Academic literature on the topic 'FEM discretization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FEM discretization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FEM discretization"
Dryja, M., and M. Sarkis. "Additive Average Schwarz Methods for Discretization of Elliptic Problems with Highly Discontinuous Coefficients." Computational Methods in Applied Mathematics 10, no. 2 (2010): 164–76. http://dx.doi.org/10.2478/cmam-2010-0009.
Full textMartello, Giulia. "Discretization Analysis in FEM Models." MATEC Web of Conferences 53 (2016): 01063. http://dx.doi.org/10.1051/matecconf/20165301063.
Full textLahtinen, Valtteri, and Antti Stenvall. "A category theoretical interpretation of discretization in Galerkin finite element method." Mathematische Zeitschrift 296, no. 3-4 (January 29, 2020): 1271–85. http://dx.doi.org/10.1007/s00209-020-02456-1.
Full textMARAZZINA, DANIELE, OLEG REICHMANN, and CHRISTOPH SCHWAB. "hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES." Mathematical Models and Methods in Applied Sciences 22, no. 01 (January 2012): 1150005. http://dx.doi.org/10.1142/s0218202512005897.
Full textOvchinnikov, George V., Denis Zorin, and Ivan V. Oseledets. "Robust regularization of topology optimization problems with a posteriori error estimators." Russian Journal of Numerical Analysis and Mathematical Modelling 34, no. 1 (February 25, 2019): 57–69. http://dx.doi.org/10.1515/rnam-2019-0005.
Full textSchedensack, Mira. "A New Generalization of the P1 Non-Conforming FEM to Higher Polynomial Degrees." Computational Methods in Applied Mathematics 17, no. 1 (January 1, 2017): 161–85. http://dx.doi.org/10.1515/cmam-2016-0031.
Full textDevaud, Denis. "Petrov–Galerkin space-time hp-approximation of parabolic equations in H1/2." IMA Journal of Numerical Analysis 40, no. 4 (October 16, 2019): 2717–45. http://dx.doi.org/10.1093/imanum/drz036.
Full textYao, Lingyun, Wanyi Tian, and Fei Wu. "An Optimized Generalized Integration Rules for Error Reduction of Acoustic Finite Element Model." International Journal of Computational Methods 15, no. 07 (October 12, 2018): 1850062. http://dx.doi.org/10.1142/s0219876218500627.
Full textZhao, Jingjun, Jingyu Xiao, and Yang Xu. "Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations." Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/857205.
Full textXu, Haochen. "Analyzing heat transfer in Axial Flux Permanent Magnet electrical machines: A literature review on the discretization methods-FVM and FDM." Theoretical and Natural Science 11, no. 1 (November 17, 2023): 223–30. http://dx.doi.org/10.54254/2753-8818/11/20230412.
Full textDissertations / Theses on the topic "FEM discretization"
Rücker, Carsten. "Advanced Electrical Resistivity Modelling and Inversion using Unstructured Discretization." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-69066.
Full textRückert, Jens. "Kirchhoff Plates and Large Deformations - Modelling and C^1-continuous Discretization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-121275.
Full textPonce, Cristobal. "Port-Hamiltonian modeling, discretization and shape control of multidimensional flexible mechanical systems." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD061.
Full textThis thesis addresses the modeling, discretization, and shape control of flexible mechanical systems within the Port-Hamiltonian Systems (PHS) framework. The contributions are threefold. First, we propose generalized methodologies for modeling both linear and nonlinear multidimensional mechanical systems using the generalized extended Hamilton's principle, providing explicit and implicit PHS representations. Second, we develop structure-preserving discretization techniques via mixed Finite Element Methods (FEM), including two, three, and four-field approaches tailored to linear and nonlinear PHS and PH-DAE systems. Finally, we introduce a finite-dimensional controller based on low-order approximations of large-scale discretized linear PHS. This controller ensures convergence to the optimal shapes, offering the best approximation to the desired configurations, while guaranteeing asymptotic stability of the large-scale discretized system
He, Bo. "Compatible discretizations for Maxwell equations." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299.
