Dissertations / Theses on the topic 'Federate learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Federate learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eriksson, Henrik. "Federated Learning in Large Scale Networks : Exploring Hierarchical Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292744.
Full textFederated Learning står inför en utmaning när det gäller att hantera data med en hög grad av heterogenitet och det kan i vissa fall vara olämpligt att använda sig av en approach där en och samma modell är tränad för att användas av alla noder i nätverket. Olika approacher för att hantera detta problem har undersökts som att anpassa den tränade modellen till varje nod och att klustra noderna i nätverket och träna en egen modell för varje kluster inom vilket datan är mindre heterogen. I detta arbete studeras möjligheterna att förbättra prestandan hos de lokala modellerna genom att dra nytta av den hierarkiska anordning som uppstår när de deltagande noderna i nätverket grupperas i kluster. Experiment är utförda med ett Long Short-Term Memory-nätverk för att utföra tidsserieprognoser för att utvärdera olika approacher som drar nytta av den hierarkiska anordningen och jämför dem med vanliga federated learning-approacher. Experimenten är utförda med ett dataset insamlat av Ericsson AB. Det består av "handoversfrån basstationer i en europeisk stad. De hierarkiska approacherna visade inga fördelar jämfört med de vanliga två-nivåapproacherna.
Taiello, Riccardo. "Apprentissage automatique sécurisé pour l'analyse collaborative des données de santé à grande échelle." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4031.
Full textThis PhD thesis explores the integration of privacy preservation, medical imaging, and Federated Learning (FL) using advanced cryptographic methods. Within the context of medical image analysis, we develop a privacy-preserving image registration (PPIR) framework. This framework addresses the challenge of registering images confidentially, without revealing their contents. By extending classical registration paradigms, we incorporate cryptographic tools like secure multi-party computation and homomorphic encryption to perform these operations securely. These tools are vital as they prevent data leakage during processing. Given the challenges associated with the performance and scalability of cryptographic methods in high-dimensional data, we optimize our image registration operations using gradient approximations. Our focus extends to increasingly complex registration methods, such as rigid, affine, and non-linear approaches using cubic splines or diffeomorphisms, parameterized by time-varying velocity fields. We demonstrate how these sophisticated registration methods can integrate privacy-preserving mechanisms effectively across various tasks. Concurrently, the thesis addresses the challenge of stragglers in FL, emphasizing the role of Secure Aggregation (SA) in collaborative model training. We introduce "Eagle", a synchronous SA scheme designed to optimize participation by late-arriving devices, significantly enhancing computational and communication efficiencies. We also present "Owl", tailored for buffered asynchronous FL settings, consistently outperforming earlier solutions. Furthermore, in the realm of Buffered AsyncSA, we propose two novel approaches: "Buffalo" and "Buffalo+". "Buffalo" advances SA techniques for Buffered AsyncSA, while "Buffalo+" counters sophisticated attacks that traditional methods fail to detect, such as model replacement. This solution leverages the properties of incremental hash functions and explores the sparsity in the quantization of local gradients from client models. Both Buffalo and Buffalo+ are validated theoretically and experimentally, demonstrating their effectiveness in a new cross-device FL task for medical devices.Finally, this thesis has devoted particular attention to the translation of privacy-preserving tools in real-world applications, notably through the FL open-source framework Fed-BioMed. Contributions concern the introduction of one of the first practical SA implementations specifically designed for cross-silo FL among hospitals, showcasing several practical use cases
Mäenpää, Dylan. "Towards Peer-to-Peer Federated Learning: Algorithms and Comparisons to Centralized Federated Learning." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176778.
Full textLiang, Jiarong. "Federated Learning for Bioimage Classification." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420615.
Full textZhao, Qiwei. "Federated Learning with Heterogeneous Challenge." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27399.
Full textCarlsson, Robert. "Privacy-Preserved Federated Learning : A survey of applicable machine learning algorithms in a federated environment." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424383.
Full textDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning." Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Full textFelix, Johannes Morsbach. "Hardened Model Aggregation for Federated Learning backed by Distributed Trust Towards decentralizing Federated Learning using a Blockchain." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423621.
Full textLeconte, Louis. "Compression and federated learning : an approach to frugal machine learning." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS107.
Full text“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms based on artificial neural networks is experiencing widespread development. Neural networks consist of non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art performances in various areas, such as image recognition, speech recognition, natural language processing, and recommendation systems.However, training a neural network on a device with lower computing capacity can be challenging, as it can imply cutting back on memory, computing time or power. A natural approach to simplify this training is to use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However, optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively expensive in terms of computational power. For this reason, many modern applications use a network of devices to store individual data and share the computational load. A new approach, federated learning, considers a distributed environment: Data is stored on devices and a centralized server orchestrates the training process across multiple devices.In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the discrete optimization problem as a constrained optimization problem (where the size of the constraint is reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this particular framework, the parameters of the neural networks can only have two values. The rest of the thesis is about efficient federated learning. Following our contributions developed for training quantized neural network, we integrate them into a federated environment. Then, we propose a novel unbiased compression technique that can be used in any gradient based distributed optimization framework. Our final contributions address the particular case of asynchronous federated learning, where devices have different computational speeds and/or access to bandwidth. We first propose a contribution that reweights the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics analysis, we propose a significant improvement to the complexity bounds provided in the literature onasynchronous federated learning.In summary, this thesis presents novel contributions to the field of quantized neural networks and federated learning by addressing critical challenges and providing innovative solutions for efficient and sustainable learning in a distributed and heterogeneous environment. Although the potential benefits are promising, especially in terms of energy savings, caution is needed as a rebound effect could occur
Adapa, Supriya. "TensorFlow Federated Learning: Application to Decentralized Data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textKim, Yeongwoo. "Dynamic GAN-based Clustering in Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285576.
