Journal articles on the topic 'Fermions de Dirac et de Weyl'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fermions de Dirac et de Weyl.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rycerz, Adam. "Wiedemann–Franz Law for Massless Dirac Fermions with Implications for Graphene." Materials 14, no. 11 (May 21, 2021): 2704. http://dx.doi.org/10.3390/ma14112704.
Full textNaito, Toshio, and Ryusei Doi. "Band Structure and Physical Properties of α-STF2I3: Dirac Electrons in Disordered Conduction Sheets." Crystals 10, no. 4 (April 2, 2020): 270. http://dx.doi.org/10.3390/cryst10040270.
Full textHuang, Silu, Jisun Kim, W. A. Shelton, E. W. Plummer, and Rongying Jin. "Nontrivial Berry phase in magnetic BaMnSb2 semimetal." Proceedings of the National Academy of Sciences 114, no. 24 (May 24, 2017): 6256–61. http://dx.doi.org/10.1073/pnas.1706657114.
Full textPal, Palash B. "Dirac, Majorana, and Weyl fermions." American Journal of Physics 79, no. 5 (May 2011): 485–98. http://dx.doi.org/10.1119/1.3549729.
Full textBonora, Loriano, Roberto Soldati, and Stav Zalel. "Dirac, Majorana, Weyl in 4D." Universe 6, no. 8 (August 4, 2020): 111. http://dx.doi.org/10.3390/universe6080111.
Full textGao, Lan-Lan, and Xu-Guang Huang. "Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory." Chinese Physics Letters 39, no. 2 (February 1, 2022): 021101. http://dx.doi.org/10.1088/0256-307x/39/2/021101.
Full textMARTELLINI, M., A. SEDRAKYAN, and M. SPREAFICO. "THE DYNAMICS OF DIRAC FERMIONS ON SINGULAR SURFACES." International Journal of Modern Physics B 10, no. 18n19 (August 30, 1996): 2423–29. http://dx.doi.org/10.1142/s0217979296001082.
Full textChen, Xiaomei, and Rui Zhu. "Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1 Dirac–Weyl Systems." Entropy 21, no. 2 (February 22, 2019): 209. http://dx.doi.org/10.3390/e21020209.
Full textMa, Tian-Chi, Jing-Nan Hu, Yuan Chen, Lei Shao, Xian-Ru Hu, and Jian-Bo Deng. "Coexistence of type-II and type-IV Dirac fermions in SrAgBi." Modern Physics Letters B 35, no. 11 (February 9, 2021): 2150181. http://dx.doi.org/10.1142/s0217984921501815.
Full textLin, Zeren, and Zhirong Liu. "Spin-1 Dirac-Weyl fermions protected by bipartite symmetry." Journal of Chemical Physics 143, no. 21 (December 7, 2015): 214109. http://dx.doi.org/10.1063/1.4936774.
Full textBradlyn, Barry, Jennifer Cano, Zhijun Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. Andrei Bernevig. "Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals." Science 353, no. 6299 (July 21, 2016): aaf5037. http://dx.doi.org/10.1126/science.aaf5037.
Full textWeber, Chris P., Leslie M. Schoop, Stuart S. P. Parkin, Robert C. Newby, Alex Nateprov, Bettina Lotsch, Bala Murali Krishna Mariserla, et al. "Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs." Applied Physics Letters 113, no. 22 (November 26, 2018): 221906. http://dx.doi.org/10.1063/1.5055207.
Full textSedrakyan, A. G., and R. Stora. "Dirac and Weyl fermions coupled to two-dimensional surfaces: Determinants." Physics Letters B 188, no. 4 (April 1987): 442–46. http://dx.doi.org/10.1016/0370-2693(87)91645-5.
Full textGrushevskaya, H. V., and G. G. Krylov. "Low frequency conductivity in monolayer graphene model with partial unfolding of Dirac bands." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642009. http://dx.doi.org/10.1142/s0217979216420091.
Full textCheskis, Dima. "Magneto-Optical Tools to Study Effects in Dirac and Weyl Semimetals." Symmetry 12, no. 9 (August 25, 2020): 1412. http://dx.doi.org/10.3390/sym12091412.
Full textHu, Jin, Su-Yang Xu, Ni Ni, and Zhiqiang Mao. "Transport of Topological Semimetals." Annual Review of Materials Research 49, no. 1 (July 2019): 207–52. http://dx.doi.org/10.1146/annurev-matsci-070218-010023.
Full textALONSO, J. L., J. L. CORTÉS, and E. RIVAS. "WEYL FERMION FUNCTIONAL INTEGRAL AND TWO-DIMENSIONAL GAUGE THEORIES." International Journal of Modern Physics A 05, no. 14 (July 20, 1990): 2839–51. http://dx.doi.org/10.1142/s0217751x90001331.