Full textPalionytė, Agnė. "Kontinualių struktūrų diskretizavimas vaizdų algebros metodais." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110616_163839-19284.
Full textIn the master thesis the problems of structure modeling, discretization-optimization and their solution methods and algorithms are analyzed. The original technique for optimization and discretization of beam structures has been suggested; The packages of image algebra methods and of the finite element methods were employed for that. Several packages of finite element method have been reviewed and the most suitable packages for the current problems were identified. The methods for obtaining skeletons of digital images were explored. The algorithms for optimization and discretization of beam structures has been suggested and coded. The program created consents of the part for image processing and input data preparing, and the part for image the finite element via method. The results obtained are represented and verified by STAAD.Pro package. During the discretization, the positions of structure nodes are obtained in the intersection of skeleton segments. The segments' cross-section areas are obtained in the middle-points between two adjacent nodes. The positions of nodes may be corrected if the nodes close to each other. The test-calculation, analysis of results and verification are presented and conclusions are drawn.
Bachini, Elena. "Numerical methods for Shallow Water Equations on regular surfaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422699.
Full textGibert, Gaël. "Propagation de fissures en fatigue par une approche X-FEM avec raffinement automatique de maillage." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI088.
Full textTo guarantee the high level of safety of industrial components under fatigue cycles it is essential to be able to predict the initiation and growth of cracks during their entire lifetime. However the numerical cost of a propagation simulation on engineer-sized problems with non-linear behavior may be prohibitive, with the classical techniques. Here, a new approach combining the eXtended Finite Element Method (X-FEM) and automatic Adaptive Mesh Refinement (AMR) is presented taking advantage of both methods. The X-FEM, developed over the past two decades by a large community, have proven its efficiency to handle evolving discontinuities in a variety of fracture analysis. Since this method enables to describe the crack and its propagation independently of the mesh of the structure, a simple hierarchical mesh refinement procedure can be applied. Automatic adaptive re-meshing is a valuable method for elastic-plastic crack propagation analysis since it permits a locally fine mesh and then an accurate description of physical quantities in a limited area around the crack front. This is particularly important when local fracture criteria are concerned. Moreover local refinement saves computational effort, particularly when the propagation path is not a priori known. In the present work, it is shown that both methods combine with minimal effort: the kinematic continuity relations and the field transfer process, needed for history-dependent material, must include in a proper way the enrichment of the model. If this requirement is not fulfilled, numerical error may be introduced. Implementation of this combined X-FEM/AMR approach in the finit elements code Cast3M is presented in detail. In particular, an innovative field transfer strategy is proposed in 2D and 3D. Numerical applications of crack propagation in elastic-plastic media demonstrate accuracy, robustness and efficiency of the technique. Moreover, an experimental study has been conducted on a example propagation with notable impact of confined plasticity. This study provides experimental data to compare with the numerical results obtained with the developed method. This validates our modelization choices. It also is the opportunity to test the developed method robustness on a realistic case of utilization. This study showed the interest of the proposed modelization taking into account plasticity induced crack closure during the fatigue propagation
Moreno, Navarro Pablo. "Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2525.
Full textNumerical algorithms based on the Finite Element Method will be specialized for Analysis, Design, and Optimization of Sensors and Actuators (S-A) and their Application to Smart Structures. The S-A based on tangible assets can couple several fields, such as mechanical, electrical, magnetic, and thermal. They are used in many applications, particularly in smart structures, damage monitoring, or aerodynamics. Despite the considerable experience in these studies, the steps addressed are first to develop a thermodynamically consistent formulation for macro-scale to introduce plasticity models; second, to provide the tools to take into account the heterogeneities of multi-scale models for smart materials. The main objective is the development of a research computer code to simulate and study the performance, not only of the S-A themselves but also of the smart structures in which these S-A will be mounted
Lang, Rostislav. "Návrh a výpočet membránové konstrukce zastřešení stadionu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226463.