Full textett nätverk ökat. Enheterna genererar kontinuerligt data som har varierandeinformation, från strömförbrukning till konfigurationen av enheterna. Eftersomdatan innehåller den råa informationen om varje lokal nod i nätverket germanipulation av informationen potential att gynna nätverket med olika metoder.På grund av den stora mängden data, och dess egenskap av att vara icke-o.l.f.,som genereras i varje nod blir manuella operationer för att bearbeta data ochjustera metoderna utmanande. För att hantera utmaningen finns försök med attanvända automatiserade metoder för att bygga precisa maskininlärningsmodellermed hjälp av en mindre mängd insamlad data eller att gruppera nodergenom att utnyttja klustringsalgoritmer och använda maskininlärningsmodellerinom varje kluster. De konventionella klustringsalgoritmerna är emellertidofullkomliga i ett distribuerat och dynamiskt nätverk på grund av risken fördataskydd, de icke-dynamiska klusterna och det fasta antalet kluster. Dessabegränsningar av klustringsalgoritmerna försämrar maskininlärningsmodellernasprestanda eftersom klustren kan bli föråldrade med tiden. Därför föreslårdenna avhandling en trefasklustringsalgoritm i dynamiska miljöer genom attutnyttja 1) GAN-baserad klustring, 2) klusterkalibrering och 3) klyvning avkluster i federerad inlärning. GAN-baserade klustring bevarar dataintegriteteneftersom det eliminerar behovet av att dela rådata i ett nätverk för att skapakluster. Klusterkalibrering lägger till dynamik i klustringen genom att kontinuerligtuppdatera kluster och fördelar metoder som hanterar nätverket. Dessutomdelar den klövlande klustringen olika antal kluster genom att iterativt välja ochdela ett kluster i flera kluster. Som ett resultat skapar vi kluster för dynamiskamiljöer och förbättrar prestandan hos maskininlärningsmodeller inom varjekluster.
Pekkanen, Linus, and Patrik Johansson. "Simulating Broadband Analog Aggregation for Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295616.
Full textI takt med denökande datamängden frånallt fler uppkopplade enheter har nya modeller för mask-ininlärning dykt upp. För trådlösa nätverk har idén att appliceradecentraliserade maskininlärnings modellerökat i popularitet,där alla noder i nätverket bidrar till en global maskininlärningsmodell genom att träna på den data som finns lokalt på varjenod. Ett exempel på en sådan metodärFederated Learning.Traditionella metoder för kommunikation har visat sig varaineffektiva vilket öppnar upp möjligheten för att designa nyamaskininlärningsspecifika kommunikationsscheman. Konceptetover-the-air computationutnyttjar det faktum att en trådlöskommunikationskanal naturligt kan beräkna vissa funktioner,som exempelvis en summa. Om alla noder i nätverket sändertill en server samtidigt aggregeras signalerna genom interferensinnan de når servern.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Alotaibi, Abdulrahman. "Wisdom of the machines : federated learning using OPAL." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120686.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 67-68).
Wisdom of the crowds (WOC) is an old concept that started by recording and aggregating people's estimations. It is one of the useful tools that exists today and allows many estimation applications to work correctly. Moreover, Open algorithms (OPAL) is a useful platform that enables institutions and individuals to share sensitive data, and increases the privacy of the data. In addition, federated learning is a new way to build and generate machine learning models by aggregating their hyperparameters. In this thesis, I show how to combine the three different concepts to build machine learning models on top of OPAL that utilize federated learning on a network. I then extend OPAL to support this new feature and demonstrate how to build a machine learning model using small independent models.
by Abdulrahman Alotaibi.
S.M.
Konečný, Jakub. "Stochastic, distributed and federated optimization for machine learning." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31478.
Full textSani, Lorenzo. "Unsupervised clustering of MDS data using federated learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25591/.
Full textSmith, Arthur M. D. "A Study on Federated Learning Systems in Healthcare." Youngstown State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1629188090536169.
Full textLundberg, Oskar. "Decentralized machine learning on massive heterogeneous datasets : A thesis about vertical federated learning." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444639.
Full textVikström, Johan. "Comparing decentralized learning to Federated Learning when training Deep Neural Networks under churn." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300391.
Full textDecentraliserad Maskinginlärning kan lösa några problematiska aspekter med Federated Learning. Det finns ingen central server som agerar som domare för vilka som får gagna av Maskininlärningsmodellerna skapad av den stora mäng data som blivit tillgänglig på senare år. Det skulle också kunna öka pålitligheten och skalbarheten av Maskininlärningssystem och därav dra nytta av att mer data är tillgänglig. Gossip Learning är ett sånt protokoll, men det är primärt designat med linjära modeller i åtanke. Hur presterar Gossip Learning när man tränar Djupa Neurala Nätverk? Kan det vara ett möjligt alternativ till Federated Learning? I det här exjobbet implementerar vi Gossip Learning med två olika modelsammanslagningstekniker. Vi designar och implementerar även två tillägg till protokollet med målet att uppnå bättre prestanda när man tränar i system där noder går ner och kommer up. Träningsmetoderna jämförs på två uppgifter: bildklassificering på Federated Extended MNIST datauppsättningen och tidsserieprognostisering på NN5 datauppsättningen. Dessutom har vi även experiment då noder alternerar mellan att vara tillgängliga och otillgängliga. Vi finner att Gossip Learning presterar marginellt bättre i miljöer då noder alltid är tillgängliga men är kraftigt överträffade i miljöer då noder alternerar mellan att vara tillgängliga och otillgängliga.