Full textNilforoushan, Niloufar, Michele Casula, Adriano Amaricci, Marco Caputo, Jonathan Caillaux, Lama Khalil, Evangelos Papalazarou, et al. "Moving Dirac nodes by chemical substitution." Proceedings of the National Academy of Sciences 118, no. 33 (August 12, 2021): e2108617118. http://dx.doi.org/10.1073/pnas.2108617118.
Full textHasan, M. Zahid, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu, and Jia-Xin Yin. "Weyl, Dirac and high-fold chiral fermions in topological quantum matter." Nature Reviews Materials 6, no. 9 (April 26, 2021): 784–803. http://dx.doi.org/10.1038/s41578-021-00301-3.
Full textKavalov, A. R., I. K. Kostov, and A. G. Sedrakyan. "Dynamics of Dirac and Weyl fermions on a two-dimensional surface." Physics Letters B 175, no. 3 (August 1986): 331–34. http://dx.doi.org/10.1016/0370-2693(86)90865-8.
Full textApalkov, Vadim, Xue-Feng Wang, and Tapash Chakraborty. "COLLECTIVE EXCITATIONS OF DIRAC ELECTRONS IN GRAPHENE." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1165–79. http://dx.doi.org/10.1142/s0217979207042604.
Full textKeles, Ahmet, and Erhai Zhao. "Weyl nodes in periodic structures of superconductors and spin-active materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2125 (June 20, 2018): 20150151. http://dx.doi.org/10.1098/rsta.2015.0151.
Full textXiong, Guang-Hua, Chao-Yun Long, and He Su. "Thermodynamic properties of massless Dirac–Weyl fermions under the generalized uncertainty principle*." Chinese Physics B 30, no. 7 (July 1, 2021): 070302. http://dx.doi.org/10.1088/1674-1056/abe1aa.
Full textVolovik, G. E. "Dirac and Weyl Fermions: from the Gor’kov equations to the standard model." JETP Letters 105, no. 4 (February 2017): 273–77. http://dx.doi.org/10.1134/s0021364017040063.
Full textSingha, Ratnadwip, Arnab Kumar Pariari, Biswarup Satpati, and Prabhat Mandal. "Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS." Proceedings of the National Academy of Sciences 114, no. 10 (February 21, 2017): 2468–73. http://dx.doi.org/10.1073/pnas.1618004114.
Full textKERLER, WERNER. "CHIRAL FERMION OPERATORS ON THE LATTICE." International Journal of Modern Physics A 18, no. 15 (June 20, 2003): 2565–90. http://dx.doi.org/10.1142/s0217751x03013910.
Full textElbistan, Mahmut. "Weyl semimetal and topological numbers." International Journal of Modern Physics B 31, no. 29 (November 7, 2017): 1750221. http://dx.doi.org/10.1142/s0217979217502216.
Full textVolovik, G. E., and K. Zhang. "Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That." Journal of Low Temperature Physics 189, no. 5-6 (October 16, 2017): 276–99. http://dx.doi.org/10.1007/s10909-017-1817-8.
Full textZheng, Ren-fei, Lu Zhou, and Weiping Zhang. "A beam splitter for Dirac–Weyl fermions through the Goos–Hänchen-like shift." Physics Letters A 381, no. 45 (December 2017): 3798–804. http://dx.doi.org/10.1016/j.physleta.2017.10.011.
Full textSoodchomshom, Bumned. "Tunneling Conductance in Strained Graphene-Based Superconductor: Effect of Asymmetric Weyl–Dirac Fermions." Journal of Superconductivity and Novel Magnetism 24, no. 5 (December 30, 2010): 1715–24. http://dx.doi.org/10.1007/s10948-010-1091-3.
Full textBonora, Loriano. "Perturbative and Non-Pertrubative Trace Anomalies." Symmetry 13, no. 7 (July 18, 2021): 1292. http://dx.doi.org/10.3390/sym13071292.
Full textRogerio, R. J. Bueno. "From dipole spinors to a new class of mass dimension one fermions." Modern Physics Letters A 35, no. 39 (October 30, 2020): 2050319. http://dx.doi.org/10.1142/s0217732320503198.
Full textHARADA, KOJI. "EQUIVALENCE BETWEEN THE WESS-ZUMINO-WITTEN MODEL AND TWO CHIRAL BOSONS." International Journal of Modern Physics A 06, no. 19 (August 10, 1991): 3399–418. http://dx.doi.org/10.1142/s0217751x91001659.
Full textHesselmann, S., T. C. Lang, M. Schuler, S. Wessel, and A. M. Läuchli. "Comment on “The role of electron-electron interactions in two-dimensional Dirac fermions”." Science 366, no. 6470 (December 5, 2019): eaav6869. http://dx.doi.org/10.1126/science.aav6869.
