Journal articles on the topic 'Faults of rotating machines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Faults of rotating machines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mogal, S. P., and D. I. Lalwani. "A Brief Review on Fault Diagnosis of Rotating Machineries." Applied Mechanics and Materials 541-542 (March 2014): 635–40. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.635.
Full textSinha, Jyoti K. "Quantification of Faults in Rotating Machines." Noise & Vibration Worldwide 38, no. 9 (October 2007): 20–29. http://dx.doi.org/10.1260/095745607782689836.
Full textKovaleski, J. L., A. A. Susin, M. Negreiros, and R. F. M. Marcal. "Detecting faults in rotating machines." IEEE Instrumentation & Measurement Magazine 3, no. 4 (2000): 24–26. http://dx.doi.org/10.1109/5289.887456.
Full textEspinoza-Sepulveda, Natalia, and Jyoti Sinha. "Mathematical Validation of Experimentally Optimised Parameters Used in a Vibration-Based Machine-Learning Model for Fault Diagnosis in Rotating Machines." Machines 9, no. 8 (August 7, 2021): 155. http://dx.doi.org/10.3390/machines9080155.
Full textAltaf, S., M. S. Mehmood, and M. W. Soomro. "Advancement of Fault Diagnosis and Detection Process in Industrial Machine Environment." Journal of Engineering Sciences 6, no. 2 (2019): d1—d8. http://dx.doi.org/10.21272/jes.2019.6(2).d1.
Full textWalker, Ryan, Sureshkumar Perinpanayagam, and Ian K. Jennions. "Rotordynamic Faults: Recent Advances in Diagnosis and Prognosis." International Journal of Rotating Machinery 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/856865.
Full textTvorić, Stjepan, Miroslav Petrinić, Ante Elez, and Mario Brčić. "STATIC ECCENTRICITY FAULT DETECTION METHOD FOR ELECTRICAL ROTATING MACHINES BASED ON THE MAGNETIC FIELD ANALYSIS IN THE AIR GAP BY MEASURING COILS." Journal of Energy - Energija 69, no. 4 (December 30, 2020): 3–7. http://dx.doi.org/10.37798/202069451.
Full textJiang, Xiaomo, Fumin Wang, Haixin Zhao, Shengli Xu, and Lin Lin. "Novel Orbit-based CNN Model for Automatic Fault Identification of Rotating Machines." Annual Conference of the PHM Society 12, no. 1 (November 3, 2020): 7. http://dx.doi.org/10.36001/phmconf.2020.v12i1.1147.
Full textLuwei, Kenisuomo C., Akilu Yunusa-Kaltungo, and Yusuf A. Sha’aban. "Integrated Fault Detection Framework for Classifying Rotating Machine Faults Using Frequency Domain Data Fusion and Artificial Neural Networks." Machines 6, no. 4 (November 20, 2018): 59. http://dx.doi.org/10.3390/machines6040059.
Full textYunusa-kaltungo, Akilu, and Jyoti K. Sinha. "Effective vibration-based condition monitoring (eVCM) of rotating machines." Journal of Quality in Maintenance Engineering 23, no. 3 (August 14, 2017): 279–96. http://dx.doi.org/10.1108/jqme-08-2016-0036.
Full textZhou, Juan Li. "Intellectual Gear Fault Detection Based on Wavelet Time-Frequency Analysis." Applied Mechanics and Materials 373-375 (August 2013): 762–69. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.762.
Full textCao, Ruifeng, and Akilu Yunusa-Kaltungo. "An Automated Data Fusion-Based Gear Faults Classification Framework in Rotating Machines." Sensors 21, no. 9 (April 23, 2021): 2957. http://dx.doi.org/10.3390/s21092957.
Full textFriswell, Michael I., and Yong Yong He. "Smart Rotating Machines for Condition Monitoring." Key Engineering Materials 413-414 (June 2009): 423–30. http://dx.doi.org/10.4028/www.scientific.net/kem.413-414.423.
Full textPatel, R. K., and V. K. Giri. "Condition monitoring of induction motor bearing based on bearing damage index." Archives of Electrical Engineering 66, no. 1 (March 1, 2017): 105–19. http://dx.doi.org/10.1515/aee-2017-0008.
Full textZuber, Ninoslav, Dragan Cvetkovic, and Rusmir Bajrić. "Multiple Fault Identification Using Vibration Signal Analysis and Artificial Intelligence Methods." Applied Mechanics and Materials 430 (September 2013): 63–69. http://dx.doi.org/10.4028/www.scientific.net/amm.430.63.
Full textDineva, Adrienn, Amir Mosavi, Mate Gyimesi, Istvan Vajda, Narjes Nabipour, and Timon Rabczuk. "Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification." Applied Sciences 9, no. 23 (November 25, 2019): 5086. http://dx.doi.org/10.3390/app9235086.
