Academic literature on the topic 'FEA validation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FEA validation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FEA validation"
Panagiotopoulou, O., S. D. Wilshin, E. J. Rayfield, S. J. Shefelbine, and J. R. Hutchinson. "What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur." Journal of The Royal Society Interface 9, no. 67 (July 13, 2011): 351–61. http://dx.doi.org/10.1098/rsif.2011.0323.
Full textAcar, Dogan, Mevlut Turkoz, Hasan Gedikli, and Omer Necati Cora. "Finite Element Analysis and Experimental Validation of Warm Hydromechanical Deep Drawing Process." Applied Mechanics and Materials 686 (October 2014): 535–39. http://dx.doi.org/10.4028/www.scientific.net/amm.686.535.
Full textKořínek, Jan. "Validation of Sinus Filter Choke Temperature Model." TRANSACTIONS ON ELECTRICAL ENGINEERING 5, no. 2 (March 30, 2020): 53–58. http://dx.doi.org/10.14311/tee.2016.2.053.
Full textP. Hassan, Mohamed, Abdullah Saad Mahmud, A. S. M. Rafie, and Rizal Zahari. "Alternative Numerical Validation Methodology for Short-Term Development Projects." Applied Mechanics and Materials 564 (June 2014): 638–43. http://dx.doi.org/10.4028/www.scientific.net/amm.564.638.
Full textDe Strycker, Maarten, Pascal Lava, Wim Van Paepegem, Luc Schueremans, and Dimitri Debruyne. "Validation of Welding Simulations Using Thermal Strains Measured with DIC." Applied Mechanics and Materials 70 (August 2011): 129–34. http://dx.doi.org/10.4028/www.scientific.net/amm.70.129.
Full textBright, Jen A. "A review of paleontological finite element models and their validity." Journal of Paleontology 88, no. 4 (July 2014): 760–69. http://dx.doi.org/10.1666/13-090.
Full textL'Anson, R., J. Peña, R. Postic, and J.-P. Barret. "Finite Element Analysis Applied to Radial Aircraft Tyre Engineering." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 210, no. 1 (January 1996): 109–16. http://dx.doi.org/10.1243/pime_proc_1996_210_349_02.
Full textKim, Hong Seok, Muammer Koç, Jun Ni, and Amit Ghosh. "Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion." Journal of Manufacturing Science and Engineering 128, no. 3 (September 19, 2005): 613–21. http://dx.doi.org/10.1115/1.2194065.
Full textTarfaoui, Mostapha, and Papa Birame Gning. "Experimental Investigation and Finite Element Analysis of Dynamic Behavior and Damage of Glass/Epoxy Tubular Structures." Key Engineering Materials 471-472 (February 2011): 951–56. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.951.
Full textZhang, Peng, Song He, Michael C. Muir, and G. S. J. Gautam. "Eccentricity Effects on NVH Performance of Interior Permanent Magnets Machines for Hybrid and Electric Vehicles." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 4 (August 1, 2021): 2384–92. http://dx.doi.org/10.3397/in-2021-2124.
Full textDissertations / Theses on the topic "FEA validation"
Lashore, Michael. "Mathematical Model Validation of a Center of Gravity Measuring Platform Using Experimental Tests and FEA." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1467.
Full textLongmire, Leala S. "Design, Optimization, and Validation of a Rear Subframe to allow for the Integration of an Electric Powertrain." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1594907186413918.
Full textRydman, Joakim. "Validation of blast simulation models via drop-tower tests." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149403.
Full textSylliaasen, Scott J. "The Development and Validation of a Finite Element Model of a Canine Rib For Use With a Bone Remodeling Algorithm." DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/415.
Full textWalters, David Michael. "Design, Validation, and Optimization of a Rear Sub-frame with Electric Powertrain Integration." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437665533.
Full textProcházka, Vojtěch. "Výpočtová analýza oka ramene nápravy osobního automobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443750.
Full textMaranhão, César Miguel Ramos. "FEM analysis in machining and experimental validation." Master's thesis, Universidade de Aveiro, 2008. http://hdl.handle.net/10773/2460.