Liverani, Tommaso. "Federated Learning per Applicazioni Edge Cloud su Piattaforma fog05." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textGarcia, Bernal Daniel. "Decentralizing Large-Scale Natural Language Processing with Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278822.
Full textNaturlig språkbehandling är en av de mest populära och synliga formerna av artificiell intelligens under de senaste åren. Det beror delvis på att det har att göra med en gemensam egenskap hos människor: språk. Naturlig språkbehandling applikationer gör det möjligt att skapa nya tjänster inom industrisektorn för att erbjuda nya lösningar och ge betydande produktivitetsvinster. Allt detta har hänt tack vare den snabba utvecklingen av modeller för djup inlärning. Modeller i storskaligt sammanhang, som Word2Vec, ELMo och BERT har väsentligt avancerat naturligt språkbehandling på senare tid år. Med dessa senaste naturliga språkbearbetningsmo modeller är det möjligt att förstå textens semantik i en grad som aldrig sett förut. De kräver dock stora mängder textdata för att bearbeta för att uppnå högkvalitativa resultat. Denna information kan samlas in från olika källor, men ett av de viktigaste insamlingsställena är enheter som smartphones, smarta apparater och smarta sensorer. Beklagligtvis är det extremt utmanande att gå med och komma åt alla dessa uppgifter från flera källor på grund av integritetsskäl och regleringsskäl. Nya protokoll och tekniker har utvecklats för att lösa denna begränsning genom att träna modeller på ett massivt distribuerat sätt med fördel av de kraftfulla egenskaperna hos enheterna som genererar data. Särskilt syftar denna forskning till att testa livskraften för att utbilda naturligt språkbehandling modeller, i specifika Word2Vec, med ett massivt distribuerat protokoll som Förenat Lärande. Resultaten visar att det Förenade Word2Vec fungerar lika bra som Word2Vec är de flesta av scenarierna, till och med överträffar det i vissa semantiska riktmärken. Det är ett nytt forskningsområde, där få studier har genomförts, med ett stort kunskapsgap för att fylla i framtida forskningar.
Cetin, Burak. "Wireless Network Intrusion Detection and Analysis using Federated Learning." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588778320687729.
Full textLi, Yuntao. "Federated Learning for Time Series Forecasting Using Hybrid Model." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254677.
Full textTidseriedata har blivit allmänt förekommande tack vare överkomliga kantenheter och sensorer. Mycket av denna data är värdefull för beslutsfattande. För att kunna använda datan för prognosuppgifter har den konventionella centraliserade metoden visat brister avseende storskalig datakommunikation och integritetsfrågor. Vidare har neurala nätverksmodeller inte klarat av att utnyttja den extra informationen från tidsserierna, vilket leder till misslyckanden med att ge specifikt tidsserierelaterade resultat. Båda frågorna exponerar en utmaning för storskalig tidsserieprognostisering med neurala nätverksmodeller. Alla dessa begränsningar leder till vår forskningsfråga:Kan vi realisera decentraliserad tidsserieprognostisering med en federerad lärningsmekanism som presterar jämförbart med konventionella centrala lösningar i prognostisering?I det här arbetet föreslår vi ett ramverk för federerad tidsserieprognos som löser utmaningen genom att låta användaren behålla data lokalt och lära sig en delad modell genom att aggregera lokalt beräknade uppdateringar. Dessutom utformar vi en hybrid modell för att möjliggöra neurala nätverksmodeller som kan utnyttja den extra informationen från tidsserierna för att uppnå inlärning av specifika tidsserier. Den föreslagna hybrida modellen presterar bättre än state-of-art centraliserade grundläggande modeller med NN5och Ericsson KPIdata. Samtidigt ger den federerade ansatsen jämförbara resultat med de datacentrala ansatserna för både NN5och Ericsson KPI-data. Dessa resultat svarar tillsammans på forskningsfrågan av denna avhandling.
Lavaur, Léo. "Improving intrusion detection in distributed systems with federated learning." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0423.
Full textCollaboration between different cybersecurity actors is essential to fight against increasingly sophisticated and numerous attacks. However, stakeholders are often reluctant to share their data, fearing confidentiality and privacy issues and the loss of their competitive advantage, although it would improve their intrusion detection models. Federated learning is a recent paradigm in machine learning that allows distributed clients to train a common model without sharing their data. These properties of collaboration and confidentiality make it an ideal candidate for sensitive applications such as intrusion detection. While several applications have shown that it is indeed possible to train a single model on distributed intrusion detection data, few have focused on the collaborative aspect of this paradigm. In this manuscript, we study the use of federated learning to build collaborative intrusion detection systems. In particular, we explore (i) the impact of data quality in heterogeneous contexts, (ii) the exposure to certain types of poisoning attacks, and (iii) tools and methodologies to improve the evaluation of these types of algorithms
Feraudo, Angelo. "Distributed Federated Learning in Manufacturer Usage Description (MUD) Deployment Environments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textBackstad, Sebastian. "Federated Averaging Deep Q-NetworkA Distributed Deep Reinforcement Learning Algorithm." Thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149637.
