Academic literature on the topic 'Federated network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Federated network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Federated network"
Шубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі, and Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ." Information and communication technologies, electronic engineering 2, no. 1 (August 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Full textZhang, Kainan, Zhipeng Cai, and Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data." Wireless Communications and Mobile Computing 2023 (February 3, 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Full textHang, Yifei. "Federated learning-based neural network for hotel cancellation prediction." Applied and Computational Engineering 45, no. 1 (March 15, 2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Full textYu, Yun William, and Griffin M. Weber. "Balancing Accuracy and Privacy in Federated Queries of Clinical Data Repositories: Algorithm Development and Validation." Journal of Medical Internet Research 22, no. 11 (November 3, 2020): e18735. http://dx.doi.org/10.2196/18735.
Full textKostenko, Valery Alekseevich, and Alisa Evgenievna Selezneva. "Types of Attacks on Federated Neural Networks and Methods of Protection." Proceedings of the Institute for System Programming of the RAS 36, no. 1 (2024): 35–44. http://dx.doi.org/10.15514/ispras-2024-36(1)-3.
Full textMa, Xiaoyu, and Lize Gu. "Research and Application of Generative-Adversarial-Network Attacks Defense Method Based on Federated Learning." Electronics 12, no. 4 (February 15, 2023): 975. http://dx.doi.org/10.3390/electronics12040975.
Full textTian, Mengmeng. "An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network." Journal of Physics: Conference Series 2258, no. 1 (April 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Full textAl-Tameemi, M., M. B. Hassan, and S. A. Abass. "Federated Learning (FL) – Overview." LETI Transactions on Electrical Engineering & Computer Science 17, no. 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Full textRizzato, Matteo, Youssef Laarouchi, and Christophe Geissler. "Using Federated Learning for Collaborative Intrusion Detection Systems." Journal of Systemics, Cybernetics and Informatics 21, no. 3 (June 2023): 29–36. http://dx.doi.org/10.54808/jsci.21.03.29.
Full textWang, Shuangzhong, and Ying Zhang. "Multi-Level Federated Network Based on Interpretable Indicators for Ship Rolling Bearing Fault Diagnosis." Journal of Marine Science and Engineering 10, no. 6 (May 28, 2022): 743. http://dx.doi.org/10.3390/jmse10060743.
Full textDissertations / Theses on the topic "Federated network"
Kulkarni, Shweta Samir. "SECURE MIDDLEWARE FOR FEDERATED NETWORK PERFORMANCE MONITORING." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366333088.
Full textMaka, Stephan. "Design and Implementation of a Federated Social Network." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-75477.
Full textFelt, Aaron J. "Federated ground station network model and interface specification." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44558.
Full textThis thesis solves the problem of a lack of a complete, simple ground station network interface standard. A federated satellite ground station network (FGN) model and computer interface are developed that extend the use of ground stations to external users across the Internet. This should allow for reuse of existing ground stations, reducing costs and complexity of space missions. An improved model describing FGNs is proposed that defines a hierarchy of the components of the network, allowing for scalability and unified interfaces, and simplifying the process of using FGN resources. This model, which we call the Improved FGN model, is used to develop security schemes that are simple but effective. Simple but effective security schemes are then developed for this Improved FGN model, along with a standardized SOFtware interface. This interface connects external users to the network in order to extend ground station hardware to remote users as well as to simplify scheduling for the resource owners in a network. Different middleware frameworks are compared, and Apache Thrift is selected as the best fit for an FGN. This interface is then described and demonstrated with a reference implementation in Python. Recommendations for future improvements of this interface standard are discussed.
Demirci, Turan. "Federated Simulation Of Network Performance Using Packet Flow Modeling." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611704/index.pdf.
Full textCetin, Burak. "Wireless Network Intrusion Detection and Analysis using Federated Learning." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588778320687729.
Full textXu, Ran. "Federated Sensor Network architectural design for the Internet of Things (IoT)." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13453.
Full textLu, Zonghao. "A case study about different network architectures in Federated Machine Learning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425193.
Full textSani, Lorenzo. "Unsupervised clustering of MDS data using federated learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25591/.
Full textGopalakrishnan, Aravind. "Network and Middleware Security for Enterprise Network Monitoring." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339742304.
Full textVikström, Johan. "Comparing decentralized learning to Federated Learning when training Deep Neural Networks under churn." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300391.
