Journal articles on the topic 'Fe₃Al'

To see the other types of publications on this topic, follow the link: Fe₃Al.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fe₃Al.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kostov, Ana, B. Friedrich, and D. Zivkovic. "Thermodynamic calculations in alloys Ti-Al, Ti-Fe, Al-Fe and Ti-Al-Fe." Journal of Mining and Metallurgy, Section B: Metallurgy 44, no. 1 (2008): 49–61. http://dx.doi.org/10.2298/jmmb0801049k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thermodynamic calculations of three binary Ti-based alloys: Ti-Al, Ti-Fe, and Al-Fe, as well as ternary alloy Ti-Al-Fe, is shown in this paper. Thermodynamic calculations involved thermodynamic determination of activities, coefficient of activities, partial and integral values for enthalpies and Gibbs energies of mixing and excess energies at different temperatures: 1873K, 2000K and 2073K, as well as calculated phase diagrams for the investigated binary and ternary systems. The FactSage is used for all thermodynamic calculations.
2

Novák, Pavel, and Kateřina Nová. "Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics." Materials 12, no. 11 (May 29, 2019): 1748. http://dx.doi.org/10.3390/ma12111748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Iron aluminides are still deeply investigated materials for their use in power plants, automotive and chemical industry, and other sectors. This paper shows that it is possible to strongly improve their oxidation behavior by the addition of silicon. The description of the synergic effect of aluminum and silicon on the oxidation behavior of Fe–Al–Si alloys at 800 °C in air is presented. The oxidation rate, microstructure, phase, and chemical composition of these ternary alloys are compared with the binary Fe–Al and Fe–Si alloys. Results showed that the oxidation of Fe–Al–Si ternary alloys provides an oxide layer based on aluminum oxide with a low concentration of iron and silicon. Below this oxide layer, there is a layer of silicides formed as a result of depletion by aluminum, which forms a secondary oxidation protection.
3

Rahman, S., and M. S. Borhan. "ELECTROLYSIS OF SWINE MANURE EFFLUENTS USING THREE DIFFERENT ELECTRODES Fe-Fe, Al-Al AND Fe-Al." American Journal of Agricultural and Biological Sciences 9, no. 4 (April 1, 2014): 490–502. http://dx.doi.org/10.3844/ajabssp.2014.490.502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Zhenhua, Xiangyang Jiang, Yun Wang, Duosan Zhou, Chongliang Qian, Peiyun Huang, Jueming Xiao, and Lijun Wu. "Multicomponent AlCuFeMn, AlCuFeCr and AlCuFeCrMn quasicrystals." Scripta Metallurgica et Materialia 26, no. 2 (January 1992): 291–96. http://dx.doi.org/10.1016/0956-716x(92)90189-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

WOLSKA, E., W. SZAJDA, and P. PISZORA. "Mechanism of Al- for Fe-substitution during the α-(Fe, Al) OOH→ γ-(Fe, Al)2O3 transformation." Solid State Ionics 70-71 (May 1994): 537–41. http://dx.doi.org/10.1016/0167-2738(94)90368-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schröer, Wolfgang, Christian Hartig, and Heinrich Mecking. "Plasticity of DO3-ordered Fe - Al and Fe - Al - Si Single-erystals / Plastizität von DO 3 -geordneten Fe — Al- und Fe - Al - Si-Einkristallen." International Journal of Materials Research 84, no. 5 (May 1, 1993): 294–300. http://dx.doi.org/10.1515/ijmr-1993-840502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Restorff, J. B., M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu. "Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys." Journal of Applied Physics 111, no. 2 (January 15, 2012): 023905. http://dx.doi.org/10.1063/1.3674318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsubakino, Harushige, Atsushi Yamamoto, Takeshi Kato, and Akira Suehiro. "Precipitation in Deformed Al-Fe and Al-Fe-Si Dilute Alloys." Materials Science Forum 331-337 (May 2000): 951–56. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Süle, P., D. Kaptás, L. Bujdosó, Z. E. Horváth, A. Nakanishi, and J. Balogh. "Chemical mixing at “Al on Fe” and “Fe on Al” interfaces." Journal of Applied Physics 118, no. 13 (October 7, 2015): 135305. http://dx.doi.org/10.1063/1.4932521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palm, M., and R. Krieg. "Neutral salt spray tests on Fe–Al and Fe–Al–X." Corrosion Science 64 (November 2012): 74–81. http://dx.doi.org/10.1016/j.corsci.2012.07.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ivasyshyn, О. М., D. H. Savvakin, V. А. Dekhtyarenko, and О. О. Stasyuk. "Interaction of Ті–Al–V–Fe, Al–V–Fe, and Ті–Al–Mo–Fe Powder Master Alloys with Hydrogen." Materials Science 54, no. 2 (September 2018): 266–72. http://dx.doi.org/10.1007/s11003-018-0182-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sukhova, O. V., V. A. Polonskyy, K. V. Ustinova, and M. V. Berun. "Corrosion behaviour of quasicrystal Al – Cu – Fe and Al – Ni – Fe alloys in acidic solutions." Metaloznavstvo ta obrobka metalìv 88, no. 4 (December 20, 2018): 19–26. http://dx.doi.org/10.15407/mom2018.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

