Journal articles on the topic 'Fast Spiking Interneurons (FSINs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fast Spiking Interneurons (FSINs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Higgs, Matthew H., and Charles J. Wilson. "Frequency-dependent entrainment of striatal fast-spiking interneurons." Journal of Neurophysiology 122, no. 3 (September 1, 2019): 1060–72. http://dx.doi.org/10.1152/jn.00369.2019.
Full textMarche, Kévin, and Paul Apicella. "Changes in activity of fast-spiking interneurons of the monkey striatum during reaching at a visual target." Journal of Neurophysiology 117, no. 1 (January 1, 2017): 65–78. http://dx.doi.org/10.1152/jn.00566.2016.
Full textBanaie Boroujeni, Kianoush, Mariann Oemisch, Seyed Alireza Hassani, and Thilo Womelsdorf. "Fast spiking interneuron activity in primate striatum tracks learning of attention cues." Proceedings of the National Academy of Sciences 117, no. 30 (July 13, 2020): 18049–58. http://dx.doi.org/10.1073/pnas.2001348117.
Full textDamodaran, Sriraman, Rebekah C. Evans, and Kim T. Blackwell. "Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum." Journal of Neurophysiology 111, no. 4 (February 15, 2014): 836–48. http://dx.doi.org/10.1152/jn.00382.2013.
Full textBakhurin, Konstantin I., Victor Mac, Peyman Golshani, and Sotiris C. Masmanidis. "Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice." Journal of Neurophysiology 115, no. 3 (March 1, 2016): 1521–32. http://dx.doi.org/10.1152/jn.01037.2015.
Full textGovindaiah, Gubbi, Rong-Jian Liu, and Yanyan Wang. "Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum." Biomedicines 10, no. 1 (January 4, 2022): 101. http://dx.doi.org/10.3390/biomedicines10010101.
Full textXiao, Guihua, Yilin Song, Yu Zhang, Yu Xing, Shengwei Xu, Mixia Wang, Junbo Wang, Deyong Chen, Jian Chen, and Xinxia Cai. "Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson’s Disease." Biosensors 10, no. 10 (September 28, 2020): 136. http://dx.doi.org/10.3390/bios10100136.
Full textShaheen, Hina, and Roderick Melnik. "Deep Brain Stimulation with a Computational Model for the Cortex-Thalamus-Basal-Ganglia System and Network Dynamics of Neurological Disorders." Computational and Mathematical Methods 2022 (February 13, 2022): 1–17. http://dx.doi.org/10.1155/2022/8998150.
Full textKunimatsu, Jun, Shinya Yamamoto, Kazutaka Maeda, and Okihide Hikosaka. "Environment-based object values learned by local network in the striatum tail." Proceedings of the National Academy of Sciences 118, no. 4 (January 19, 2021): e2013623118. http://dx.doi.org/10.1073/pnas.2013623118.
Full textBryson, Alexander, Samuel F. Berkovic, Steven Petrou, and David B. Grayden. "State transitions through inhibitory interneurons in a cortical network model." PLOS Computational Biology 17, no. 10 (October 15, 2021): e1009521. http://dx.doi.org/10.1371/journal.pcbi.1009521.
Full textKrimer, Leonid S., Aleksey V. Zaitsev, Gabriela Czanner, Sven Kröner, Guillermo González-Burgos, Nadezhda V. Povysheva, Satish Iyengar, German Barrionuevo, and David A. Lewis. "Cluster Analysis–Based Physiological Classification and Morphological Properties of Inhibitory Neurons in Layers 2–3 of Monkey Dorsolateral Prefrontal Cortex." Journal of Neurophysiology 94, no. 5 (November 2005): 3009–22. http://dx.doi.org/10.1152/jn.00156.2005.
Full textLarimer, Phillip, Julien Spatazza, Michael P. Stryker, Arturo Alvarez-Buylla, and Andrea R. Hasenstaub. "Development and long-term integration of MGE-lineage cortical interneurons in the heterochronic environment." Journal of Neurophysiology 118, no. 1 (July 1, 2017): 131–39. http://dx.doi.org/10.1152/jn.00096.2017.
