Academic literature on the topic 'Fatty acid �-oxidation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fatty acid �-oxidation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fatty acid �-oxidation"
Hardwick, James P., Douglas Osei-Hyiaman, Homer Wiland, Mohamed A. Abdelmegeed, and Byoung-Joon Song. "PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease." PPAR Research 2009 (2009): 1–20. http://dx.doi.org/10.1155/2009/952734.
Full textOnibi, G. E., J. R. Scaife, V. R. Fowler, and I. Murray. "Influence of Dietary Fatty Acid and α-Tocopherol Supply on Tissue Fatty Acid Profiles, α-Tocopherol Content and Lipid Oxidation in Pigs." Proceedings of the British Society of Animal Science 1996 (March 1996): 147. http://dx.doi.org/10.1017/s0308229600031147.
Full textSidossis, Labros S. "The Role of Glucose in the Regulation of Substrate Interaction During Exercise." Canadian Journal of Applied Physiology 23, no. 6 (December 1, 1998): 558–69. http://dx.doi.org/10.1139/h98-031.
Full textSchönfeld, Peter, and Georg Reiser. "Why does Brain Metabolism not Favor Burning of Fatty Acids to Provide Energy? - Reflections on Disadvantages of the Use of Free Fatty Acids as Fuel for Brain." Journal of Cerebral Blood Flow & Metabolism 33, no. 10 (August 7, 2013): 1493–99. http://dx.doi.org/10.1038/jcbfm.2013.128.
Full textLopaschuk, Gary D., John R. Ussher, Clifford D. L. Folmes, Jagdip S. Jaswal, and William C. Stanley. "Myocardial Fatty Acid Metabolism in Health and Disease." Physiological Reviews 90, no. 1 (January 2010): 207–58. http://dx.doi.org/10.1152/physrev.00015.2009.
Full textRinaldo, Piero, Dietrich Matern, and Michael J. Bennett. "Fatty Acid Oxidation Disorders." Annual Review of Physiology 64, no. 1 (March 2002): 477–502. http://dx.doi.org/10.1146/annurev.physiol.64.082201.154705.
Full textDöbeln, U. von. "Fatty acid oxidation defects." Acta Paediatrica 82, s390 (August 1993): 88–90. http://dx.doi.org/10.1111/j.1651-2227.1993.tb12888.x.
Full textMerritt II, J. Lawrence, Marie Norris, and Shibani Kanungo. "Fatty acid oxidation disorders." Annals of Translational Medicine 6, no. 24 (December 2018): 473. http://dx.doi.org/10.21037/atm.2018.10.57.
Full textLepine, Allan J., Malcolm Watford, R. Dean BOYD, Deborah A. Ross, and Dana M. Whitehead. "Relationship between hepatic fatty acid oxidation and gluconeogenesis in the fasting neonatal pig." British Journal of Nutrition 70, no. 1 (July 1993): 81–91. http://dx.doi.org/10.1079/bjn19930106.
Full textBonen, Arend, Xiao-Xia Han, Daphna D. J. Habets, Maria Febbraio, Jan F. C. Glatz, and Joost J. F. P. Luiken. "A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism." American Journal of Physiology-Endocrinology and Metabolism 292, no. 6 (June 2007): E1740—E1749. http://dx.doi.org/10.1152/ajpendo.00579.2006.
Full textDissertations / Theses on the topic "Fatty acid �-oxidation"
Eaton, Simon. "Regulation of fatty acid #beta#-oxidation." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311443.
Full textSpurway, Tracy Deborah. "Control of hepatic fatty acid oxidation." Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283671.
Full textJackson, Sandra. "Enzymes of mitochondrial fatty acid oxidation." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283069.
Full textSmith, Simon. "Polyunsaturated fatty acid oxidation in Alzheimer’s disease." Thesis, Aston University, 2011. http://publications.aston.ac.uk/16499/.
Full textRocha, Hugo Daniel Carvalho de Azevedo. "Mitochondrial dysfunction in fatty acid β-oxidation disorders." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14297.
Full textMitochondria are central organelles for cell survival with particular relevance in energy production and signalling, being mitochondrial fatty acid β–oxidation (FAO) one of the metabolic pathways harboured in this organelle. FAO disorders (FAOD) are among the most well studied inborn errors of metabolism, mainly due to their impact in health. Nevertheless, some questions remain unsolved, as their prevalence in certain European regions and how pathophysiological determinants combine towards the phenotype. Analysis of data from newborn screening programs from Portugal and Spain allowed the estimation of the birth prevalence of FAOD revealing that this group of disorders presents in Iberia (and particularly in Portugal) one of the highest European birth prevalence, mainly due to the high birth prevalence of medium chain acyl-CoA dehydrogenase deficiency. These results highlight the impact of this group of genetic disorders in this European region. The characterization of mitochondrial proteome, from patients fibroblasts with FAOD, namely multiple acyl-CoA dehydrogenase deficiency (MADD) and long chain acyl-CoA dehydrogenase deficiency (LCHADD), provided a global perspective of the mitochondrial proteome plasticity in these disorders and highlights the main molecular pathways involved in their pathogenesis. Severe MADD forms show an overexpression of chaperones, antioxidant enzymes (MnSOD), and apoptotic proteins. An overexpression of glycolytic enzymes, which reflects cellular adaptation to energy deficiency due to FAO blockage, was also observed. When LCHADD fibroblasts were analysed a metabolic switching to glycolysis was also observed with overexpression of apoptotic proteins and modulation of the antioxidant defence system. Severe LCHADD present increased ROS alongside with up regulation of MnSOD while moderate forms have lower ROS and down-regulation of MnSOD. This probably reflects the role of MnSOD in buffering cellular ROS, maintain them at levels that allow cells to avoid damage and start a cellular response towards survival. When ROS levels are very high cells have to overexpress MnSOD for detoxifying proposes. When severe forms of MADD were compared to moderate forms no major differences were noticed, most probably because ROS levels in moderate MADD are high enough to trigger a response similar to that observed in severe forms. Our data highlights, for the first time, the differences in the modulation of antioxidant defence among FAOD spectrum. Overall, the data reveals the main pathways modulated in FAOD and the importance of ROS levels and antioxidant defence system modulation for disease severity. These results highlight the complex interaction between phenotypic determinants in FAOD that include genetic, epigenetic and environmental factors. The development of future better treatment approaches is dependent on the knowledge on how all these determinants interact towards phenotype.!
A mitocôndria desempenha um papel fundamental na regulação de vários processos celulares, com particular relevância na produção de energia, sendo a β-oxidação mitocondrial dos ácidos gordos uma das vias metabólicas que tem lugar neste organelo. Os défices da β-oxidação mitocondrial dos ácidos gordos estão entre os grupos de doenças metabólicas mais estudados, existindo contudo, algumas questões que continuam por esclarecer, como a sua prevalência ao nascimento em determinadas regiões da Europa e quais e de que forma os vários determinantes patofisiológicos interatuam para produzir um determinado fenótipo. A análise dos dados de programas de rastreio neonatal da península Ibérica possibilitou estimar a prevalência ao nascimento dos défices da β-oxidação mitocondrial, tendo-se observado um dos valores mais elevados (particularmente em Portugal) no âmbito das regiões europeias, fundamentalmente devido à grande prevalência ao nascimento dos défices da desidrogenase dos ácidos gordos de cadeia média. Estes resultados realçam o impacto deste grupo de doenças genéticas nesta região europeia. A caracterização do proteoma mitocondrial, a partir de fibroblastos em cultura, de doentes com défices da β-oxidação mitocondrial (especificamente défice múltiplo das desidogenases (MADD) e défice da desidrogenase dos ácidos 3- hidroxilados de cadeia longa (LCHADD)) permitiu obter uma perspetiva geral sobre a plasticidade do proteoma mitocondrial nestas doenças assim como avaliar quais as principais vias metabólicas envolvidas na sua patogénese. Em formas severas de MADD foi observada uma sobre-expressão de chaperones, enzimas antioxidantes e proteínas associadas à apoptose. Nestas células foi igualmente observada a sobre-expressão de enzimas glicolíticas, como adaptação ao bloqueio da β-oxidação. A análise de amostras de doentes com LCHADD também evidenciou uma sobre-expressão de enzimas glicolíticas, assim como de proteínas relacionadas com a apoptose, e a modulação do sistema de defesa antioxidante. O doente com uma forma severa de LCHADD apresentou níveis de stress oxidativo elevados, associados a uma sobre expressão da MnSOD, enquanto o doente com uma forma moderada apresentou níveis mais baixos de stress oxidativo e uma sub-expressão da MnSOD. Estes resultados são provavelmente o reflexo do papel da MnSOD na regulação dos níveis de ROS, mantendo-os em níveis que não provoquem danos, mas que permitam iniciar processos de sinalização com vista à manutenção celular. A comparação de forma moderadas com severas de MADD não revelou diferenças significativas, muito provavelmente porque os níveis de stress oxidativo são suficientemente altos para despoletar uma resposta semelhante às formas severas. Os presentes resultados realçam as diferenças na modulação do sistema de defesa antioxidante no espectro dos défices da β-oxidação mitocondrial. No seu conjunto os resultados obtidos revelam as principais vias moduladas nos défices da β-oxidação mitocondrial e a importância do stress oxidativo e sistema de defesa antioxidante para o fenótipo. Ao permitem compreender melhor a complexa interação entre os vários fatores que interagem com vista ao fenótipo e que podem ser de origem genética, epigenética ou ambiental, contribuem para o desenvolvimento de novas e mais eficazes abordagens terapêuticas.