Full textBasnayake, Mudiyanselage V. (Vishaka). "Federated learning for enhanced sensor reliability of automated wireless networks." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201908142761.
Full textBagheri, Behrad. "Decentralized Federated Autonomous Organizations for Prognostics and Health Management." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592133991337126.
Full textLangelaar, Johannes, and Mattsson Adam Strömme. "Federated Neural Collaborative Filtering for privacy-preserving recommender systems." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446913.
Full textLu, Zonghao. "A case study about different network architectures in Federated Machine Learning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425193.
Full textKnight-Williams, Alex. "Time to Next Flow Classification in Mobile Networks with Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287183.
Full textAtt förstå trafikdynamik i ett cellulärt nätverk är fundamentalt för effektiv resurshantering, vilket förbättrar nätverkets energi- och kostnadseffektivitet. Denna uppsats fokuserar på att klassificera ankomsttid för nästa flöde på användarnivå i ett dataset innehållande nätverkstrafik från en operatör. En uppsättning maskininlärnings- och djupinlärningstekniker har applicerats, varav några har inkorporerats i ett ramverk för federerad inlärning som säkerställer användares dataintegritet. Resultaten visar att ett long short-term memory (LSTM) presterar bäst på denna uppgift, även om bra prestanda även kan uppnås med modeller av lägre komplexitet. Vidare så har modeller som tränats med hjälp av federerad inlärning jämförbar prestanda med de tränade på centraliserat data.
Mestoukirdi, Mohamad. "Reliable and Communication-Efficient Federated Learning for Future Intelligent Edge Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS432.
Full textIn the realm of future 6G wireless networks, integrating the intelligent edge through the advent of AI signifies a momentous leap forward, promising revolutionary advancements in wireless communication. This integration fosters a harmonious synergy, capitalizing on the collective potential of these transformative technologies. Central to this integration is the role of federated learning, a decentralized learning paradigm that upholds data privacy while harnessing the collective intelligence of interconnected devices. By embracing federated learning, 6G networks can unlock a myriad of benefits for both wireless networks and edge devices. On one hand, wireless networks gain the ability to exploit data-driven solutions, surpassing the limitations of traditional model-driven approaches. Particularly, leveraging real-time data insights will empower 6G networks to adapt, optimize performance, and enhance network efficiency dynamically. On the other hand, edge devices benefit from personalized experiences and tailored solutions, catered to their specific requirements. Specifically, edge devices will experience improved performance and reduced latency through localized decision-making, real-time processing, and reduced reliance on centralized infrastructure. In the first part of the thesis, we tackle the predicament of statistical heterogeneity in federated learning stemming from divergent data distributions among devices datasets. Rather than training a conventional one-model-fits-all, which often performs poorly with non-IID data, we propose user-centric set of rules that produce personalized models tailored to each user objectives. To mitigate the prohibitive communication overhead associated with training distinct personalized model for each user, users are partitioned into clusters based on their objectives similarity. This enables collective training of cohort-specific personalized models. As a result, the total number of personalized models trained is reduced. This reduction lessens the consumption of wireless resources required to transmit model updates across bandwidth-limited wireless channels. In the second part, our focus shifts towards integrating IoT remote devices into the intelligent edge by leveraging unmanned aerial vehicles as a federated learning orchestrator. While previous studies have extensively explored the potential of UAVs as flying base stations or relays in wireless networks, their utilization in facilitating model training is still a relatively new area of research. In this context, we leverage the UAV mobility to bypass the unfavorable channel conditions in rural areas and establish learning grounds to remote IoT devices. However, UAV deployments poses challenges in terms of scheduling and trajectory design. To this end, a joint optimization of UAV trajectory, device scheduling, and the learning performance is formulated and solved using convex optimization techniques and graph theory. In the third and final part of this thesis, we take a critical look at thecommunication overhead imposed by federated learning on wireless networks. While compression techniques such as quantization and sparsification of model updates are widely used, they often achieve communication efficiency at the cost of reduced model performance. We employ over-parameterized random networks to approximate target networks through parameter pruning rather than direct optimization to overcome this limitation. This approach has been demonstrated to require transmitting no more than a single bit of information per model parameter. We show that SoTA methods fail to capitalize on the full attainable advantages in terms of communication efficiency using this approach. Accordingly, we propose a regularized loss function which considers the entropy of transmitted updates, resulting in notable improvements to communication and memory efficiency during federated training on edge devices without sacrificing accuracy
Espinoza, Castellon Fabiola. "Contributions to effective and secure federated learning with client data heterogeneity." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG007.