Full textBracci, Enrico, Diego Centonze, Giorgio Bernardi, and Paolo Calabresi. "Dopamine Excites Fast-Spiking Interneurons in the Striatum." Journal of Neurophysiology 87, no. 4 (April 1, 2002): 2190–94. http://dx.doi.org/10.1152/jn.00754.2001.
Full textKann, Oliver, Ismini E. Papageorgiou, and Andreas Draguhn. "Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks." Journal of Cerebral Blood Flow & Metabolism 34, no. 8 (June 4, 2014): 1270–82. http://dx.doi.org/10.1038/jcbfm.2014.104.
Full textDi Garbo, Angelo, Michele Barbi, and Santi Chillemi. "Signal processing properties of fast spiking interneurons." Biosystems 86, no. 1-3 (October 2006): 27–37. http://dx.doi.org/10.1016/j.biosystems.2006.03.009.
Full textUrban-Ciecko, Joanna, Małgorzata Kossut, and Jerzy W. Mozrzymas. "Sensory Learning Differentially Affects GABAergic Tonic Currents in Excitatory Neurons and Fast Spiking Interneurons in Layer 4 of Mouse Barrel Cortex." Journal of Neurophysiology 104, no. 2 (August 2010): 746–54. http://dx.doi.org/10.1152/jn.00988.2009.
Full textBlomeley, Craig P., and Enrico Bracci. "Serotonin excites fast-spiking interneurons in the striatum." European Journal of Neuroscience 29, no. 8 (April 2009): 1604–14. http://dx.doi.org/10.1111/j.1460-9568.2009.06725.x.
Full textDi Garbo, Angelo, Michele Barbi, and Santi Chillemi. "Synchronization in a network of fast-spiking interneurons." Biosystems 67, no. 1-3 (October 2002): 45–53. http://dx.doi.org/10.1016/s0303-2647(02)00062-x.
Full textMaguire, Jamie. "Fast-Spiking Interneurons Exposed in Tumor-Associated Epilepsy." Epilepsy Currents 19, no. 2 (March 2019): 119–21. http://dx.doi.org/10.1177/1535759719835351.
Full textPisansky, Marc T., Emilia M. Lefevre, Cassandra L. Retzlaff, Brian H. Trieu, David W. Leipold, and Patrick E. Rothwell. "Nucleus Accumbens Fast-Spiking Interneurons Constrain Impulsive Action." Biological Psychiatry 86, no. 11 (December 2019): 836–47. http://dx.doi.org/10.1016/j.biopsych.2019.07.002.
Full textPovysheva, Nadezhda V., and Jon W. Johnson. "Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons." Journal of Neurophysiology 107, no. 8 (April 15, 2012): 2232–43. http://dx.doi.org/10.1152/jn.01017.2011.
Full textBjorefeldt, Andreas, Pontus Wasling, Henrik Zetterberg, and Eric Hanse. "Neuromodulation of fast-spiking and non-fast-spiking hippocampal CA1 interneurons by human cerebrospinal fluid." Journal of Physiology 594, no. 4 (January 18, 2016): 937–52. http://dx.doi.org/10.1113/jp271553.
Full textZhou, Fu-Wen, and Steven N. Roper. "Reduced chemical and electrical connections of fast-spiking interneurons in experimental cortical dysplasia." Journal of Neurophysiology 112, no. 6 (September 15, 2014): 1277–90. http://dx.doi.org/10.1152/jn.00126.2014.
Full textNomura, Masaki, Tomoki Fukai, and Toshio Aoyagi. "Synchrony of Fast-Spiking Interneurons Interconnected by GABAergic and Electrical Synapses." Neural Computation 15, no. 9 (September 1, 2003): 2179–98. http://dx.doi.org/10.1162/089976603322297340.
Full textCabungcal, J. H., P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod, T. K. Hensch, and K. Q. Do. "Perineuronal nets protect fast-spiking interneurons against oxidative stress." Proceedings of the National Academy of Sciences 110, no. 22 (May 13, 2013): 9130–35. http://dx.doi.org/10.1073/pnas.1300454110.
Full textGolomb, David, Karnit Donner, Liron Shacham, Dan Shlosberg, Yael Amitai, and David Hansel. "Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons." PLoS Computational Biology 3, no. 8 (August 10, 2007): e156. http://dx.doi.org/10.1371/journal.pcbi.0030156.
