Academic literature on the topic 'Fat imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fat imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fat imaging"
Robinson, P. J. A. "Fat and the liver." Imaging 16, no. 4 (September 2004): 364–74. http://dx.doi.org/10.1259/imaging/26666175.
Full textDavidovich, D., A. Gastaldelli, and R. Sicari. "Imaging cardiac fat." European Heart Journal - Cardiovascular Imaging 14, no. 7 (March 28, 2013): 625–30. http://dx.doi.org/10.1093/ehjci/jet045.
Full textWang, H., Y. E. Chen, and Daniel T. Eitzman. "Imaging Body Fat." Arteriosclerosis, Thrombosis, and Vascular Biology 34, no. 10 (October 2014): 2217–23. http://dx.doi.org/10.1161/atvbaha.114.303036.
Full textKellman, Peter, Diego Hernando, and Andrew E. Arai. "Myocardial Fat Imaging." Current Cardiovascular Imaging Reports 3, no. 2 (March 11, 2010): 83–91. http://dx.doi.org/10.1007/s12410-010-9012-1.
Full textDooms, G. C., H. Hricak, A. R. Margulis, and G. de Geer. "MR imaging of fat." Radiology 158, no. 1 (January 1986): 51–54. http://dx.doi.org/10.1148/radiology.158.1.3940397.
Full textEhara, S. "MR imaging of fat necrosis." American Journal of Roentgenology 171, no. 3 (September 1998): 889. http://dx.doi.org/10.2214/ajr.171.3.9725348.
Full textChan, Lai Peng, R. Gee, Ciaran Keogh, and Peter L. Munk. "Imaging Features of Fat Necrosis." American Journal of Roentgenology 181, no. 4 (October 2003): 955–59. http://dx.doi.org/10.2214/ajr.181.4.1810955.
Full textAxel, Leon. "Fat Suppression in MR Imaging." RadioGraphics 19, no. 5 (September 1999): 1177. http://dx.doi.org/10.1148/radiographics.19.5.g99se411177a.
Full textGriffith, James F. "MR imaging of marrow fat." Bone 47 (October 2010): S380. http://dx.doi.org/10.1016/j.bone.2010.09.066.
Full textHernandez, R. J., D. R. Keim, T. L. Chenevert, D. B. Sullivan, and A. M. Aisen. "Fat-suppressed MR imaging of myositis." Radiology 182, no. 1 (January 1992): 217–19. http://dx.doi.org/10.1148/radiology.182.1.1727285.
Full textDissertations / Theses on the topic "Fat imaging"
An, Li. "Water-fat imaging and general chemical shift imaging with spectrum modeling." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0032/NQ38848.pdf.
Full textHuang, Fangping. "Water and Fat Image Reconstruction in Magnetic Resonance Imaging." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1309791802.
Full textAru, Jim. "Abdominal fat distribution, measured by magnetic resonance imaging, and insulin resistance." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ54444.pdf.
Full textNarayan, Sreenath Prativadi. "Magnetic Resonance Imaging of Hepatic Fat Content Measurements at 7 Tesla." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1341869672.
Full textHuang, Hui. "Non-destructive detection of pork intramuscular fat content using hyperspectral imaging." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119675.
Full textLa teneur en matières grasses du porc affecte la saveur de la viande de porc. Dans l'industrie porcine, la graisse intramusculaire (GIM) et la cote de persillage (CP) sont deux propriétés qui déterminent la teneur en gras du porc. Les méthodes conventionnelles de détermination ne sont pas adaptées aux besoins actuels de l'industrie car elles sont destructrices ou subjectives. Cette étude porte sur l'utilisation de l'imagerie hyperspectrale dans l'évaluation de la teneur en graisse intramusculaire et du persillage du porc. Les effets de la répartition de la graisse intramusculaire le long du muscle Longissmus, de la congélation, du dégel et de l'analyse de la forme pour le traitement de l'image ont été pris en compte. Une technique d'imagerie hyperspectrale proche infrarouge (IR) allant de 900 à 1700 nm a été utilisée pour prédire le GIM ou la CP. La viande fraîche au niveau de la 3ème/4ème côte du porc a été utilisée pour recueillir les images hyperspectrales. Des analyses de la forme fondée sur les techniques du filtre de Gabor, du détecteur linéaire à large spectre (WLD) et de la matrice de cooccurrence de niveau gris améliorée (GLCM) ont été étudiées et les propriétés de l'image, i.e spectre, texture et propriétés des lignes, ont été extraites. La régression linéaire multiple (RLM) a été utilisée pour développer des modèles de prédiction. Pour la cote persillage, le modèle de RLM utilisant la moyenne de spectre filtrée pour la première dérivée de Gabor a le mieux performé avec une précision de calibration de 0,90 aux longueurs d'onde de 961, 1186 et 1220 nm. Pour le GIM, une