Full textThis thesis addresses two significant challenges in federated learning: data heterogeneity and security. In the first part of our work, we tackle the data heterogeneity challenge. Clients can have different data distributions due to their personal opinions, locations, habits, etc. It is a common and almost inherent obstacle in real-world federated learning applications. We focus on two distinct types of heterogeneity in classification tasks. On the one hand, in the first scenario, participants exhibit diverse yet related data distributions, making collaborative learning an attractive approach. Our first proposed method leverages a domain adaptation approach and collaboratively learns an empirical dictionary. A dictionary expresses each client's data as a linear combination of various atoms, that are a set of empirical samples representing the training data. Clients learn the atoms collaboratively, whereas they learn the weights privately to enhance privacy. Subsequently, the dictionary is utilized to infer classes for the clients' unlabeled distribution that withal actively participated in the learning process. On the other hand, our second method addresses a different form of data heterogeneity, where clients express different concepts through their distributions. Collaborative learning may not be optimal in this context; however, we assume a structural similarity between clients, enabling us to cluster them into groups for more effective group-based learning. In this case, we direct our attention to the scalability of our method by supposing that the number of participants can be very large. We propose to incrementally, each time the server aggregates the clients' updates, estimate the hidden structure between clients. Contrary to alternative approaches, we do not require that all be available at the same time to estimate their belonging clusters. In the second part of this thesis, we delve into the security challenges of federated learning, specifically focusing on defenses against training time backdoor attacks. Since a federated framework is shared, it is not always possible to ensure that all clients are honest and that they all send correctly trained updates.Federated learning is vulnerable to the presence of malicious users who corrupt their training data. Our defenses are elaborated for trigger-based backdoor attacks, and rooted in trigger reconstruction. We do not provide the server additional data or client information, other than the compromised weights. After some limited assumptions are made, the server extracts information about the attack trigger from the compromised model global model. Our third method uses a reconstructed trigger to identify the neurons of a neural network that encode the attack. We propose to prune the network on the server side to hinder the effects of the attack. Our final method shifts the defense mechanism to the end-users, providing them with the reconstructed trigger to counteract attacks during the inference phase. Notably, both defense methods consider data heterogeneity, with the latter proving to be more efficient in extreme data heterogeneity cases. In conclusion, this thesis introduces novel methods to enhance the efficiency and security of federated learning systems. We have explored diverse data heterogeneity scenarios, proposing collaborative learning approaches and robust security defenses based on trigger reconstruction. As part of our future work, we outline perspectives for further research, improving our proposed trigger reconstruction and taking into account other challenges, such as privacy which is very important in the field of federated learning
Hathurusinghe, Rajitha. "Building a Personally Identifiable Information Recognizer in a Privacy Preserved Manner Using Automated Annotation and Federated Learning." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41011.
Full textDíaz, González Fernando. "Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665.
Full textFederated Learning utgör en statistisk utmaning vid träning med starkt heterogen sekvensdata. Till exempel så uppvisar tidsseriedata inom telekomdomänen blandade variationer och mönster över längre tidsintervall. Dessa distinkta fördelningar utgör en utmaning när en nod inte bara ska bidra till skapandet av en global modell utan även ämnar applicera denna modell på sin lokala datamängd. Att i detta scenario införa en global modell som ska passa alla kan visa sig vara otillräckligt, även om vi använder oss av de mest framgångsrika modellerna inom maskininlärning för tidsserieprognoser, Long Short-Term Memory (LSTM) nätverk, vilka visat sig kunna fånga komplexa mönster och generalisera väl till nya mönster. I detta arbete visar vi att genom att klustra klienterna med hjälp av dessa mönster och selektivt aggregera deras uppdateringar i olika globala modeller kan vi uppnå förbättringar av den lokal prestandan med minimala kostnader, vilket vi demonstrerar genom experiment med riktigt tidsseriedata och en grundläggande LSTM-modell.
Correia, Brum Rafaela. "Multi-FedLS : A Scheduler of Federated Learning Applications in a Multi-Cloud Environment." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS539.pdf.
Full textFederated Learning (FL) is a new area of distributed Machine Learning (ML) where learning ensures data privacy. Each client has access only to its own local and private dataset. This approach is attractive in various domains of knowledge because it allows different institutions to collaborate without sharing their confidential data. As the amount of data required for training has grown significantly in recent years, most institutions cannot afford physical data centers to store and manipulate all their data. A viable option is to utilize cloud storage services offered by providers with different data privacy and availability guarantees. The user is responsible for choosing the regions where their data is stored and controlling access to it.Additionally, cloud providers offer various services to execute an application. They provide users with the ability to create Virtual Machines (VMs) with different configurations, where users have full control over them. This type of service is known as Infrastructure-as-a-Service (IaaS). Thus, a multi-cloud environment is conducive to the collaboration of different institutions in creating a Machine Learning model through Federated Learning.In this thesis, we propose extit{Multi-FedLS}, a robust framework designed to execute FL applications in a multi-cloud environment. The framework considers the current location of each client's datasets, communication delay, and cost of utilization in the clouds, focusing on cost and runtime reduction. Moreover, Multi-FedLS utilizes cheaper instances whenever possible to reduce costs, even though they may be revoked at any time by the cloud provider. Thus, to ensure the successful execution of FL applications, the framework employs fault-tolerance techniques such as checkpoints and work migration to resume training on another VM after a revocation. Multi-FedLS comprises four modules: Pre-Scheduling, Initial Mapping, Fault Tolerance, and Dynamic Scheduler. The obtained results demonstrate the feasibility of executing applications in multi-cloud environments using low-cost VMs, employing mathematical formulation, fault-tolerance techniques, and simple heuristics for selecting new VMs. The framework achieved a cost reduction of 56.92% compared to application runtime using more expensive VMs, with only a 5.44% increase in runtime on commercial cloud providers
Nan, Yucen. "High-Credibility Edge Analytic System for Early Medical Intervention." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27309.