Full textKang, Joon Sang, Dung Vu, and Joseph P. Heremans. "Identifying the Dirac point composition in Bi1−xSbx alloys using the temperature dependence of quantum oscillations." Journal of Applied Physics 130, no. 22 (December 14, 2021): 225106. http://dx.doi.org/10.1063/5.0068312.
Full textPandey, Mahul, and Sachindeo Vaidya. "Yang–Mills matrix mechanics and quantum phases." International Journal of Geometric Methods in Modern Physics 14, no. 08 (May 11, 2017): 1740009. http://dx.doi.org/10.1142/s0219887817400096.
Full textVafek, Oskar, and Ashvin Vishwanath. "Dirac Fermions in Solids: From High-TcCuprates and Graphene to Topological Insulators and Weyl Semimetals." Annual Review of Condensed Matter Physics 5, no. 1 (March 2014): 83–112. http://dx.doi.org/10.1146/annurev-conmatphys-031113-133841.
Full textLu, Hai-Zhou, and Shun-Qing Shen. "Weak antilocalization and interaction-induced localization of Dirac and Weyl Fermions in topological insulators and semimetals." Chinese Physics B 25, no. 11 (November 2016): 117202. http://dx.doi.org/10.1088/1674-1056/25/11/117202.
Full textFigueiredo, José L., João P. S. Bizarro, and Hugo Terças. "Weyl–Wigner description of massless Dirac plasmas: ab initio quantum plasmonics for monolayer graphene." New Journal of Physics 24, no. 2 (February 1, 2022): 023026. http://dx.doi.org/10.1088/1367-2630/ac5132.
Full textMizushima, T., and K. Machida. "Multifaceted properties of Andreev bound states: interplay of symmetry and topology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2125 (June 20, 2018): 20150355. http://dx.doi.org/10.1098/rsta.2015.0355.
Full textVien, V. V., and N. V. Soi. "Fermion mass and mixing in an extension of the standard model with D5 symmetry." Modern Physics Letters A 35, no. 04 (October 11, 2019): 2050003. http://dx.doi.org/10.1142/s0217732320500030.
Full textVien, V. V., and D. P. Khoi. "Fermion masses and mixings in a 3-3-1 model withQ4symmetry." Modern Physics Letters A 34, no. 25 (August 20, 2019): 1950198. http://dx.doi.org/10.1142/s0217732319501980.
Full textXin, Na, James Lourembam, Piranavan Kumaravadivel, A. E. Kazantsev, Zefei Wu, Ciaran Mullan, Julien Barrier, et al. "Giant magnetoresistance of Dirac plasma in high-mobility graphene." Nature 616, no. 7956 (April 12, 2023): 270–74. http://dx.doi.org/10.1038/s41586-023-05807-0.
Full textRom, Samir, Santu Baidya, Subhro Bhattacharjee, and Tanusri Saha-Dasgupta. "Magnetism and unconventional topology in LaCoO3/SrIrO3 heterostructure." Applied Physics Letters 122, no. 2 (January 9, 2023): 021602. http://dx.doi.org/10.1063/5.0113188.
Full textRost, A. W., J. Kim, S. Suetsugu, V. Abdolazimi, K. Hayama, J. A. N. Bruin, C. Mühle, et al. "Inverse-perovskites A3BO (A = Sr, Ca, Eu/B = Pb, Sn): A platform for control of Dirac and Weyl Fermions." APL Materials 7, no. 12 (December 1, 2019): 121114. http://dx.doi.org/10.1063/1.5129695.
Full textGiombi, Simone, Igor Klebanov, and Zhong Tan. "The ABC of Higher-Spin AdS/CFT." Universe 4, no. 1 (January 19, 2018): 18. http://dx.doi.org/10.3390/universe4010018.
Full textTerashima, Taichi, Shinya Uji, Teng Wang, and Gang Mu. "Topological frequency shift of quantum oscillation in CaFeAsF." npj Quantum Materials 7, no. 1 (March 4, 2022). http://dx.doi.org/10.1038/s41535-022-00431-z.
Full textBercioux, D., D. F. Urban, H. Grabert, and W. Häusler. "Massless Dirac-Weyl fermions in aT3optical lattice." Physical Review A 80, no. 6 (December 1, 2009). http://dx.doi.org/10.1103/physreva.80.063603.
Full textGao, Heng, Youngkuk Kim, Jörn W. F. Venderbos, C. L. Kane, E. J. Mele, Andrew M. Rappe, and Wei Ren. "Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals." Physical Review Letters 121, no. 10 (September 5, 2018). http://dx.doi.org/10.1103/physrevlett.121.106404.
Full textHoffmann, Felix, Martin Siebert, Antonia Duft, and Vojislav Krstić. "Fingerprints of magnetoinduced charge density waves in monolayer graphene beyond half filling." Scientific Reports 12, no. 1 (December 15, 2022). http://dx.doi.org/10.1038/s41598-022-26122-0.
Full text