Full textA presente investigação contempla a simulação numérica e validação experimental de processos de maquinagem. O estudo consiste na simulação numérica da maquinagem de materiais de alto desempenho como a liga de alumínio 7075 e o aço inox AISI 316 com validação experimental. Diversas simulações e validações foram conduzidas de modo a cobrir uma gama de parâmetros de maquinagem. Forças de corte e de avanço, potência de maquinagem, máxima temperatura de corte e deformação plástica foram validadas com sucesso. Finalmente, foram modeladas outras grandezas nomeadamente tensões residuais no aço inoxidável. ABSTRACT: The present investigation contemplates numerical simulation and experimental validation of machining processes. The study consists in simulating the machining of high performance materials like aluminium alloy 7075 and stainless steel AISI 316 with experimental validation. Several simulations and validations were conducted in order to cover a wide range of machining parameters. Cutting and feed forces, cutting power, maximum cutting temperature and plastic strain were validated with success. Finally, residual stresses in stainless steel were also modelled.
Moravej, Maryam. "Développement et validation des matériaux métalliques pour stents cardiovasculaires biodégradables par dépôt électrolytique." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27897/27897.pdf.
Full textDegradable metallic coronary stents have emerged as possible alternatives for permanent stents fabricated from corrosion-resistant metals such as 316L stainless steel (316L SS). Pure iron has shown to be an interesting candidate for degradable stents in terms of mechanical properties, degradation and biocompatibility. This project is the first to investigate the feasibility of using electroforming process for production of iron for degradable stents where the material is used for a load-bearing application. In this project, firstly, an electroforming process was developed. The produced iron foils showed a fine microstructure and high yield and tensile strength were also obtained comparable to those of 316L SS. Annealing at 550˚C for 1h induced recrystallization in iron and improved its ductility from 8 to 18%. The investigation of the degradation of electroformed iron in Hank’s solution using potentiodynamic polarization, static immersion and dynamic degradation tests showed that it corrodes faster than Armco® iron previously investigated for degradable stents. The effect of current density as an electroforming parameter on the microstructure and thereby the degradation of iron was also studied. Electron backscatter diffraction (EBSD) showed that different microstructures including grain size and texture were produced at different current densities from 1-10 A dm-2. The highest degradation rate was obtained for iron fabricated at 5 A dm-2 since it possesses small grain size and equiaxed grains with random orientations providing more grain boundary volume can be held responsible for its faster degradation rate compared to the other iron samples. Finally, the electroforming process was successfully applied for the fabrication of iron tubes. Iron tubes were electroformed on Sn cylinders which were separated from them by melting after the process. The tubes were then used for the fabrication of iron stents by laser-cutting. Iron stents fabricated from electroformed tubes demonstrated an average grain size of 5 µm after annealing and acid-pickling. This grain size is finer than what usually obtained for 316L SS stents and could potentially provide high mechanical properties and targeted degradation for electroformed iron stents.
Caycho-Rodríguez, Tomás, José M. Tomás, Miguel Barboza-Palomino, José Ventura-León, Miguel Gallegos, Mario Reyes-Bossio, and Lindsey W. Vilca. "Assessment of Fear of COVID-19 in Older Adults: Validation of the Fear of COVID-19 Scale." Springer, 2021. http://hdl.handle.net/10757/655711.
Full textCabrera, Carlos Andres Cuenca. "Ductile failure prediction using phenomenological fracture model for steels: calibration, validation and application." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-27082018-075853/.