Full textHorchidan, Sonia-Florina. "Real-time forecasting of dietary habits and user health using Federated Learning with privacy guarantees." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281366.
Full textModerna apparater och applikationer för självövervakning av hälsa, som Fitbit och MyFitnessPal, ger användarna möjlighet att vidta konkreta åtgärder och sätta fitness- och livsstilsmål baserat på deras dokumenterade trender och statistik. Att förutsäga sådana trender är fördelaktigt för att uppnå långtidsmål, eftersom individerna kan anpassa sina dieter och vanor när som helst för att garantera framgång.Utformningen och implementeringen av ett sådant system, som dessutom respekterar användarnas integritet, är huvudmålet för vårt arbete. Denna appli- kation är modellerad som ett tidsserieprognosproblem. Med avseende på an- vändarnas historiska data är målet att förutsäga deras matvanor och livsstilsva- nor i realtid. Vi tillämpar det federerade inlärningsparadigmet på vårt använd- ningsfall på grund av den mycket distribuerade karaktären av vår data och in- tegritetsproblemen för sådan känslig bokförd information. Federerade lärande från heterogena datasekvenser kan emellertid vara utmanande, eftersom även de modernaste maskininlärningstekniker för tidsserieprognoser kan stöta på svårigheter när de lär sig från mycket oregelbundna datasekvenser. Specifikt i det föreslagna sjukvårdsscenariot kan maskininlärningsalgoritmerna misslyc- kas med att förse användare med unika dietmönster.I detta arbete implementerar vi en tvåstegsströmmande klustermekanism och grupperar användare som uppvisar liknande ät- och fitnessbeteenden. De genomförda experimenten visar att federerade lärande i detta sammanhang kan uppnå mycket hög nogrannhet i förutsägelse, eftersom våra förutsägelser in- te är mer än 0,025% ifrån det sanna värdet med avseende på intervallet för varje funktion. Träning av separata modeller för varje grupp användare visar sig vara fördelaktigt, särskilt gällande träningstiden, men det är mycket be- roende av parametrarna som används för modellerna och träningsprocessen. Våra experiment drar slutsatsen att konfigurationen som används för den all- männa federerade modellen inte kan tillämpas på dataklusterna. Dock kan en minskning av förutsägelsefel på mer än 45% uppnås, givet att parametrarna är optimerade för varje fall.Slutligen hanteras problemet med datasekretess genom att tillämpa bästa tillgängliga differentiell integritetsteknik. Vår empiriska studie visar att adde- ra brus till gradienter som skickas till servern är olämpliga för liten data och avbryter fördelarna med tidigare användares kluster. Däremot, genom att ad- dera brus till träningsdata uppnås anmärkningsvärda resultat. En differentierad integritetsnivå motsvarande ett epsilonvärde på 0,1 med en ökning av det ob- serverade genomsnittliga absoluta felet med en faktor på endast 0,21 erhölls.
Rinaldi, Riccardo. "Deployment e Gestione di Applicazioni di Federated Learning in Edge Cloud Computing basate sul Framework Fog05." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textAlmeida, Filho álvaro Cavalcanti de. "Modelo de mensuração do desempenho dos institutos federais: uma análise a partir de microdados." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/5913.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents a hermeneutic view of organizational learning based on the interpretation of public microdata provided by INEP and IBGE. We show an overview of the progress and challenges encountered with the expansion of basic education in the Federal Institutions (FI's) of the Brazilian Northeast, stimulating the creation of specific results in the Federal Network of Vocational Education, to assess the quality of public education in the PNE interval between 2001 and 2010. The purpose of this research is given by the reflection of Senge et al. (2005) on the significance of learning for an organization and the need to develop a clear and honest understanding of the reality. We apply concepts that relate to organizational knowledge creation with organizational learning for school management, measuring educational outcomes of 52 federal schools to answer questions related to overcoming regional disparities and assessing the quality of public education. Besides variables related to intra-school factors (school results, school infrastructure, human resources and student flow), we consider the exogenous factors (social context of students). Finally, we intend to contribute to the advancement of the discussion on equality and efficiency in the provision of quality public education, as required by Article 206 of the Constitution, from the identification of successful schools and the results that indicate the importance of the family background of students. The following aspects reverberate positively in the performance of students on the results of Enem in their different areas: the educational level of the parents, the level of household income and the frequency of the student in a private school in elementary phase (before entering FI).
Este trabalho traz uma visão hermenêutica da aprendizagem organizacional a partir da atribuição de significado a dados públicos existentes no acervo de microdados do INEP e IBGE. Apresenta uma visão dos avanços e desafios encontrados com a ampliação da oferta da educação básica nos IF s da Região Nordeste, favorecendo a criação de um lastro dos resultados específicos na Rede Federal de Educação Profissionalizante, para a avaliação da qualidade do ensino público no período de vigência do PNE 2001-2010. Tal avaliação da realidade do setor educacional, a que se propõe este trabalho, ressoa a reflexão de Senge et al. (2005) sobre o significado da aprendizagem para uma organização e a necessidade de desenvolver um entendimento claro e honesto da realidade. No curso do presente estudo, foram aplicados conceitos que fazem a ligação entre a criação de conhecimento organizacional e a aprendizagem organizacional, mormente, no âmbito da gestão escolar, haja vista a mensuração dos resultados educacionais de 52 escolas pertencentes a uma mesma rede de ensino, para responder a conflitos mais diretamente ligados à superação de assimetrias regionais e à avaliação da qualidade do ensino público compreendendo além de variáveis relativas aos fatores intraescolares (resultado escolar, infraestrutura escolar, recursos humanos e fluxo escolar), os fatores extraescolares (fatores do espaço social dos alunos). Tencionamos, pois, à guisa de conclusão, contribuir para o avanço do debate sobre a isonomia e eficiência na prestação do serviço público educacional, como prevê o artigo 206 da Constituição Federal, de garantia de padrão de qualidade para o ensino no país, sob uma tendência mimética das escolas bem-sucedidas e de resultados que sinalizam a necessidade de observância ao background familiar dos alunos dos IF s, uma vez que o grau de escolaridade dos pais do aluno, o nível da renda familiar e o aspecto de o aluno ter estudado o ensino fundamental em escola particular, antes do ingresso no IF, reverberam positivamente no desempenho dos discentes em proficiências nas áreas de conhecimento avaliadas pelo Enem.