Full textGolomb, David, Karnit Donner, Liron Shacham, Dan Shlosberg, Yael Amitai, and David Hansel. "Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons." PLoS Computational Biology preprint, no. 2007 (2005): e156. http://dx.doi.org/10.1371/journal.pcbi.0030156.eor.
Full textGittis, A. H., D. K. Leventhal, B. A. Fensterheim, J. R. Pettibone, J. D. Berke, and A. C. Kreitzer. "Selective Inhibition of Striatal Fast-Spiking Interneurons Causes Dyskinesias." Journal of Neuroscience 31, no. 44 (November 2, 2011): 15727–31. http://dx.doi.org/10.1523/jneurosci.3875-11.2011.
Full textGuo, Daqing, Mingming Chen, Matjaž Perc, Shengdun Wu, Chuan Xia, Yangsong Zhang, Peng Xu, Yang Xia, and Dezhong Yao. "Firing regulation of fast-spiking interneurons by autaptic inhibition." EPL (Europhysics Letters) 114, no. 3 (May 1, 2016): 30001. http://dx.doi.org/10.1209/0295-5075/114/30001.
Full textPeng, Yangfan, Federico J. Barreda Tomas, Paul Pfeiffer, Moritz Drangmeister, Susanne Schreiber, Imre Vida, and Jörg R. P. Geiger. "Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning." Science Advances 7, no. 25 (June 2021): eabg4693. http://dx.doi.org/10.1126/sciadv.abg4693.
Full textBurket, Jessica A., Jason D. Webb, and Stephen I. Deutsch. "Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders." Biomolecules 11, no. 8 (August 18, 2021): 1235. http://dx.doi.org/10.3390/biom11081235.
Full textBeatty, Joseph A., Soomin C. Song, and Charles J. Wilson. "Cell-type-specific resonances shape the responses of striatal neurons to synaptic input." Journal of Neurophysiology 113, no. 3 (February 1, 2015): 688–700. http://dx.doi.org/10.1152/jn.00827.2014.
Full textBörgers, Christoph, Steven Epstein, and Nancy J. Kopell. "Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model." Proceedings of the National Academy of Sciences 105, no. 46 (November 12, 2008): 18023–28. http://dx.doi.org/10.1073/pnas.0809511105.
Full textErisir, A., D. Lau, B. Rudy, and C. S. Leonard. "Function of Specific K+ Channels in Sustained High-Frequency Firing of Fast-Spiking Neocortical Interneurons." Journal of Neurophysiology 82, no. 5 (November 1, 1999): 2476–89. http://dx.doi.org/10.1152/jn.1999.82.5.2476.
Full textCho, Kwang-Hyun, Jin Hwa Jang, Hyun-Jong Jang, Myung-Jun Kim, Shin Hee Yoon, Takaichi Fukuda, Frank Tennigkeit, Wolf Singer, and Duck-Joo Rhie. "Subtype-Specific Dendritic Ca2+ Dynamics of Inhibitory Interneurons in the Rat Visual Cortex." Journal of Neurophysiology 104, no. 2 (August 2010): 840–53. http://dx.doi.org/10.1152/jn.00146.2010.
Full textPovysheva, Nadezhda V., Aleksey V. Zaitsev, Guillermo Gonzalez-Burgos, and David A. Lewis. "Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells." PLoS ONE 8, no. 8 (August 12, 2013): e70553. http://dx.doi.org/10.1371/journal.pone.0070553.
Full textOkaty, B. W., M. N. Miller, K. Sugino, C. M. Hempel, and S. B. Nelson. "Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons." Journal of Neuroscience 29, no. 21 (May 27, 2009): 7040–52. http://dx.doi.org/10.1523/jneurosci.0105-09.2009.
Full textOwen, Scott F., Sebnem N. Tuncdemir, Patrick L. Bader, Natasha N. Tirko, Gord Fishell, and Richard W. Tsien. "Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons." Nature 500, no. 7463 (August 2013): 458–62. http://dx.doi.org/10.1038/nature12330.