Full textSaimurugan, M., and R. Ramprasad. "A dual sensor signal fusion approach for detection of faults in rotating machines." Journal of Vibration and Control 24, no. 12 (February 1, 2017): 2621–30. http://dx.doi.org/10.1177/1077546316689644.
Full textWong, Pak Kin, Jian-Hua Zhong, Zhi-Xin Yang, and Chi Man Vong. "A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 6 (November 14, 2016): 1146–61. http://dx.doi.org/10.1177/0954406216632022.
Full textKhan, Asif, Hyunho Hwang, and Heung Soo Kim. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines." Mathematics 9, no. 18 (September 21, 2021): 2336. http://dx.doi.org/10.3390/math9182336.
Full textLi, Ke, Peng Chen, and Hao Sun. "Intelligent Diagnosis Method for Rotating Machinery Using Ant Colony Optimization." Advanced Materials Research 518-523 (May 2012): 3814–19. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.3814.
Full textMishra, Nikhita, Ipshitta Chaturvedi, and Janhvi Mehta. "Semiconductor Bearing Fault Recognition." International Journal of Engineering and Advanced Technology 11, no. 1 (October 30, 2021): 21–26. http://dx.doi.org/10.35940/ijeat.f3090.1011121.
Full textGu, Yi, Jiawei Cao, Xin Song, and Jian Yao. "A Denoising Autoencoder-Based Bearing Fault Diagnosis System for Time-Domain Vibration Signals." Wireless Communications and Mobile Computing 2021 (May 14, 2021): 1–7. http://dx.doi.org/10.1155/2021/9790053.
Full textMahfoud, Jarir, and Claire Breneur. "Experimental identification of multiple faults in rotating machines." Smart Structures and Systems 4, no. 4 (July 25, 2008): 429–38. http://dx.doi.org/10.12989/sss.2008.4.4.429.
Full textNgolah, Cyprian F., Ed Morden, and Yingxu Wang. "Intelligent Fault Recognition and Diagnosis for Rotating Machines using Neural Networks." International Journal of Software Science and Computational Intelligence 3, no. 4 (October 2011): 67–83. http://dx.doi.org/10.4018/jssci.2011100105.
Full textYao, Zheng, and Qing Xin Zhao. "A Neuron-Fuzzy Technique for Fault Diagnosis in Rotating Machinery." Advanced Materials Research 204-210 (February 2011): 2188–91. http://dx.doi.org/10.4028/www.scientific.net/amr.204-210.2188.
Full textYunusa-Kaltungo, Akilu, and Ruifeng Cao. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults." Energies 13, no. 6 (March 17, 2020): 1394. http://dx.doi.org/10.3390/en13061394.
Full textHolguín-Londoño, Mauricio, Oscar Cardona-Morales, Edgar F. Sierra-Alonso, Juan D. Mejia-Henao, Álvaro Orozco-Gutiérrez, and German Castellanos-Dominguez. "Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis." Mathematical Problems in Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/7906834.
Full textChen, Chih-Hao, Rong-Juin Shyu, and Chih-Kao Ma. "A New Fault Diagnosis Method of Rotating Machinery." Shock and Vibration 15, no. 6 (2008): 585–98. http://dx.doi.org/10.1155/2008/203621.
Full textTang, Shengnan, Shouqi Yuan, and Yong Zhu. "Cyclostationary Analysis towards Fault Diagnosis of Rotating Machinery." Processes 8, no. 10 (September 28, 2020): 1217. http://dx.doi.org/10.3390/pr8101217.
Full textPennacchi, P., and A. Vania. "Diagnosis and Model Based Identification of a Coupling Misalignment." Shock and Vibration 12, no. 4 (2005): 293–308. http://dx.doi.org/10.1155/2005/607319.
Full textNiu, Wei, Guo Qing Wang, Zheng Jun Zhai, and Juan Cheng. "Fault Classification Model of Rotor Based on Support Vector Machine." Applied Mechanics and Materials 66-68 (July 2011): 1982–87. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1982.
Full textMalla, Chandrabhanu, Ankur Rai, Vaishali Kaul, and Isham Panigrahi. "Rolling element bearing fault detection based on the complex Morlet wavelet transform and performance evaluation using artificial neural network and support vector machine." Noise & Vibration Worldwide 50, no. 9-11 (October 2019): 313–27. http://dx.doi.org/10.1177/0957456519883280.
Full textHe, Wangpeng, Yin Ding, Yanyang Zi, and Ivan W. Selesnick. "Sparsity-based algorithm for detecting faults in rotating machines." Mechanical Systems and Signal Processing 72-73 (May 2016): 46–64. http://dx.doi.org/10.1016/j.ymssp.2015.11.027.
Full textZhang, Chao, and De Qing Liu. "Research on Rotating Machinery Vibration Fault Based on Support Vector Machine." Advanced Materials Research 139-141 (October 2010): 2603–7. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.2603.