CHEN, Hai-lin, Qing CHEN, Yong DU, Johan BRATBERG, and Anders ENGSTRÖM. "Update of Al-Fe-Si, Al-Mn-Si and Al-Fe-Mn-Si thermodynamic descriptions." Transactions of Nonferrous Metals Society of China 24, no. 7 (July 2014): 2041–53. http://dx.doi.org/10.1016/s1003-6326(14)63310-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Maár-Kishonthy, E., T. Tchurbakova, I. Nagyváthy, and Ágnes Cziráki. "Effect of Al-Fe and Al-Fe-Si Phases on the Porosity of Al Foils." Key Engineering Materials 44-45 (January 1991): 211–18. http://dx.doi.org/10.4028/www.scientific.net/kem.44-45.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grieb, Bernd, and Ernst-Theo Henig. "The Ternary Al - Fe - Nd System / Das ternäre System Al-Fe-Nd." International Journal of Materials Research 82, no. 7 (July 1, 1991): 560–67. http://dx.doi.org/10.1515/ijmr-1991-820709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lendvai, Janos. "The Structure of DC Cast Al-Fe and Al-Fe-Si Alloys." Materials Science Forum 13-14 (January 1987): 101–20. http://dx.doi.org/10.4028/www.scientific.net/msf.13-14.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Grabke, H. J., M. Siegers, and V. K. Tolpygo. "Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals." Zeitschrift für Naturforschung A 50, no. 2-3 (March 1, 1995): 217–27. http://dx.doi.org/10.1515/zna-1995-2-314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides.Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher.All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.
18