Full textdel Pino, Isabel, Cristina García-Frigola, Nathalie Dehorter, Jorge R. Brotons-Mas, Efrén Alvarez-Salvado, María Martínez de Lagrán, Gabriele Ciceri, et al. "Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes." Neuron 79, no. 6 (September 2013): 1152–68. http://dx.doi.org/10.1016/j.neuron.2013.07.010.
Full textGage, Gregory J., Colin R. Stoetzner, Alexander B. Wiltschko, and Joshua D. Berke. "Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution." Neuron 67, no. 3 (August 2010): 466–79. http://dx.doi.org/10.1016/j.neuron.2010.06.034.
Full textRoberts, Bradley M., Michael G. White, Mary H. Patton, Rong Chen, and Brian N. Mathur. "Ensemble encoding of action speed by striatal fast-spiking interneurons." Brain Structure and Function 224, no. 7 (June 26, 2019): 2567–76. http://dx.doi.org/10.1007/s00429-019-01908-7.
Full textSzydlowski, S. N., I. Pollak Dorocic, H. Planert, M. Carlen, K. Meletis, and G. Silberberg. "Target Selectivity of Feedforward Inhibition by Striatal Fast-Spiking Interneurons." Journal of Neuroscience 33, no. 4 (January 23, 2013): 1678–83. http://dx.doi.org/10.1523/jneurosci.3572-12.2013.
Full textLewis, Timothy J., and John Rinzel. "Dendritic effects in networks of electrically coupled fast-spiking interneurons." Neurocomputing 58-60 (June 2004): 145–50. http://dx.doi.org/10.1016/j.neucom.2004.01.035.
Full textFujiwara-Tsukamoto, Y., Y. Isomura, M. Imanishi, T. Ninomiya, M. Tsukada, Y. Yanagawa, T. Fukai, and M. Takada. "Prototypic Seizure Activity Driven by Mature Hippocampal Fast-Spiking Interneurons." Journal of Neuroscience 30, no. 41 (October 13, 2010): 13679–89. http://dx.doi.org/10.1523/jneurosci.1523-10.2010.
Full textKoós, Tibor, and James M. Tepper. "Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum." Journal of Neuroscience 22, no. 2 (January 15, 2002): 529–35. http://dx.doi.org/10.1523/jneurosci.22-02-00529.2002.
Full textRotaru, Diana C., Cameron Olezene, Takeaki Miyamae, Nadezhda V. Povysheva, Aleksey V. Zaitsev, David A. Lewis, and Guillermo Gonzalez-Burgos. "Functional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex." Journal of Neurophysiology 113, no. 6 (March 15, 2015): 1850–61. http://dx.doi.org/10.1152/jn.00799.2014.
Full textGoldberg, Jesse H., and Michale S. Fee. "Singing-Related Neural Activity Distinguishes Four Classes of Putative Striatal Neurons in the Songbird Basal Ganglia." Journal of Neurophysiology 103, no. 4 (April 2010): 2002–14. http://dx.doi.org/10.1152/jn.01038.2009.
Full textImbrosci, Barbara, Angela Neitz, and Thomas Mittmann. "Focal Cortical Lesions Induce Bidirectional Changes in the Excitability of Fast Spiking and Non Fast Spiking Cortical Interneurons." PLoS ONE 9, no. 10 (October 27, 2014): e111105. http://dx.doi.org/10.1371/journal.pone.0111105.
Full textGonzalez-Burgos, G., S. Kroener, J. K. Seamans, D. A. Lewis, and G. Barrionuevo. "Dopaminergic Modulation of Short-Term Synaptic Plasticity in Fast-Spiking Interneurons of Primate Dorsolateral Prefrontal Cortex." Journal of Neurophysiology 94, no. 6 (December 2005): 4168–77. http://dx.doi.org/10.1152/jn.00698.2005.
Full textSzegedi, Viktor, Emőke Bakos, Szabina Furdan, Bálint H. Kovács, Dániel Varga, Miklós Erdélyi, Pál Barzó, Attila Szücs, Gábor Tamás, and Karri Lamsa. "HCN channels at the cell soma ensure the rapid electrical reactivity of fast-spiking interneurons in human neocortex." PLOS Biology 21, no. 2 (February 6, 2023): e3002001. http://dx.doi.org/10.1371/journal.pbio.3002001.
Full text