Full textA presente dissertação apresenta o processo de análise, calibração e aplicação das propriedades mecânicas, incluindo o comportamento elastoplástico e de dano, para o aço A285, utilizando o critério \"Stress modified criticai strain\" (SMCS). Para obter o comportamento mecânico do material, testes experimentais foram realizados com a implementação de 5 tipos diferentes de geometrias: barra cilíndrica sem entalhe, barra cilíndrica com entalhe (R = 1, 2, 3 mm) e corpos de prova SE(B) com trinca inicial profunda e rasa. Para o processo de calibração das propriedades mecânicas foram gerados modelos de elementos finitos, utilizando elementos sólidos 30 com 8 nós (C3D8), que representam de forma adequada a geometria e as propriedades dos corpos de prova testados. Para calibrar o comportamento elastoplástico e iniciação do dano, utilizou-se a resposta experimental e numérica obtida para as amostras de barra cilíndrica com e sem entalhe; e, para a calibração da evolução do dano, foram utilizadas as respostas obtidas para os espécimes SEB de trincas profundas e rasa. Este modelo calibrado foi capaz de recuperar as respostas experimentais dos corpos de prova SE(B), o que valida o uso do material caracterizado em uma estrutura complexa. Uma vez calibradas as propriedades mecânicas, foram obtidos os fatores do critério SMSC representados pela equação ....... , e, a condição de dano que é representada pelo deslocamento na falha .... e o fator de amolecimento exponencial .... . Depois, o material totalmente caracterizado foi aplicado em dois dutos que possuem trinca elíptica circunferencial inicial externa; sendo o primeiro tubo com trinca superficial e o segundo com trinca profunda. Finalmente, ambos os tubos foram submetidos a cargas de tensão para prever o comportamento do dano dúctil, obtendo a carga necessária para o início do crescimento da trinca e a evolução da falha.
Books on the topic "FEA validation"
Draft Guideline on Validation of Analytical Procedures for Pharmaceuticals (Fda Harmonisation). Interpharm Pr, 1994.
Find full textHaider, Syed Imtiaz. Pharmaceutical Master Validation Plan: The Ultimate Guide to FDA, GMP, and GLP Compliance. Informa Healthcare, 2001.
Find full textStokes, David. Testing Computers Systems for FDA/MHRA Compliance (Computer Systems Validation Life Cycle Activities). Informa Healthcare, 2003.
Find full textPharmaceutical Computer Validation Introduction Manual and CD, GMP (Good Manufacturing Practices) Training Introduction To Meet FDA Regulations in the ... on Computer System Validation and Part 11. UniversityOfHealthCare, 2003.
Find full textFarb, Daniel. Pharmaceutical Computer Validation Introduction 5 Users: GMP (Good Manufacturing Practices) Training Introduction to Meet FDA Regulations in the Use of ... on Computer System Validation and Part 11. UniversityOfHealthCare, 2005.
Find full textPart 11 and Computer Validation Manual and CD, The FDA Regulations on Part 11, Electronic Records and Electronic Signatures, For Pharmaceutical, Medical ... Emphasis on Computer System Validation a. UniversityOfHealthCare, 2003.
Find full textGuide to Inspections of Oral Solid Dosage Forms-Pre/Post Approval Issues for Development and Validation (Fda Inspection Guidelines). Interpharm Pr, 1994.
Find full textPIAE EUROPE 2021. VDI Verlag, 2021. http://dx.doi.org/10.51202/9783181023853.
Full textCelik, I. Experimental and Computational Aspects of Validation of Multiphase Flow Cfd Codes: Presented at the 1994 Asme Fluids Engineering Division Summer Meeti (Fed). American Society of Mechanical Engineers, 1994.
Find full textELIV 2019. VDI Verlag, 2019. http://dx.doi.org/10.51202/9783181023570.
Full textBook chapters on the topic "FEA validation"
Saouma, Victor, Alain Sellier, Stéphane Multon, and Yann Le Pape. "Benchmark Problems for AAR FEA Code Validation." In Diagnosis & Prognosis of AAR Affected Structures, 381–410. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44014-5_21.
Full textKelleher, Jordan E., Michael D. Hayward, and Paul J. Gloeckner. "Connecting Rod FEA Validation Using Digital Image Correlation." In Advancement of Optical Methods in Experimental Mechanics, Volume 3, 157–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22446-6_20.
Full textPatel, Jash H., Vinayak H. Khatawate, Gaurav Jain, and Param Shah. "Static Analysis of Tripod Housing Using FEA and Its Validation." In Proceedings of International Conference on Intelligent Manufacturing and Automation, 763–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4485-9_75.
Full textSonawane, Ishan, and A. Muthuraja. "FEA Validation of Experimental Results of First Ply Failure of Composite Structure." In Lecture Notes on Multidisciplinary Industrial Engineering, 947–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9072-3_79.
Full textMoorcroft, David M., and Joseph Pellettiere. "Impact of Numerical Model Verification and Validation Within FAA Certification." In Model Validation and Uncertainty Quantification, Volume 3, 249–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_26.