Jiménez, Sánchez Amelia. "Learning representations for medical image diagnosis: impact of curriculum training and architectural design." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/672839.
Full textEsta tesis investiga dos aspectos fundamentales del aprendizaje de representaciones profundas de imágenes para el diagnóstico médico. Ambos se enfrentan a los retos comunes de las bases de datos de imágenes médicas, a saber, el número limitado de muestras, la presencia de anotaciones poco fiables y el desequilibrio de clases; así como, la adaptación al dominio (“domain adaptation”) y las restricciones de privacidad de datos para el aprendizaje colaborativo entre instituciones. La primera parte de esta tesis se centra en el diseño de arquitecturas para métodos de aprendizaje profundo (“deep learning”). Exploramos la importancia de localizar la región de interés en la imagen antes de la clasificación y el enfoque implícito de redes capsulares (“capsule networks”) para modelar la información espacial. Verificamos la importancia de la localización como paso previo a la clasificación, proporcionamos un análisis de sensibilidad del tamaño de la región de interés y discutimos la recuperación de imágenes como caso de uso clínico. También validamos que las cápsulas crean equidistancia, por lo que requieren ver menos puntos de vista del objeto de interés. La segunda parte de la tesis se enfoca en facilitar la optimización de los parámetros de la red aumentando gradualmente la dificultad de las muestras de entrenamiento. Este aumento gradual se basa en el concepto de aprendizaje curricular (“curriculum learning”) y se consigue con un programador de datos (“data scheduler”) que controla el orden y el ritmo de las muestras. Validamos el efecto beneficioso de los programadores de datos curriculares en dos escenarios. En primer lugar, aprovechamos el conocimiento previo y la incertidumbre para la clasificación granular de las fracturas de fémur proximal. En este caso, demostramos los beneficios de nuestro método basado en aprendizaje curricular bajo escenarios controlados: con cantidades limitadas de datos, desequilibrio de clases y en presencia de anotaciones imprecisas. En segundo lugar, verificamos el efecto positivo del planificador de datos para la clasificación del cáncer de mama en una configuración de aprendizaje federado (“federated learning”).
Cooper, Melissa. "Learning to lobby : the lessons of the NAACP's 1930s federal anti-lynching campaign." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/67662/.
Full textJohnson, Gerald Deawne. "Development of an Audit Classification Index (ACI) for Federal e-learning Systems Security Vulnerabilities." NSUWorks, 2012. http://nsuworks.nova.edu/gscis_etd/187.
Full textMorton, Shirley T. "Socialization-related learning, job satisfaction, and commitment for new employees in a federal agency." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38548.
Full textAlvelos, José Manuel Pinto. "Inovação, financiamento e aprendizado : o caso da Universidade Federal de Sergipe." Universidade Federal de Sergipe, 2008. https://ri.ufs.br/handle/riufs/4541.
Full textParting from Schumpeter s determinants of investment, an Evolutionary Theory is developed and with a base on the gene, identifying elements that encode routines and develop skills, establishing control, copying and imitation. Scientific technological knowledge, thus generated, can be created or replicated locally, creating what is called a "cluster of knowledge", leading to a dynamic Local Base of Innovation. A Federal Institution (FI) has two complementary roles: training human resources and accumulating techno-scientific knowledge to contribute to the implementation of a local socio-economy. These functions require a pattern of financing, which on the internal side, are derived by the application of "models of partition of OCC (Other Expenses and Capital)" by MEC / SESu determined by the Student-Equivalent Model, that is insufficient to take account the expansion plans of IFES. On the other hand, IFES seek external support to complement funding limitations via Projects, Programs, Parliamentary Amendments, among others, as was the case with UFS. To give consistency to our analysis, the case of the UFS was investigated, by historically analyzing results of approximately 10 years based on critical variables and parameters that make up the Student-Equivalent Model. We detected, despite the rapid growth of these variables, that elements of external and extra-budgetary partnerships were essential, illustrated by the examples of the NUPEG-SE and REUNI. The patterns of internal funding, allied by external partnerships, helped pave the way to consolidate UFS in its role as the Base of Local Innovation.