Srinivas, V., M. E. McHenry, and R. A. Dunlap. "Magnetic properties of icosahedral Al-Mo-Fe and Al-Ta-Fe alloys." Physical Review B 40, no. 14 (November 15, 1989): 9590–94. http://dx.doi.org/10.1103/physrevb.40.9590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gedsun, A., S. Antonov, T. S. Prithiv, and M. Palm. "Precipitate formation in the Fe-Al-Nb and Fe-Al-Ta systems." Scripta Materialia 226 (March 2023): 115220. http://dx.doi.org/10.1016/j.scriptamat.2022.115220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Niu, X. P., L. Froyen, L. Delaey, and C. Peytour. "Fretting wear of mechanically alloyed AlFe and AlFeMn alloys." Wear 193, no. 1 (April 1996): 78–90. http://dx.doi.org/10.1016/0043-1648(95)06683-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bizjak, M., and L. Kosec. "Phase Transformations of Al-Fe and Al-Fe-Zr Rapidly Solidified Alloys." International Journal of Materials Research 91, no. 2 (February 1, 2000): 160–64. http://dx.doi.org/10.1515/ijmr-2000-910207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Arakcheeva, A. V. "Fragmentary analysis of crystal structures of the Al, Ca-ferrite phase (Fe, Ca)4(Fe, Al)2CaFe(Al, Fe)2O14." Journal of Structural Chemistry 35, no. 5 (September 1994): 647–57. http://dx.doi.org/10.1007/bf02578334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhenhua, Chen, Tao Zhang, Akihisa Inoue, and Tsuyoshi Masumoto. "Constitution and formation Characteristics of Al-Cu-Fe-Mg, Al-Cu-Fe-Zn and Al-Cu-Fe-Zn-Mg quasicrystals." Scripta Metallurgica et Materialia 27, no. 6 (September 1992): 717–22. http://dx.doi.org/10.1016/0956-716x(92)90494-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mota, M. A., A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram. "Fe–Al–Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb–(Fe, Al, Nb)ss eutectic system." Journal of Alloys and Compounds 399, no. 1-2 (August 2005): 196–201. http://dx.doi.org/10.1016/j.jallcom.2005.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Anglezio, J. C., C. Servant, and I. Ansara. "Contribution to the experimental and thermodynamic assessment of the AlCaFeSi system—I. AlCaFe, AlCaSi, AlFeSi and CaFeSi systems." Calphad 18, no. 3 (July 1994): 273–309. http://dx.doi.org/10.1016/0364-5916(94)90034-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cullen, J. R., A. E. Clark, M. Wun-Fogle, J. B. Restorff, and T. A. Lograsso. "Magnetoelasticity of Fe–Ga and Fe–Al alloys." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 948–49. http://dx.doi.org/10.1016/s0304-8853(00)00612-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Noro, M., N. Tanaka, and K. Mihama. "Growth of Al-Mn, Al-Cu-Fe and Al-Fe quasicrystalline films prepared by vacuum deposition." Journal of Crystal Growth 99, no. 1-4 (January 1990): 597–600. http://dx.doi.org/10.1016/0022-0248(90)90590-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Saporiti, F., M. Boudard, and F. Audebert. "Short range order in Al–Fe–Nb, Al–Fe–Ce and Al–Ni–Ce metallic glasses." Journal of Alloys and Compounds 495, no. 2 (April 2010): 309–12. http://dx.doi.org/10.1016/j.jallcom.2009.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ma, Yanjun, and Edward A. Stern. "Fe and Mn sites in noncrystallographic alloy phases of Al-Mn-Fe and Al-Mn-Fe-Si." Physical Review B 35, no. 6 (February 15, 1987): 2678–81. http://dx.doi.org/10.1103/physrevb.35.2678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Griger, A., A. Lendvai, Vilmos Stefániay, and T. Turmezey. "On the Phase Diagrams of the Al-Fe and Al-Fe-Si Systems." Materials Science Forum 13-14 (January 1987): 331–36. http://dx.doi.org/10.4028/www.scientific.net/msf.13-14.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Choi, Yong, and Sun Ig Hong. "Mechanical and Electrical Properties of Al–Fe–Cr and Al–Fe–Zr Alloys." Science of Advanced Materials 10, no. 4 (April 1, 2017): 480–83. http://dx.doi.org/10.1166/sam.2018.3047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Prudêncio, L. M., I. D. Nogueira, J. C. Waerenborgh, A. P. Gonçalves, O. Conde, and R. C. da Silva. "Formation of Al–Fe surface alloys by ion implantation of Fe in Al." Surface and Coatings Technology 158-159 (September 2002): 339–42. http://dx.doi.org/10.1016/s0257-8972(02)00274-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Ping, and G. L. Dunlop. "Crystallographic orientation relationships for Al-Fe and Al-Fe-Si precipitates in aluminium." Acta Metallurgica 36, no. 6 (June 1988): 1481–89. http://dx.doi.org/10.1016/0001-6160(88)90215-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Muroás, L., S. Nagy, Z. Homonnay, A. Vértes, and J. Lakner. "Mössbauer investigation of Al-Fe and Al-Fe-Si intermetallic phases in aluminium." Hyperfine Interactions 28, no. 1-4 (February 1986): 967–70. http://dx.doi.org/10.1007/bf02061605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kansy, Jerzy, Aneta Hanc, Lucjan Paja��k, and Dawid Giebel. "PALS study of point defects in Fe-Al and Fe-Al-Cr alloys." physica status solidi (c) 6, no. 11 (November 2009): 2326–28. http://dx.doi.org/10.1002/pssc.200982107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

García Cordovilla, C., and Enrique Louis. "Recrystallization in Supersaturated Al-Fe, Al-Si and Al-Fe-Si Alloys: A Differential Scanning Calorimetry Study." Materials Science Forum 13-14 (January 1987): 337–42. http://dx.doi.org/10.4028/www.scientific.net/msf.13-14.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Srivastava, A. K., and S. Ranganathan. "Microstructural characterization of rapidly solidified Al–Fe–Si, Al–V–Si, and Al–Fe–V–Si alloys." Journal of Materials Research 16, no. 7 (July 2001): 2103–17. http://dx.doi.org/10.1557/jmr.2001.0287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present study of rapidly solidified melt-spun Al80Fe14Si6 Al80V14Si6, and Al80Fe10V4Si6 alloys by electron microscopy techniques, x-ray diffractometry, and differential scanning calorimetry leads to a number of microstructural results. Coexistence of a micro-quasicrystalline state of an icosahedral phase with monoclinic θ–Al13Fe4 and hexagonal β–Al6V in Al–Fe–Si and Al–V–Si alloys, respectively, is reported. Also, the growth morphology of the icosahedral phase surrounded by a crystalline ring was investigated in an Al–Fe–V–Si alloy. The crystalline ring has the particles of the cubic α–Al12(Fe,V)3Si silicide phase. Evidence of irrational twinning of cubic crystals, giving rise to a symmetry not deviating much from icosahedral symmetry was found in this alloy. In all the three alloys crystalline intermetallics were elucidated in the context of rational approximants of an icosahedral quasicrystal. It was noticed that while the icosahedral phase in Al–Fe–Si and Al–V–Si alloys transforms to crystalline intermetallics at about the same temperature (approximately 610 K), the transformation of icosahedral phase in Al–Fe–V–Si alloy occurred at a relatively lower temperature (540 K). The origin of different metastable microstructures and their stability at elevated temperatures, in these alloys, are compared and discussed.
38