Full textDecentraliserad Maskinginlärning kan lösa några problematiska aspekter med Federated Learning. Det finns ingen central server som agerar som domare för vilka som får gagna av Maskininlärningsmodellerna skapad av den stora mäng data som blivit tillgänglig på senare år. Det skulle också kunna öka pålitligheten och skalbarheten av Maskininlärningssystem och därav dra nytta av att mer data är tillgänglig. Gossip Learning är ett sånt protokoll, men det är primärt designat med linjära modeller i åtanke. Hur presterar Gossip Learning när man tränar Djupa Neurala Nätverk? Kan det vara ett möjligt alternativ till Federated Learning? I det här exjobbet implementerar vi Gossip Learning med två olika modelsammanslagningstekniker. Vi designar och implementerar även två tillägg till protokollet med målet att uppnå bättre prestanda när man tränar i system där noder går ner och kommer up. Träningsmetoderna jämförs på två uppgifter: bildklassificering på Federated Extended MNIST datauppsättningen och tidsserieprognostisering på NN5 datauppsättningen. Dessutom har vi även experiment då noder alternerar mellan att vara tillgängliga och otillgängliga. Vi finner att Gossip Learning presterar marginellt bättre i miljöer då noder alltid är tillgängliga men är kraftigt överträffade i miljöer då noder alternerar mellan att vara tillgängliga och otillgängliga.
Books on the topic "Federated network"
Hong, Choong Seon, Latif U. Khan, Mingzhe Chen, Dawei Chen, Walid Saad, and Zhu Han. Federated Learning for Wireless Networks. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4963-9.
Full textProgram, Yap Community Action. A rapid ecological assessment to inform the establishment of a network of marine protected areas for biodiversity and fisheries conservation for Yap State, Federated States of Micronesia. [Yap, Federated States of Micronesia]: Yap Community Action Program, 2008.
Find full textLim, Wei Yang Bryan, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, and Chunyan Miao. Federated Learning Over Wireless Edge Networks. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07838-5.
Full textChen, Mingzhe, and Shuguang Cui. Communication Efficient Federated Learning for Wireless Networks. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51266-7.
Full text1931-, Steinmann Heinrich, ed. Solutions for networked databases: How to move from heterogeneous structures to federated concepts. San Diego: Academic Press, 1993.
Find full textInternational Business Machines Corporation. International Technical Support Organization, ed. Certification Study Guide Series: IBM Tivoli Federated Identity Manager 6.1. Poughkeepsie, NY: IBM, International Technical Support Organization, 2009.
Find full textInternational Workshop on Engineering Federated Information Systems (4th 2001 Berlin, Germany). Engineering federated information systems: Proceedings of the 4th workshop, EFIS 2001, Oct 9-10, 2001, Berlin (Germany). Berlin: Akademische Verlagsgesellschaft Aka, 2001.
Find full textInternational Workshop on Engineering Federated Information Systems (3rd 2000 Dublin, Ireland). Engineering federated information systems: Proceedings of the 3rd workshop, EFIS 2000, June 19-20, 2000, Dublin (Ireland). Amsterdam: IOS Press, 2000.
Find full textDowling, Jim. Distributed Applications and Interoperable Systems: 13th IFIP WG 6.1 International Conference, DAIS 2013, Held as Part of the 8th International Federated Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textNicola, Rocco. Coordination Models and Languages: 15th International Conference, COORDINATION 2013, Held as Part of the 8th International Federated Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBook chapters on the topic "Federated network"
Rodrigues, Thiago Gomes, Patricia Takako Endo, David W. S. C. Beserra, Djamel Sadok, and Judith Kelner. "Accountability for Federated Clouds." In Computer and Network Security Essentials, 569–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58424-9_33.
Full textBhoj, P., D. Caswell, S. Chutani, G. Gopal, and M. Kosarchyn. "Management of New Federated Services." In Integrated Network Management V, 327–40. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35180-3_25.
Full textPrabhugaonkar, Gargi Gopalkrishna, Xiaoyan Sun, Xuyu Wang, and Jun Dai. "Deep IoT Monitoring: Filtering IoT Traffic Using Deep Learning." In Silicon Valley Cybersecurity Conference, 120–36. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_8.
Full textChoraś, Michał, Rafał Kozik, Rafał Piotrowski, Juliusz Brzostek, and Witold Hołubowicz. "Network Events Correlation for Federated Networks Protection System." In Towards a Service-Based Internet, 100–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24755-2_9.