A partir dos determinantes Schumpeterianos do Investimento, desenvolvemos a Teoria Evolucionária e, com base no gene, apontamos os elementos que codificam a rotina e desenvolvem habilidades, estabelecendo o controle, a cópia e a imitação. O conhecimento científico-tecnológico, assim gerado, pode ser criado ou replicado localmente, originando o chamado cluster de conhecimento , dinamizando uma Base Local de Inovação. Uma Instituição Federal de Esnsino Superior (IFES) cumpre dois papéis complementares: formar recursos humanos e aportar conhecimentos tecnicocientíficos para a implementação de uma socioeconomia local. Essas funções exigem um padrão de financiamento que, pelo lado interno, resultam na aplicação de modelos de partição de OCC (Outros Custeios e Capital) pelo MEC/ SESu, sendo determinante o Aluno Equivalente ao se mostrar insuficiente para dar conta das pretensões de expansão das IFES . Por outro lado, as IFES buscam apoio externo e complementares para as suas carências de financiamento, mediante projetos, programas, emendas parlamentares, entre outras, como foi o caso da UFS. Para dar consistência à nossa análise aprofundamos o caso da UFS, recuperando historicamente, numa trajetória aproximada de 10 anos, as variáveis críticas e os parâmetros que compõem o Modelo Aluno-Equivalente. Detectamos, apesar do vigor de crescimento, que foram essenciais os elementos de parcerias externas e extra-orçamentárias, como o NUPEG-SE e o REUNI. Os padrões de financiamento interno, aliado às parcerias permitiram pavimentar o papel da UFS, para consolidação da Base Local de Inovação.
Subramanya, Tejas. "Autonomic Management and Orchestration Strategies in MEC-Enabled 5G Networks." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/320883.
Full textBhogi, Keerthana. "Two New Applications of Tensors to Machine Learning for Wireless Communications." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104970.
Full textMaster of Science
The increase in the number of wireless and mobile devices have led to the generation of massive amounts of multi-modal data at the users in various real-world applications including wireless communications. This has led to an increasing interest in machine learning (ML)-based data-driven techniques for communication system design. The native setting of ML is {em centralized} where all the data is available on a single device. However, the distributed nature of the users and their data has also motivated the development of distributed ML techniques. Since the success of ML techniques is grounded in their data-based nature, there is a need to maintain the efficiency and scalability of the algorithms to manage the large-scale data. Tensors are multi-dimensional arrays that provide an integrated way of representing multi-modal data. Tensor algebra and tensor decompositions have enabled the extension of several classical ML techniques to tensors-based ML techniques in various application domains such as computer vision, data-mining, image processing, and wireless communications. Tensors-based ML techniques have shown to improve the performance of the ML models because of their ability to leverage the underlying structural information in the data. In this thesis, we present two new applications of tensors to ML for wireless applications and show how the tensor structure of the concerned data can be exploited and incorporated in different ways. The first contribution is a tensor learning-based precoder codebook design technique for full-dimension multiple-input multiple-output (FD-MIMO) systems where we develop a scheme for designing low-complexity product precoder codebooks by identifying and leveraging a tensor representation of the FD-MIMO channel. The second contribution is a tensor-based gradient communication scheme for a decentralized ML technique known as federated learning (FL) with convolutional neural networks (CNNs), where we design a novel bandwidth-efficient gradient compression-reconstruction algorithm that leverages a tensor structure of the convolutional gradients. The numerical simulations in both applications demonstrate that exploiting the underlying tensor structure in the data provides significant gains in their respective performance criteria.
Silva, André Hellvig da. "JOGOS COMPUTACIONAIS NO ENSINO TÉCNICO PROFISSIONAL DO INSTITUTO FEDERAL FARROUPILHA: PANORAMA E POSSIBILIDADES." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/10668.
Full textO presente trabalho parte do pressuposto que o discente pode ser motivado a buscar conhecimento por meio de diversos mecanismos, e muitos incluem o desafio e o prazer da conquista como estratégia, fato conhecido como paradigma da recompensa. Esta pesquisa tem o objetivo de detectar o atual nível de utilização de jogos computacionais como ferramenta de auxílio ao aprendizado no ensino técnico profissional no Instituto Federal Farroupilha (IF Farroupilha), bem como, em um segundo momento, analisar o potencial ainda não explorado dos jogos mais citados nesta. Após a submissão de um questionário online ao grupo de docentes do IF Farroupilha, as informações foram analisadas, destacando-se os três jogos computacionais mais utilizados pelos mesmos. A segunda parte da análise recaiu sobre o potencial cognitivo destes, relatando-se, na sequência, as características de cada um dos jogos analisados. As conclusões mostram que a maioria dos docentes deseja adotar jogos como ferramentas auxiliares no processo de aprendizagem. Porém, apontam dificuldades em encontrar jogos que satisfaçam as necessidades relativas ao nível educacional em que atuam, indicando como características necessárias aos jogos a existência de mecanismos de adaptação ao nível de conhecimento demonstrado pelo usuário, ambiente colaborativo, e abordagem multidisciplinar dos conteúdos.
Sugianto, Nehemia. "Responsible AI for Automated Analysis of Integrated Video Surveillance in Public Spaces." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/409586.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Dept Bus Strategy & Innovation
Griffith Business School
Full Text
Di, Donato Davide. "Sviluppo, Deployment e Validazione Sperimentale di Architetture Distribuite di Machine Learning su Piattaforma fog05." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19021/.
Full textGormbley, Edward Z. "The hope and lifetime learning credits: the political sociology of federal financial aid for undergraduate education." Thesis, Boston University, 2000. https://hdl.handle.net/2144/32868.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
2031-01-01