précision de calibration de 0.85 a été obtenue avec un spectre moyen de base à 1207 et 1279 nm. La distribution du contenu de GIM a été illustrée. Les résultats démontrent la possibilité d'utiliser les images hyperspectralces proche IR pour évaluer rapidement et de façon non-destructive le taux de gras intramusculaire du porc. En ce qui concerne le persillage en tant qu'indice visuel, une méthode objective d'évaluation de la cote persillage utilisant des images rouge-vert-bleu (RGB) a été développée en appliquant un WLD basé sur un model linéaire au canal vert. La possibilité d'un contrôle non-destructif du GIM et de la CP utilisant du porc congelé et décongelé a été étudiée. Une précision de la prédiction de 0.90 pour la CP a été réalisée avec du porc congelé. Une précision de la prédiction de 0.82 pour le GIM découle du porc décongelé. Le potentiel du porc congelé et décongelé pour l'évaluation de la cote de persillage et du porc décongelé pour l'évaluation de la teneur en gras intramusculaire a été démontré. Outre l'effet du gel et du dégel, la variation du GIM et de la CP à travers les sept derniers muscles thoraciques Longissmus a été étudiée. Les relations entre le GIM et la CP à la dernière côte et les propriétés correspondantes aux autres côtes et au filet ont été déterminées avec précision. La relation entre les images de proche IR à l'extrémité et le niveau de GIM du porc six dernières côtes thoraciques a été étudiée. Des relations étroite ont été déterminées, en particulier entre les images de l'extrémité de la côte et les taux de GIM aux 2eme/3eme dernières côtes et la 2eme dernière côte.
Mehemed, Taha Mohamed M. "Fat-Water Interface on Susceptibility-Weighted Imaging and Gradient-Echo Imaging: Comparison of Phantoms to Intracranial Lipomas." Kyoto University, 2014. http://hdl.handle.net/2433/193572.
Full textGroll, Emily D. "Comparison of anthropometric and DXA measurements of regional body fat." Virtual Press, 2008. http://liblink.bsu.edu/uhtbin/catkey/1398712.
Full textSchool of Physical Education, Sport, and Exercise Science
Hussein, Mahamoud Omar. "Magnetic resonance imaging and spectroscopy of fat emulsions in the gastrointestinal tract." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13582/.
Full textCosta, Yuri Ajala da. "A proposal for full-range fat fraction estimation using magnitude MR imaging." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-01102018-083519/.
Full textOs métodos atuais para estimação de gordura hepática por densidade de prótons (PDFF) utilizando imagem de magnitude de ressonância magnética (RM) enfrentam o desafio de estimar corretamente quando a gordura é a molécula dominante, ou seja, PDFF é maior que 50%. Assim, a acurácia desses métodos é limitada a meio intervalo de operação. Apresentamos aqui um método baseado em redes neurais para regressão capaz de estimar pelo intervalo completo de frações de gordura. Construímos uma rede neural baseada nos ângulos e distâncias entre os dados do sinal discreto da imagem de RM (ADALIFE), usando esses atributos associados a diferentes valores de PDFF, com sinais simulados considerando diferentes relações sinal-ruído (SNR). Resultados foram comparados para verificar a repetibilidade e concordância através de análise de regressão, Bland- Altman e curvas de característica de erro de regressão (REC). Resultados para o método Multi-interferência (estado-da-arte) foram similares aos relatados in vivo pela literatura, ressaltando a relevância das simulações. ADALIFE foi capaz de estimar corretamente frações de gordura até 100%, quebrando o paradigma para intervalo completo de operação utilizando apenas processamento posterior à aquisição de imagens ou sinais. Considerando meio intervalo, nosso método superou o estado-da-arte em termos de repetibilidade e concordância, com limites mais estreitos e menor erro esperado em qualquer SNR.
Sigar, Joseph Aduol. "Visible hyperspectral imaging for predicting intra-muscular fat content from sheep carcasses." Thesis, Sigar, Joseph Aduol (2020) Visible hyperspectral imaging for predicting intra-muscular fat content from sheep carcasses. Honours thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/54744/.
Full textBooks on the topic "Fat imaging"
Buonincontri, Guido, Joshua Kaggie, and Martin Graves. Fast Quantitative Magnetic Resonance Imaging. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01667-7.
Full textImaging history: Photography after the fact. Brussel: ASA Publishers, 2011.