Full textKong, Lingwei, Hengtao Tao, Jianzong Wang, Zhangcheng Huang, and Jing Xiao. "Network Coding for Federated Learning Systems." In Neural Information Processing, 546–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_46.
Full textPeratikou, Adamantini, Constantinos Louca, Stavros Shiaeles, and Stavros Stavrou. "On Federated Cyber Range Network Interconnection." In Selected Papers from the 12th International Networking Conference, 117–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64758-2_9.
Full textDhiyanesh, B., G. Kiruthiga, P. Saraswathi, S. Gomathi, and R. Radha. "Federated Learning for Efficient Cardiac Disease Prediction based on Hyper Spectral Feature Selection using Deep Spectral Convolution Neural Network." In Handbook on Federated Learning, 245–63. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003384854-11.
Full textGu, Shiqiao, Liu Yang, Siqi Deng, and Zhengyi Xu. "Two-Stream Communication-Efficient Federated Pruning Network." In Lecture Notes in Computer Science, 185–96. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20868-3_14.
Full textIrfan, Muhammad Maaz, Lin Wang, Sheraz Ali, Shan Jing, and Chuan Zhao. "FL-DP: Differential Private Federated Neural Network." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 271–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96791-8_20.
Full textIdoje, Godwin, Tasos Dagiuklas, and Muddesar Iqbal. "On the Performance of Federated Learning Network." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 41–56. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54531-3_3.
Full textConference papers on the topic "Federated network"
Gao, Shangqian, Junyi Li, Zeyu Zhang, Yanfu Zhang, Weidong Cai, and Heng Huang. "Device-Wise Federated Network Pruning." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12342–52. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01173.
Full textGao, Tianli, Jiahong Lin, Congduan Li, Chee Wei Tan, and Jun Gao. "Federated Learning Meets Network Coding: Efficient Coded Hierarchical Federated Learning." In 2024 IEEE Information Theory Workshop (ITW), 241–46. IEEE, 2024. https://doi.org/10.1109/itw61385.2024.10806940.
Full textBehera, Sadananda, Saroj Kumar Panda, Tania Panayiotou, and Georgios Ellinas. "Federated Learning for Network Traffic Prediction." In 2024 IFIP Networking Conference (IFIP Networking), 781–85. IEEE, 2024. http://dx.doi.org/10.23919/ifipnetworking62109.2024.10619909.
Full textMu, Xianyu, Youliang Tian, Zhou Zhou, and Jinbo Xiong. "Lightweight Federated Learning Secure Aggregation Protocols." In 2024 International Conference on Networking and Network Applications (NaNA), 438–43. IEEE, 2024. http://dx.doi.org/10.1109/nana63151.2024.00079.
Full textWu, Chen, Sencun Zhu, Prasenjit Mitra, and Wei Wang. "Unlearning Backdoor Attacks in Federated Learning." In 2024 IEEE Conference on Communications and Network Security (CNS), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/cns62487.2024.10735680.
Full textBusnel, Yann, and Léo Lavaur. "Tutorial: Federated Learning × Security for Network Monitoring." In 2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW), 13–16. IEEE, 2024. http://dx.doi.org/10.1109/icdcsw63686.2024.00008.
Full textJin, Dongzi, Yingyu Li, and Yong Xiao. "Federated Generative Learning for Digital Twin Network Modeling." In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/vtc2024-spring62846.2024.10683000.
Full textSingh, Jagdeep, Sanjay Kumar Dhurandher, and Isaac Woungang. "Federated Learning Empowered Routing for Opportunistic Network Environments." In 2024 IEEE International Conference on Communications Workshops (ICC Workshops), 1998–2004. IEEE, 2024. http://dx.doi.org/10.1109/iccworkshops59551.2024.10615288.
Full textFu, Xiao. "Network Traffic Classification Based on Personalized Federated Learning." In 2024 IEEE 6th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 1359–62. IEEE, 2024. https://doi.org/10.1109/iccasit62299.2024.10827950.
Full textYoon, Heeyong, Kang-Wook Chon, and Min-Soo Kim. "FedSTGNN: A Federated Spatio-Temporal Graph Neural Network." In 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), 1863–68. IEEE, 2024. https://doi.org/10.1109/ictc62082.2024.10826762.
Full textReports on the topic "Federated network"
Martinez, Richard G., Steven Polliard, and Robert Flo. Distributed Training Network Guard Trusted Bridge Federate Initial Capabilities Demonstration: After Action Report. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada408651.
Full textAfrican Open Science Platform Part 1: Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Full text