Wang, Wenzhong. "Mechanistic studies of flavoenzymes in fatty acid oxidation and oxidative protein folding." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 233 p, 2007. http://proquest.umi.com/pqdweb?did=1362529911&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textTaylor, George. "Fatty acid metabolism in cyanobacteria." Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/9363.
Full textMansouri, Abdelhak. "Hepatic fatty acid oxidation and control of food intake /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17697.
Full textNew, Karen Jayne. "Control of hepatic fatty acid oxidation in suckling rats." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392103.
Full textBacher, Mohamed A. "Induction of microsomal and peroxisomal fatty acid oxidation by chlorophenoxy acid herbicides." Thesis, University of Surrey, 1989. http://epubs.surrey.ac.uk/847223/.
Full textBooks on the topic "Fatty acid �-oxidation"
Quant, Patti A., and Simon Eaton, eds. Current Views of Fatty Acid Oxidation and Ketogenesis. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b113063.
Full textInternational Symposium on Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation (1988 Philadelphia, Pa.). Fatty acid oxidation: Clinical biochemical, and molecular aspects : proceedings of the International Symposium on Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation, held November 6-9, 1988 in Philadelphia. Edited by Tanaka Kay and Coates Paul M. New York: Liss, 1989.
Find full textM, Coates Paul, and Tanaka Kay, eds. New developments in fatty acid oxidation: Proceedings of the Second International Symposium on Clinical, Biochemical, and Molecular Aspects of Fatty Acid Oxidation, held in Philadelphia, Pennsylvania, November 1991. New York, N.Y: Wiley-Liss, 1992.
Find full textKay, Tanaka, and Coates Paul M, eds. Fatty acid oxidation: Clinical, biochemical, and molecular aspects : proceedings of the International Symposium on Clinical, Biochemical, and Molecular Aspects of Fatty Oxidation held in Philadelphia, November 6-9, 1988. New York: Liss, 1990.
Find full textTomohito, Hamazaki, and Okuyama Harumi, eds. Fatty acids and lipids: New findings. Basel: Karger, 2001.
Find full textMurphy, Elaine, Yann Nadjar, and Christine Vianey-Saban. Fatty Acid Oxidation, Electron Transfer and Riboflavin Metabolism Defects. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0008.
Full textForrest, Rosemary, and Nicole Baugh. Genetic Mistakes: Understanding and Living with Fatty Acid Oxidation Disorders. Nova Science Publishers, Incorporated, 2017.
Find full textCasteels, M. Differences in the Peroxisomal B-oxidation of Fatty Acids and Bile Acid Intermediates. Leuven University Press, 1990.
Find full textInstitution, British Standards, and European Committee for Standardization., eds. Fat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of oxidation stability (accelerated oxidation test). BSI, 2003.
Find full textTanaka, Kay. Fatty Acid Oxidation: Clinical, Biochemical, and Molecular Aspects (Progress in Clinical and Biological Research). Wiley-Liss, 1990.
Find full textBook chapters on the topic "Fatty acid �-oxidation"
Wieser, Thomas. "Fatty acid oxidation disorders." In International Neurology, 658–61. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118777329.ch165.
Full textWieser, Thomas, and Thomas Deufel. "Fatty Acid Oxidation Disorders." In International Neurology, 631–34. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444317008.ch160.
Full textVan Hove, Johan L. K. "Fatty Acid Oxidation Defects." In Nutrition Management of Inherited Metabolic Diseases, 241–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14621-8_22.
Full textStanley, C. A. "Disorders of Fatty Acid Oxidation." In Inborn Metabolic Diseases, 133–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03147-6_11.
Full textStanley, C. A. "Disorders of Fatty Acid Oxidation." In Inborn Metabolic Diseases, 140–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04285-4_11.
Full textSpiekerkoetter, Ute, and Marinus Duran. "Mitochondrial Fatty Acid Oxidation Disorders." In Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, 247–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40337-8_17.
Full textStanley, C. A. "Disorders of Fatty Acid Oxidation." In Inborn Metabolic Diseases, 395–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02613-7_31.
Full textFournier, N. C., and M. A. Richard. "Role of fatty acid-binding protein in cardiac fatty acid oxidation." In Cellular Fatty Acid-binding Proteins, 149–59. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3936-0_19.
Full textChesworth, J. M., T. Stuchbury, and J. R. Scaife. "Fatty Acid Oxidation and Lipid Breakdown." In An Introduction to Agricultural Biochemistry, 173–92. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-009-1441-4_13.
Full textVeerkamp, J. H., and H. T. B. van Moerkerk. "Fatty acid-binding protein and its relation to fatty acid oxidation." In Cellular Fatty Acid-Binding Proteins II, 101–6. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3096-1_13.
Full textConference papers on the topic "Fatty acid �-oxidation"
Lecuona, Emilia, Ermelinda Ceco, Samuel Weinberg, Masahiko Shigemura, Lynn Welch, Diego Celli, Lena Volpe, Navdeep Chandel, and Jabob Sznajder. "Increased fatty acid oxidation impairs myoblast differentiation in hypercapnia." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa384.
Full textLiu, Xi, Yun Lu, Zibo Chen, Xiuxia Liu, Weiguo Hu, Lin Zheng, Yulong Chen, et al. "Abstract 2547: USP18 promotes lipolysis, fatty acid oxidation and lung cancer growth." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2547.
Full textHansen, Karyn J., and Bennett Van Houten. "Abstract POSTER-BIOL-1314: Investigating fatty acid beta-oxidation in ovarian cancer cells." In Abstracts: 10th Biennial Ovarian Cancer Research Symposium; September 8-9, 2014; Seattle, WA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.ovcasymp14-poster-biol-1314.
Full textJung, Kwang Hwa, Jun Hyoung Park, Tirupataiah Sirupangi, Sajna Vithayathil, Lee-Jun Wong, and Benny A. Kaipparettu. "Abstract 1507: Fatty acid oxidation mediated autophagy regulation in triple negative breast cancer." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1507.
Full textPatella, Francesca, Zachary T. Schug, Erez Persi, Lisa J. Neilson, Zahra Erami, Daniele Avanzato, Federica Maione, et al. "Abstract B17: In-depth proteomics unveils fatty acid oxidation role in controlling vascular permeability." In Abstracts: AACR Special Conference: Tumor Angiogenesis and Vascular Normalization: Bench to Bedside to Biomarkers; March 5-8, 2015; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-8514.tumang15-b17.
Full textGu, L., J. L. Casey, D. Davis, and A. B. Carter. "MCU Modulates Transcriptional Network for PGC-1a-Mediated Fatty Acid Oxidation During Pulmonary Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7223.
Full textLee, M. H., J. Harral, D. Hernandez-Saavedra, L. Sanders, A. Gandjeva, B. B. Graham, and R. M. Tuder. "Pathogenetic Role of Fatty Acid Oxidation in Human Lungs Affected by Pulmonary Arterial Hypertension." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5871.
Full textRada, Miran, Jennifer Cha, Jessica Sage, Bo Zhou, Wei Yang, Sandra Orsulic, and Dong-Joo Cheon. "Abstract A16: COL11A1 confers cisplatin resistance through fatty acid oxidation in ovarian cancer cells." In Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-a16.
Full textBitler, Benjamin Guy, Brandon Sawyer, Lubna Qamar, Jennifer K. Richer, Kian Behbakht, and Isabel R. Schlaepfer. "Abstract 5029: Targeting fatty acid oxidation to promote anoikis and inhibit ovarian cancer progression." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5029.
Full textAl-Qeraiwi, Maha, Manar Al-Rashid, Nasser Rizk, Abdelrahman El Gamal, and Amena Fadl. "Hepatic Gene Expression Profile of Lipid Metabolism of Obese Mice after treatment with Anti-obesity Drug." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0214.
Full textReports on the topic "Fatty acid �-oxidation"
Fillmore, Natasha, Osama Abo Alrob, and Gary D. Lopaschuk. Fatty Acid beta-Oxidation. AOCS, July 2011. http://dx.doi.org/10.21748/lipidlibrary.39187.
Full textYamane, Koji, Kiyoshi Kawasaki, Kazutaka Sone, Takeru Hara, and Tirto Prakoso. A Fundamental Study for the Prevention of Biodiesel Fuel Oxidation Deterioration (1st Report)~Unsaturated Fatty Acid Methyl Esters and Thermal Oxidation Characteristics. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0556.
Full textWilson, George R. Diesel Lubricity Additive Effect on Jet Fuel Thermal Oxidative Stability with Supplementary Information on Fatty Acid Methyl Ester and Jet Engine Nozzle Performance. Coordinating Research Council, Inc., August 2011. http://dx.doi.org/10.21813/crcav-03-04.
Full text