Find full textFan thưng santiphāp (2010 Bangkok, Thailand). Fan thưng santiphāp =: Imagine peace. Krung Thēp Mahā Nakhō̜n: Krasūang Watthanatham, 2010.
Find full textWehrli, F. W. Fast-scan magnetic resonance: Principles and applications. New York: Raven Press, 1991.
Find full textChae, Jongchul, ed. Initial Results from the Fast Imaging Solar Spectrograph (FISS). Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12123-9.
Full textYan, Raymond T. H. Fast radio-frequency current density imaging with spiral acquisition. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textSlater, Craig S. Studies of Photoinduced Molecular Dynamics Using a Fast Imaging Sensor. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24517-1.
Full textZdenka, Badovinac, Limerick City Gallery of Art., and EV+A, eds. EV+A 2004: Imagine Limerick. Kinsale, Co. Cork: Gandon Editions, 2004.
Find full textSiegmund, Oswald H. W. The Lyman Imaging Telescope Experiment (LITE): Final report, #NAGW - 4731. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. The Lyman Imaging Telescope Experiment (LITE): Final report, #NAGW - 4731. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textBook chapters on the topic "Fat imaging"
Bongers, Malte Niklas. "Gastrointestinal Imaging: Liver Fat and Iron Quantification." In Spectral Imaging, 235–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96285-2_15.
Full textWortsman, Ximena. "Imaging of Hypodermal Fat Necrosis." In Skin Necrosis, 25–31. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1241-0_4.
Full textKuchnia, Adam J., and Neil Binkley. "Diagnosis of Osteosarcopenia – Imaging." In Osteosarcopenia: Bone, Muscle and Fat Interactions, 243–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25890-0_12.
Full textMarwan, Mohamed. "The Many Uses of Epicardial Fat Measurements." In Contemporary Medical Imaging, 285–94. Totowa, NJ: Humana Press, 2019. http://dx.doi.org/10.1007/978-1-60327-237-7_24.
Full textAltun, Ersan, Mohamed El-Azzazi, and Richard C. Semelka. "Hepatic fat and iron deposition." In Liver imaging: MRI with CT correlation, 241–54. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118484852.ch12.
Full textMonti, Caterina B., Davide Capra, Francesco Secchi, Marina Codari, and Francesco Sardanelli. "Artificial Intelligence-Based Quantification of Cardiac Fat." In Artificial Intelligence in Cardiothoracic Imaging, 297–303. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_30.
Full textSasaki, Hidehiko, Yoshifumi Saijo, Motonao Tanaka, and Shin-ichi Nitta. "Influence of fat Components and Tissue Preparation on the High Frequency Acoustic Properties." In Acoustical Imaging, 161–66. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_21.
Full textFrança, Manuela, Ángel Alberich-Bayarri, and Luis Martí-Bonmatí. "Use Case VI: Imaging Biomarkers in Diffuse Liver Disease. Quantification of Fat and Iron." In Imaging Biomarkers, 279–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43504-6_20.
Full textKoshy, Marymol, Mazuin Mohd Razalli, Asita Elengoe, and Methil Kannan Kutty. "Imaging as a Tool for Measuring Body Fat." In Obesity and its Impact on Health, 117–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6408-0_9.
Full textChen, Xin, Emmanouil Moschidis, Chris Taylor, and Susan Astley. "A Novel Framework for Fat, Glandular Tissue, Pectoral Muscle and Nipple Segmentation in Full Field Digital Mammograms." In Breast Imaging, 201–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07887-8_29.
Full textConference papers on the topic "Fat imaging"
Kriston, Andras, Paulo Mendonça, Alvin Silva, Robert G. Paden, William Pavlicek, Dushyant Sahani, Benedek Janos Kis, Laszlo Rusko, Darin Okerlund, and Rahul Bhotika. "Liver fat quantification using fast kVp-switching dual energy CT." In SPIE Medical Imaging, edited by Benoit M. Dawant and David R. Haynor. SPIE, 2011. http://dx.doi.org/10.1117/12.878206.
Full textStevenson, Kevin, Mark Schweitzer, and Ghassan Hamarneh. "Multi-angle deformation analysis of Hoffa's fat pad." In Medical Imaging, edited by Armando Manduca and Amir A. Amini. SPIE, 2006. http://dx.doi.org/10.1117/12.654301.
Full textTong, Yubing, Jayaram K. Udupa, and Drew A. Torigian. "Standardized anatomic space for abdominal fat quantification." In SPIE Medical Imaging, edited by Sebastien Ourselin and Martin A. Styner. SPIE, 2014. http://dx.doi.org/10.1117/12.2044254.
Full textSacha, Jaroslaw P., Michael D. Cockman, Thomas E. Dufresne, and Darren Trokhan. "Quantification of regional fat volume in rat MRI." In Medical Imaging 2003, edited by Anne V. Clough and Amir A. Amini. SPIE, 2003. http://dx.doi.org/10.1117/12.480405.
Full textDing, Xiaowei, Demetri Terzopoulos, Mariana Diaz-Zamudio, Daniel S. Berman, Piotr J. Slomka, and Damini Dey. "Automated epicardial fat volume quantification from non-contrast CT." In SPIE Medical Imaging, edited by Sebastien Ourselin and Martin A. Styner. SPIE, 2014. http://dx.doi.org/10.1117/12.2043326.
Full textTong, Yubing, Jayaram K. Udupa, Caiyun Wu, Gargi Pednekar, Janani Rajan Subramanian, David J. Lederer, Jason Christie, and Drew A. Torigian. "Fat segmentation on chest CT images via fuzzy models." In SPIE Medical Imaging, edited by Robert J. Webster and Ziv R. Yaniv. SPIE, 2016. http://dx.doi.org/10.1117/12.2217864.
Full textSussman, Daniel L., Jianhua Yao, and Ronald M. Summers. "Automated fat measurement and segmentation with intensity inhomogeneity correction." In SPIE Medical Imaging, edited by Benoit M. Dawant and David R. Haynor. SPIE, 2010. http://dx.doi.org/10.1117/12.843860.
Full textTisdall, M. Dylan, and M. Stella Atkins. "Fat/water separation in a single MRI image with arbitrary phase shift." In Medical Imaging, edited by Michael J. Flynn and Jiang Hsieh. SPIE, 2006. http://dx.doi.org/10.1117/12.655128.
Full textAbrahim, Banazier A., Zeinab A. Mustafa, and Yasser M. Kadah. "Fast phase aberration correction in ultrasound imaging using fat layer model." In 2007 International Conference on Computer Engineering & Systems. IEEE, 2007. http://dx.doi.org/10.1109/icces.2007.4447048.
Full textAgarwal, Chirag, Ahmed H. Dallal, Mohammad R. Arbabshirani, Aalpen Patel, and Gregory Moore. "Unsupervised quantification of abdominal fat from CT images using Greedy Snakes." In SPIE Medical Imaging, edited by Martin A. Styner and Elsa D. Angelini. SPIE, 2017. http://dx.doi.org/10.1117/12.2254139.
Full textReports on the topic "Fat imaging"
Tao, Yang, Victor Alchanatis, and Yud-Ren Chen. X-ray and stereo imaging method for sensitive detection of bone fragments and hazardous materials in de-boned poultry fillets. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7695872.bard.
Full textIsmaiel, Abdulrahman, Oana Ciobanu, Mohamed Ismaiel, Daniel-Corneliu Leucuta, Stefan-Lucian Popa, Liliana David, Dilara Ensar, Nahlah Al Srouji, and Dan L. Dumitrascu. Atherogenic Index of Plasma in Non-Alcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0043.
Full textZhong He. Fast Neutron Imaging Systems. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/895007.
Full textKim, J., T. LaGrange, B. Reed, G. Campbell, and N. Browning. Directly Imaging Fast Reaction Fronts. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/902297.
Full textBrockington, Samuel, Andrew Case, and Franklin Douglas Witherspoon. Fast Fiber-Coupled Imaging Devices. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1433921.
Full textMihalczo, John T., Michael C. Wright, Seth M. McConchie, Daniel E. Archer, and Blake A. Palles. Transportable, Low-Dose Active Fast-Neutron Imaging. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1400208.
Full textBirge, Noah, Verena Geppert-Kleinrath, Christopher Danly, Valerie Fatherley, Harold Jorgenson, Matthew Freeman, and Carl Wilde. Fast Neutron Imaging and Tomography at NIF. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1864964.
Full textBasu, Samit. Dynamic Imaging and Fast Reconstruction Algorithms in Tomography. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada368306.
Full textBrockington, Samuel, Ajoke Williams, Andrew Case, Franklin D. Witherspoon, Robert Horton, and David Hwang. Fast Fiber-Coupled Imaging of Low Light Events. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1545653.
Full textBrubaker, Erik, James S. Brennan, Peter Marleau, Aaron B. Nowack, John T. Steele, Melinda Sweany, and Daniel J. Throckmorton. Bubble masks for time-encoded imaging of fast neutrons. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096263.
Full text