Jeng, Y. L., E. J. Lavernia, R. M. Hayes, and J. Wolfenstine. "Creep behavior of Al-rich FeAl intermetallics." Materials Science and Engineering: A 192-193 (February 1995): 240–48. http://dx.doi.org/10.1016/0921-5093(94)03255-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Huan, Jianqiang Zhang, and David J. Young. "Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800°C." Corrosion Science 54 (January 2012): 127–38. http://dx.doi.org/10.1016/j.corsci.2011.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kang, Minjung, Cheolhee Kim, Junki Kim, Dongcheol Kim, and Jonghoon Kim. "Corrosion Assessment of Al/Fe Dissimilar Metal Joint." Journal of Welding and Joining 32, no. 4 (August 31, 2014): 55–62. http://dx.doi.org/10.5781/jwj.2014.32.4.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Weinhagen, M., B. Köhler, J. Wolff, and Theodor Hehenkamp. "Interdiffusion in Fe-Al Alloys." Defect and Diffusion Forum 143-147 (January 1997): 449–54. http://dx.doi.org/10.4028/www.scientific.net/ddf.143-147.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Harmelin, Mireille. "Al-Cu-Fe System report." MSI Eureka 90 (1990): 10.34542.2.33. http://dx.doi.org/10.7121/msi-eureka-10.34542.2.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Eggleton, Richard A. "Noncrystalline Fe-Si-Al-Oxyhydroxides." Clays and Clay Minerals 35, no. 1 (1987): 29–37. http://dx.doi.org/10.1346/ccmn.1987.0350104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sudhakar Rao, G. V., A. K. Bhatnagar, and F. S. Razavi. "Investigation of Fe/Al multilayers." Journal of Magnetism and Magnetic Materials 247, no. 2 (June 2002): 159–70. http://dx.doi.org/10.1016/s0304-8853(02)00058-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Skjerpe, P. "Structure of Al m Fe." Acta Crystallographica Section B Structural Science 44, no. 5 (October 1, 1988): 480–86. http://dx.doi.org/10.1107/s0108768188005245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sepiol, B., W. Löser, M. Kaisermayr, R. Weinkamer, Peter Fratzl, H. Thiess, M. Sladecek, and G. Vogl. "Microscopic Diffusion Mechanisms in Fe-Al, Ni-Ga and (Ni Fe)-Al B2 Phases." Defect and Diffusion Forum 194-199 (April 2001): 349–56. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

YAMADA, Hajime, and Takio TANAKA. "Effects of primary inclusions on recrystallization of Al-Fe and Al-Fe-Si alloys." Journal of Japan Institute of Light Metals 36, no. 3 (1986): 132–36. http://dx.doi.org/10.2464/jilm.36.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Griger, Á., and V. Stefániay. "Equilibrium and non-equilibrium intermetallic phases in Al-Fe and Al-Fe-Si Alloys." Journal of Materials Science 31, no. 24 (December 1996): 6645–52. http://dx.doi.org/10.1007/bf00356274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sourani, F., M. H. Enayati, X. Zhou, S. Wang, and A. H. W. Ngan. "Nanoindentation behavior of nanostructured bulk (Fe,Cr)Al and (Fe,Cr)Al-Al2O3 nanocomposites." Journal of Alloys and Compounds 792 (July 2019): 348–56. http://dx.doi.org/10.1016/j.jallcom.2019.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pavlyuchkov, D., S. Balanetskyy, W. Kowalski, M. Surowiec, and B. Grushko. "Stable decagonal quasicrystals in the Al-Fe-Cr and Al-Fe-Mn alloy systems." Journal of Alloys and Compounds 477, no. 1-2 (May 2009): L41—L44. http://dx.doi.org/10.1016/j.jallcom.2008.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography