Journal articles on the topic 'Fast Gradient Sign Method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fast Gradient Sign Method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zou, Junhua, Yexin Duan, Boyu Li, Wu Zhang, Yu Pan, and Zhisong Pan. "Making Adversarial Examples More Transferable and Indistinguishable." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (June 28, 2022): 3662–70. http://dx.doi.org/10.1609/aaai.v36i3.20279.
Full textWibawa, Sigit. "Analysis of Adversarial Attacks on AI-based With Fast Gradient Sign Method." International Journal of Engineering Continuity 2, no. 2 (August 1, 2023): 72–79. http://dx.doi.org/10.58291/ijec.v2i2.120.
Full textSun, Guangling, Yuying Su, Chuan Qin, Wenbo Xu, Xiaofeng Lu, and Andrzej Ceglowski. "Complete Defense Framework to Protect Deep Neural Networks against Adversarial Examples." Mathematical Problems in Engineering 2020 (May 11, 2020): 1–17. http://dx.doi.org/10.1155/2020/8319249.
Full textKim, Hoki, Woojin Lee, and Jaewook Lee. "Understanding Catastrophic Overfitting in Single-step Adversarial Training." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 8119–27. http://dx.doi.org/10.1609/aaai.v35i9.16989.
Full textSaxena, Rishabh, Amit Sanjay Adate, and Don Sasikumar. "A Comparative Study on Adversarial Noise Generation for Single Image Classification." International Journal of Intelligent Information Technologies 16, no. 1 (January 2020): 75–87. http://dx.doi.org/10.4018/ijiit.2020010105.
Full textYang, Bo, Kaiyong Xu, Hengjun Wang, and Hengwei Zhang. "Random Transformation of image brightness for adversarial attack." Journal of Intelligent & Fuzzy Systems 42, no. 3 (February 2, 2022): 1693–704. http://dx.doi.org/10.3233/jifs-211157.
Full textTrinh Quang Kien. "Improving the robustness of binarized neural network using the EFAT method." Journal of Military Science and Technology, CSCE5 (December 15, 2021): 14–23. http://dx.doi.org/10.54939/1859-1043.j.mst.csce5.2021.14-23.
Full textHirano, Hokuto, and Kazuhiro Takemoto. "Simple Iterative Method for Generating Targeted Universal Adversarial Perturbations." Algorithms 13, no. 11 (October 22, 2020): 268. http://dx.doi.org/10.3390/a13110268.
Full textAn, Tong, Tao Zhang, Yanzhang Geng, and Haiquan Jiao. "Normalized Combinations of Proportionate Affine Projection Sign Subband Adaptive Filter." Scientific Programming 2021 (August 26, 2021): 1–12. http://dx.doi.org/10.1155/2021/8826868.
Full textKadhim, Ansam, and Salah Al-Darraji. "Face Recognition System Against Adversarial Attack Using Convolutional Neural Network." Iraqi Journal for Electrical and Electronic Engineering 18, no. 1 (November 6, 2021): 1–8. http://dx.doi.org/10.37917/ijeee.18.1.1.
Full textZhang, Qikun, Yuzhi Zhang, Yanling Shao, Mengqi Liu, Jianyong Li, Junling Yuan, and Ruifang Wang. "Boosting Adversarial Attacks with Nadam Optimizer." Electronics 12, no. 6 (March 20, 2023): 1464. http://dx.doi.org/10.3390/electronics12061464.
Full textPal, Biprodip, Debashis Gupta, Md Rashed-Al-Mahfuz, Salem A. Alyami, and Mohammad Ali Moni. "Vulnerability in Deep Transfer Learning Models to Adversarial Fast Gradient Sign Attack for COVID-19 Prediction from Chest Radiography Images." Applied Sciences 11, no. 9 (May 7, 2021): 4233. http://dx.doi.org/10.3390/app11094233.
Full textZhao, Weimin, Sanaa Alwidian, and Qusay H. Mahmoud. "Adversarial Training Methods for Deep Learning: A Systematic Review." Algorithms 15, no. 8 (August 12, 2022): 283. http://dx.doi.org/10.3390/a15080283.
Full textZhang, Xingyu, Xiongwei Zhang, Xia Zou, Haibo Liu, and Meng Sun. "Towards Generating Adversarial Examples on Combined Systems of Automatic Speaker Verification and Spoofing Countermeasure." Security and Communication Networks 2022 (July 31, 2022): 1–12. http://dx.doi.org/10.1155/2022/2666534.
Full textRudd-Orthner, Richard N. M., and Lyudmila Mihaylova. "Deep ConvNet: Non-Random Weight Initialization for Repeatable Determinism, Examined with FSGM." Sensors 21, no. 14 (July 13, 2021): 4772. http://dx.doi.org/10.3390/s21144772.
Full textGuan, Dejian, and Wentao Zhao . "Adversarial Detection Based on Inner-Class Adjusted Cosine Similarity." Applied Sciences 12, no. 19 (September 20, 2022): 9406. http://dx.doi.org/10.3390/app12199406.
Full textA, Jayaprakash, and C. Kezi Selva Vijila. "Detection and Recognition of Traffic Sign using FCM with SVM." JOURNAL OF ADVANCES IN CHEMISTRY 13, no. 6 (February 25, 2017): 6285–89. http://dx.doi.org/10.24297/jac.v13i6.5773.
Full textZhu, Min-Ling, Liang-Liang Zhao, and Li Xiao. "Image Denoising Based on GAN with Optimization Algorithm." Electronics 11, no. 15 (August 5, 2022): 2445. http://dx.doi.org/10.3390/electronics11152445.
Full textXu, Wei, and Veerawat Sirivesmas. "Study on Network Virtual Printing Sculpture Design using Artificial Intelligence." International Journal of Communication Networks and Information Security (IJCNIS) 15, no. 1 (May 30, 2023): 132–45. http://dx.doi.org/10.17762/ijcnis.v15i1.5694.
Full textKurniawan S, Putu Widiarsa, Yosi Kristian, and Joan Santoso. "Pemanfaatan Deep Convulutional Auto-encoder untuk Mitigasi Serangan Adversarial Attack pada Citra Digital." J-INTECH 11, no. 1 (July 4, 2023): 50–59. http://dx.doi.org/10.32664/j-intech.v11i1.845.
Full textYang, Zhongguo, Irshad Ahmed Abbasi, Fahad Algarni, Sikandar Ali, and Mingzhu Zhang. "An IoT Time Series Data Security Model for Adversarial Attack Based on Thermometer Encoding." Security and Communication Networks 2021 (March 9, 2021): 1–11. http://dx.doi.org/10.1155/2021/5537041.
Full textPapadopoulos, Pavlos, Oliver Thornewill von Essen, Nikolaos Pitropakis, Christos Chrysoulas, Alexios Mylonas, and William J. Buchanan. "Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT." Journal of Cybersecurity and Privacy 1, no. 2 (April 23, 2021): 252–73. http://dx.doi.org/10.3390/jcp1020014.
Full textLee , Jungeun, and Hoeseok Yang . "Performance Improvement of Image-Reconstruction-Based Defense against Adversarial Attack." Electronics 11, no. 15 (July 28, 2022): 2372. http://dx.doi.org/10.3390/electronics11152372.
Full textWu, Fei, Wenxue Yang, Limin Xiao, and Jinbin Zhu. "Adaptive Wiener Filter and Natural Noise to Eliminate Adversarial Perturbation." Electronics 9, no. 10 (October 3, 2020): 1634. http://dx.doi.org/10.3390/electronics9101634.
Full textSantana, Everton Jose, Ricardo Petri Silva, Bruno Bogaz Zarpelão, and Sylvio Barbon Junior. "Detecting and Mitigating Adversarial Examples in Regression Tasks: A Photovoltaic Power Generation Forecasting Case Study." Information 12, no. 10 (September 26, 2021): 394. http://dx.doi.org/10.3390/info12100394.
Full textKwon, Hyun. "MedicalGuard: U-Net Model Robust against Adversarially Perturbed Images." Security and Communication Networks 2021 (August 9, 2021): 1–8. http://dx.doi.org/10.1155/2021/5595026.
Full textLi, Xinyu, Shaogang Dai, and Zhijin Zhao. "Unsupervised Learning-Based Spectrum Sensing Algorithm with Defending Adversarial Attacks." Applied Sciences 13, no. 16 (August 9, 2023): 9101. http://dx.doi.org/10.3390/app13169101.
Full textPantiukhin, D. V. "Educational and methodological materials of the master class “Adversarial attacks on image recognition neural networks” for students and schoolchildren." Informatics and education 38, no. 1 (April 16, 2023): 55–63. http://dx.doi.org/10.32517/0234-0453-2023-38-1-55-63.
Full textLung, Rodica Ioana. "A game theoretic decision-making approach for fast gradient sign attacks." Procedia Computer Science 220 (2023): 1015–20. http://dx.doi.org/10.1016/j.procs.2023.03.141.
Full textPerne, Matija, Samo Gerkšič, and Boštjan Pregelj. "Soft inequality constraints in gradient method and fast gradient method for quadratic programming." Optimization and Engineering 20, no. 3 (December 18, 2018): 749–67. http://dx.doi.org/10.1007/s11081-018-9416-3.
Full textFlorea, Mihai I., and Sergiy A. Vorobyov. "A Generalized Accelerated Composite Gradient Method: Uniting Nesterov's Fast Gradient Method and FISTA." IEEE Transactions on Signal Processing 68 (2020): 3033–48. http://dx.doi.org/10.1109/tsp.2020.2988614.
Full textYao, Q., B. Tan, and Y. Huang. "FAST DRAWING OF TRAFFIC SIGN USING MOBILE MAPPING SYSTEM." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 10, 2016): 937–44. http://dx.doi.org/10.5194/isprs-archives-xli-b3-937-2016.
Full textYao, Q., B. Tan, and Y. Huang. "FAST DRAWING OF TRAFFIC SIGN USING MOBILE MAPPING SYSTEM." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 10, 2016): 937–44. http://dx.doi.org/10.5194/isprsarchives-xli-b3-937-2016.
Full textKenshimov, Chingiz, Zholdas Buribayev, Yedilkhan Amirgaliyev, Aisulyu Ataniyazova, and Askhat Aitimov. "Sign language dactyl recognition based on machine learning algorithms." Eastern-European Journal of Enterprise Technologies 4, no. 2(112) (August 31, 2021): 58–72. http://dx.doi.org/10.15587/1729-4061.2021.239253.
Full textGuo, Shaocui, and Xu Yang. "Fast recognition algorithm for static traffic sign information." Open Physics 16, no. 1 (December 31, 2018): 1149–56. http://dx.doi.org/10.1515/phys-2018-0135.
Full textTyurin, Alexander Igorevich. "Primal-dual fast gradient method with a model." Computer Research and Modeling 12, no. 2 (April 2020): 263–74. http://dx.doi.org/10.20537/2076-7633-2020-12-2-263-274.
Full textBloom, Veronica, Igor Griva, and Fabio Quijada. "Fast projected gradient method for support vector machines." Optimization and Engineering 17, no. 4 (August 11, 2016): 651–62. http://dx.doi.org/10.1007/s11081-016-9328-z.
Full textPolyak, Roman A., James Costa, and Saba Neyshabouri. "Dual fast projected gradient method for quadratic programming." Optimization Letters 7, no. 4 (April 21, 2012): 631–45. http://dx.doi.org/10.1007/s11590-012-0476-6.
Full textIyengar, Garud, and Alfred Ka Chun Ma. "Fast gradient descent method for Mean-CVaR optimization." Annals of Operations Research 205, no. 1 (February 7, 2013): 203–12. http://dx.doi.org/10.1007/s10479-012-1245-8.
Full textHan, Fang Fang, and Guo Qiang Xu. "Robust Memory Gradient Blind Equalization Algorithm Based on Error Sign Decision." Applied Mechanics and Materials 347-350 (August 2013): 1997–2000. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.1997.
Full textNishimura, Jun, and Shinji Shimasaki. "Unification of the complex Langevin method and the Lefschetzthimble method." EPJ Web of Conferences 175 (2018): 07018. http://dx.doi.org/10.1051/epjconf/201817507018.
Full textAnescu, George. "A Heuristic Fast Gradient Descent Method for Unimodal Optimization." Journal of Advances in Mathematics and Computer Science 26, no. 5 (February 28, 2018): 1–20. http://dx.doi.org/10.9734/jamcs/2018/39798.
Full textA.M, Raid, Khedr W.M, El-dosuky M.A, and Mona Aoud. "Fast NAS-RIF Algorithm Using Iterative Conjugate Gradient Method." Signal & Image Processing : An International Journal 5, no. 2 (April 30, 2014): 63–72. http://dx.doi.org/10.5121/sipij.2014.5206.
Full textKögel, Markus, and Rolf Findeisen. "A Fast Gradient method for embedded linear predictive control." IFAC Proceedings Volumes 44, no. 1 (January 2011): 1362–67. http://dx.doi.org/10.3182/20110828-6-it-1002.03322.
Full textZhang, Yue, Seong-Yoon Shin, Xujie Tan, and Bin Xiong. "A Self-Adaptive Approximated-Gradient-Simulation Method for Black-Box Adversarial Sample Generation." Applied Sciences 13, no. 3 (January 18, 2023): 1298. http://dx.doi.org/10.3390/app13031298.
Full textOgal’tsov, A. V., and A. I. Tyurin. "A Heuristic Adaptive Fast Gradient Method in Stochastic Optimization Problems." Computational Mathematics and Mathematical Physics 60, no. 7 (July 2020): 1108–15. http://dx.doi.org/10.1134/s0965542520070088.
Full textRen, Dongwei, Wangmeng Zuo, Xiaofei Zhao, Zhouchen Lin, and David Zhang. "Fast gradient vector flow computation based on augmented Lagrangian method." Pattern Recognition Letters 34, no. 2 (January 2013): 219–25. http://dx.doi.org/10.1016/j.patrec.2012.09.017.
Full textJirigalatu, Jörg, and Ebbing. "A fast equivalent source method for airborne gravity gradient data." GEOPHYSICS 84, no. 5 (September 1, 2019): G75—G82. http://dx.doi.org/10.1190/geo2018-0366.1.
Full textJin-bo, Zhang, Xu Jing-wen, and Li Yuan-xiang. "Gradient Gene Algorithm: a fast optimization method to MST problem." Wuhan University Journal of Natural Sciences 6, no. 1-2 (March 2001): 535–40. http://dx.doi.org/10.1007/bf03160298.
Full textChoi, Young-Jae, and In-Sik Choi. "A novel fast clean algorithm using the gradient descent method." Microwave and Optical Technology Letters 59, no. 5 (March 27, 2017): 1018–22. http://dx.doi.org/10.1002/mop.30448.
Full text