Full textBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky, and Lanju Zhang. "Process Design: Stage 1 of the FDA Process Validation Guidance." In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 115–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_3.
Full textBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky, and Lanju Zhang. "Process Qualification: Stage 2 of the FDA Process Validation Guidance." In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 155–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_4.
Full textStefania, Spada, Germanà Danila, Sessa Fabrizio, and Lidia Ghibaudo. "FCA Ergonomics Proactive Approach in Developing New Cars: Virtual Simulations and Physical Validation." In Advances in Intelligent Systems and Computing, 57–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41627-4_6.
Full textChen, Yixiong, Yang Yang, Zhanyao Lei, Mingyuan Xia, and Zhengwei Qi. "Bootstrapping Automated Testing for RESTful Web Services." In Fundamental Approaches to Software Engineering, 46–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_3.
Full textBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky, and Lanju Zhang. "GMP Monitoring and Continuous Process Verification: Stage 3 of the FDA Process Validation Guidance." In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 173–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_5.
Full textConference papers on the topic "FEA validation"
Marjani, Mehrsa, Moustafa El-Gindy, David Philipps, Fredrik Öijer, and Inge Johansson. "FEA Tire Modeling and Validation Techniques." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46514.
Full textDerradji-Aouat, Ahmed, Melanie Sarzynski, and Roger Cordes. "Iceberg Ice Constitutive Modeling and FEA Validation." In OTC Arctic Technology Conference. Offshore Technology Conference, 2015. http://dx.doi.org/10.4043/25590-ms.
Full textPike, Kelly, Z. C. Lin, and Alan Tahran. "SEM Validation Technique for FEA of Small Specimens." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38038.
Full textZhou, Lei, Quinn Leland, Earl Gregory, Wendell Brokaw, Louis Chow, Yeong-Ren Lin, Jared Bindl, et al. "Lumped Node Thermal Modeling of EMA with FEA Validation." In Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-1749.
Full textSalleh, Mohd Rizal, Qing Ping Yang, Peng Wei, and Barry Jones. "Experimental Validation of FEA Modeling of Touch Trigger Probes." In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007. IEEE, 2007. http://dx.doi.org/10.1109/imtc.2007.379096.
Full textZhao, Tianwen (Tina), Amy Martinez, and Hengchu Cao. "Experimental Validation of SAPIEN Transcatheter Heart Valve FEA Models." In ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fmd2013-16053.
Full textMarzola da Cunha, Luís Fernando, Matheus Lisboa Cardoch Valdes, Rhander Viana, Danilo dos Santos Oliveira, and Luiz Eduardo Rodrigues Vieira. "CHASSIS TORSIONAL RIGIDITY: VALIDATION OF FEA DATA BY EXPERIMENTAL TEST." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2174.
Full textTaylor, William, Joe Fuehne, Richard Lyon, Jaesu Kim, and J. K. Lee. "FEA Simulation and Experimental Validation of Catalytic Converter Structural Integrity." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0219.
Full textKoyama, Masato, Takahiro Mikami, and Yasutaka Fujimoto. "Validation of spiral motor parameters by FEA and experimental identification." In 2013 IEEE 22nd International Symposium on Industrial Electronics (ISIE). IEEE, 2013. http://dx.doi.org/10.1109/isie.2013.6563856.
Full textAbdennadher, I., R. Kessentini, and A. Masmoudi. "Analytical derivation and FEA validation of the inductances of CWPMM." In 2009 6th International Multi-Conference on Systems, Signals and Devices (SSD). IEEE, 2009. http://dx.doi.org/10.1109/ssd.2009.4956711.
Full textReports on the topic "FEA validation"
Park, Byoung, Richard Leavy, and John Henry Niederhaus. Penetration of rod projectiles in semi-infinite targets : a validation test for Eulerian X-FEM in ALEGRA. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1088058.
Full textPark, Byoung Y., R. B. Leavy, and John H. Niederhaus. Penetration of Rod Projectiles in Semi-Infinite Targets: A Validation Test for Eulerian X-FEM in Alegra. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada580847.
Full textNUMERICAL STUDY ON SHEAR BEHAVIOUR OF ENHANCED C-CHANNELS IN STEEL-UHPC-STEEL SANDWICH STRUCTURES. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.4.
Full text