Full textBeckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Full textBook chapters on the topic "FEM discretization"
Schnack, E., I. Becker, and N. Karaosmanoglu. "Three-dimensional Coupling of FEM and BEM in Elasticity." In Discretization Methods in Structural Mechanics, 415–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-49373-7_39.
Full textYagawa, G., T. Yamada, and T. Furukawa. "Parallel Computing with Free Mesh Method: Virtually Meshless FEM." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 165–72. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_19.
Full textCombescure, A., A. Gravouil, H. Maigre, J. Réthore, and D. Grégoire. "2D X-FEM Simulation of Dynamic Brittle Crack Propagation." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 185–98. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_11.
Full textPavlatos, G. D., and D. E. Beskos. "Dynamic Inelastic Soil-Structure Interaction using a Hybrid BEM/FEM Scheme." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 233–40. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_27.
Full textMenouillard, T., N. Moës, and A. Combescure. "An optimal explicit time stepping scheme for cracks modeled with X-FEM." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 267–81. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_16.
Full textBanichuk, N. V., and V. V. Saurin. "Some Aspects of Fem Application for Sensitivity Analysis of Quasi-Brittle Fracture Conditions." In IUTAM Symposium on Discretization Methods in Structural Mechanics, 217–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4589-3_25.
Full textGravouil, A., A. Combescure, T. Elguedj, E. Ferrié, J. Y. Buffière, and W. Ludwig. "Application of X-FEM to 3D Real Cracks and Elastic-Plastic Fatigue Crack Growth." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 213–31. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_13.
Full textVentura, Giulio. "Single Domain Quadrature Techniques for Discontinuous and Non-Linear Enrichments in Local Partion of Unity FEM." In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, 343–61. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6530-9_20.
Full textDedner, Andreas, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger. "Dune-Fem: A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing." In Advances in DUNE, 17–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28589-9_2.
Full textDing, Jianxin, and Qingzhou Yang. "Superposed Element Method for the Temperature Field Simulation in Mass Concrete Structures Containing Cooling Pipes." In Lecture Notes in Civil Engineering, 129–39. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4090-1_12.
Full textConference papers on the topic "FEM discretization"
Aravinda Priyadrashini, K., and B. N. Rao. "Coupled Finite Element-Moving Least Squares Technique for Stochastic Structural Response of Cracked Structures." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93756.
Full textShivanna, Kiran H., Srinivas C. Tadepalli, Vincent A. Magnotta, and Nicole M. Grosland. "A Framework for Finite Element Mesh Quality Improvement and Visualization in Orthopaedic Biomechanics." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205622.
Full textChen, Chang-New. "Extended GDQ and Related Discrete Element Analysis Methods for Transient Analyses of Continuum Mechanics Problems." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1286.
Full textChen, Chang-New. "Extended GDQ and Related Discrete Element Analysis Methods for Transient Offshore Mechanics and Engineering Problems." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28484.
Full textKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin, and Ilya I. Patrushev. "GPU implementation of iterative solver for linear systems obtained by FEM discretization." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806466.
Full textKondratyev, Nikolay V., Yuri G. Soloveichik, Denis V. Vagin, and Ilya I. Patrushev. "GPU implementation of iterative solver for linear systems obtained by FEM discretization." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7806929.
Full textDennis, Brian H., and George S. Dulikravich. "Simultaneous Determination of Steady Temperatures and Heat Fluxes on Surfaces of Three Dimensional Objects Using FEM." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24310.
Full textDennis, Brian H., and George S. Dulikravich. "Simultaneous Determination of Temperatures, Heat Fluxes, Deformations, and Tractions on Inaccessible Boundaries." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0215.
Full textKondratyev, Nikolay v., Marina G. Persova, Yuri G. Soloveichik, and Dmitry S. Kiselev. "Using HYB Sparse Matrix Storage Format for Solving Linear Systems Obtained by FEM Discretization on GPU." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8546266.
Full textFatu, Aurelian, Mohamed Hajjam, and Dominique Bonneau. "A New Model of Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal Bearings." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63291.
Full text