Full textZhang, Dingcheng, Dejie Yu, and Xing Li. "Optimal resonance-based signal sparse decomposition and its application to fault diagnosis of rotating machinery." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 24 (November 26, 2016): 4670–83. http://dx.doi.org/10.1177/0954406216671542.
Full textNahvi, H., and M. Esfahanian. "Fault identification in rotating machinery using artificial neural networks." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219, no. 2 (February 1, 2005): 141–58. http://dx.doi.org/10.1243/095440605x8469.
Full textGuo, Liang, Yingqi Huang, Hongli Gao, and Li Zhang. "Ball Screw Fault Detection and Location Based on Outlier and Instantaneous Rotational Frequency Estimation." Shock and Vibration 2019 (July 10, 2019): 1–12. http://dx.doi.org/10.1155/2019/7497363.
Full textLi, Yongbo, Xianzhi Wang, Shubin Si, and Xiaoqiang Du. "A New Intelligent Fault Diagnosis Method of Rotating Machinery under Varying-Speed Conditions Using Infrared Thermography." Complexity 2019 (August 19, 2019): 1–12. http://dx.doi.org/10.1155/2019/2619252.
Full textLuo, Dong Song, and Zheng Fan. "Wavelet Algorithm in Rotating Machinery Fault Feature Extraction." Advanced Materials Research 823 (October 2013): 451–55. http://dx.doi.org/10.4028/www.scientific.net/amr.823.451.
Full textWang, Hua Qing, Yong Wei Guo, Jian Feng Yang, Liu Yang Song, Jia Pan, Peng Chen, and Hong Fang Yuan. "Fault Diagnosis Based on Acoustic Emission Signal for Low Speed Rolling Element Bearing." Advanced Materials Research 199-200 (February 2011): 1020–23. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.1020.
Full textSepulveda, Natalia Espinoza, and Jyoti Sinha. "Parameter Optimisation in the Vibration-Based Machine Learning Model for Accurate and Reliable Faults Diagnosis in Rotating Machines." Machines 8, no. 4 (October 23, 2020): 66. http://dx.doi.org/10.3390/machines8040066.
Full textBachschmid, N., P. Pennacchi, A. Vania, G. A. Zanetta, and L. Gregori. "Identification of Rub and Unbalance in 320 MW Turbogenerators." International Journal of Rotating Machinery 9, no. 2 (2003): 97–112. http://dx.doi.org/10.1155/s1023621x03000095.
Full textEspinoza Sepulveda, Natalia, and Jyoti Sinha. "Comparison of machine learning models based on time domain and frequency domain features for faults diagnosis in rotating machines." MATEC Web of Conferences 211 (2018): 17009. http://dx.doi.org/10.1051/matecconf/201821117009.
Full textCheng, Junsheng, Dejie Yu, Jiashi Tang, and Yu Yang. "Application of SVM and SVD Technique Based on EMD to the Fault Diagnosis of the Rotating Machinery." Shock and Vibration 16, no. 1 (2009): 89–98. http://dx.doi.org/10.1155/2009/519502.
Full textYu, Rui, Rui Xiang, and Shi Wei Yao. "Extreme Learning Machine for Fault Diagnosis of Rotating Machinery." Advanced Materials Research 960-961 (June 2014): 1400–1403. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.1400.
Full textBachschmid, N., P. Pennacchi, A. Vania, G. A. Zanetta, and L. Gregori. "Identification of Rub and Unbalance in 320-MW Turbogenerators." International Journal of Rotating Machinery 10, no. 4 (2004): 265–81. http://dx.doi.org/10.1155/s1023621x04000284.
Full textLi, Meng, Yanxue Wang, and Chuyuan Wei. "Intelligent Fault Diagnosis of Machines Based on Adaptive Transfer Density Peaks Search Clustering." Shock and Vibration 2021 (April 7, 2021): 1–11. http://dx.doi.org/10.1155/2021/9936080.
Full textWang, Yu Rong, and Tian Xing Wu. "Vibration Signal Extraction of Rotating Machines Based on the Analysis of Degree of Cylcostationary." Advanced Materials Research 546-547 (July 2012): 188–93. http://dx.doi.org/10.4028/www.scientific.net/amr.546-547.188.
Full textGarcia-Perez, Arturo, Rene J. Romero-Troncoso, Eduardo Cabal-Yepez, Roque A. Osornio-Rios, and Jose A. Lucio-Martinez. "Application of high-resolution spectral analysis for identifying faults in induction motors by means of sound." Journal of Vibration and Control 18, no. 11 (October 18, 2011): 1585–94. http://dx.doi.org/10.1177/1077546311422925.
Full textElnady, M., J. Sinha, and S. Oyadiji. "FAULTS DIAGNOSIS USING ON-SHAFT VIBRATION MEASUREMENT IN ROTATING MACHINES." International Conference on Applied Mechanics and Mechanical Engineering 15, no. 15 (May 1, 2012): 1–19. http://dx.doi.org/10.21608/amme.2012.36923.
Full text