Qiu. "Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal." Nanomaterials 13, no. 3 (January 17, 2023): 376. http://dx.doi.org/10.3390/nano13030376.
Full textCheng, Xiao Fang, Xin Gui Tang, Shao Gong Ju, Yan Ping Jiang, and Qiu Xiang Liu. "Dielectric Properties and Diffuse Phase Transition of Sol-Gel Derived 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Ceramics." Advanced Materials Research 311-313 (August 2011): 1481–84. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.1481.
Full textSu, Y., and G. J. Weng. "A self-consistent polycrystal model for the spontaneous polarization of ferroelectric ceramics." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2070 (February 21, 2006): 1763–89. http://dx.doi.org/10.1098/rspa.2005.1619.
Full textBobic, Jelena, Mirjana Vijatovic-Petrovic, and Biljana Stojanovic. "Aurivillius BaBi4Ti4O15 based compounds: Structure, synthesis and properties." Processing and Application of Ceramics 7, no. 3 (2013): 97–110. http://dx.doi.org/10.2298/pac1303097b.
Full textGao, Kaige, Cong Xu, Zepeng Cui, Chuang Liu, Linsong Gao, Chen Li, Di Wu, Hong-Ling Cai, and X. S. Wu. "The growth mechanism and ferroelectric domains of diisopropylammonium bromide films synthesized via 12-crown-4 addition at room temperature." Physical Chemistry Chemical Physics 18, no. 11 (2016): 7626–31. http://dx.doi.org/10.1039/c6cp00568c.
Full textFu, Hanmei, Chunli Jiang, Jie Lao, Chunhua Luo, Hechun Lin, Hui Peng, and Chun-Gang Duan. "An organic–inorganic hybrid ferroelectric with strong luminescence and high Curie temperature." CrystEngComm 22, no. 8 (2020): 1436–41. http://dx.doi.org/10.1039/c9ce01888c.
Full textВахрушев, С. Б., Ю. А. Бронвальд, К. А. Петрухно, С. А. Удовенко, И. Н. Леонтьев, and A. Bosak. "Антиферродисторсионная мягкая мода в кристалле PbZr-=SUB=-0.024-=/SUB=-Ti-=SUB=-0.976-=/SUB=-O-=SUB=-3-=/SUB=-." Физика твердого тела 63, no. 10 (2021): 1553. http://dx.doi.org/10.21883/ftt.2021.10.51405.113.
Full textQI, X. W., H. F. WANG, W. Q. HAN, P. H. WANG-YANG, J. ZHOU, and Z. X. YUE. "MAGNETIC PROPERTIES OF MULTIFERROIC MATERIALS." International Journal of Modern Physics B 23, no. 17 (July 10, 2009): 3556–60. http://dx.doi.org/10.1142/s0217979209062967.
Full textFang, Chao, and Liang Yan Chen. "Micro Mechanism of BaTiO3 Ferroelectric Phase Transition Described by Electron Cloud Model." Advanced Materials Research 479-481 (February 2012): 619–22. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.619.
Full textQi, Yi, Steven M. Anlage, H. Zheng, and R. Ramesh. "Local dielectric measurements of BaTiO3–CoFe2O4 nanocomposites through microwave microscopy." Journal of Materials Research 22, no. 5 (May 2007): 1193–99. http://dx.doi.org/10.1557/jmr.2007.0174.
Full textKwok, Chi Kong, and Seshu B. Desu. "Novel method for determining the Curie temperature of ferroelectric films." Review of Scientific Instruments 64, no. 9 (September 1993): 2604–6. http://dx.doi.org/10.1063/1.1143876.
Full text