To see the other types of publications on this topic, follow the link: FAPbBr3.

Journal articles on the topic 'FAPbBr3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'FAPbBr3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Joo, Sung Hwan, Chung Wung Bark, and Hyung Wook Choi. "Enhancement of Perovskite Solar-Cell Efficiency Using FAPbBr3/I3 with Methylammonium Chloride." Journal of Nanoelectronics and Optoelectronics 16, no. 6 (June 1, 2021): 879–83. http://dx.doi.org/10.1166/jno.2021.3015.

Full text
Abstract:
Organic/inorganic metal halide formamidinium lead iodide (FAPbI3) perovskites exhibit excellent optical properties, a suitable band gap, a wide light-absorption range, and superior electron-hole mobility. However, it is difficult to fabricate high-quality α-phase FAPbI3 film due to the relatively easy formation of the more stable δ-FAPbI3 (hexagonal structure). To overcome this, in this study, formamidinium lead bromide (FAPbBr3) was used to induce the synthesis of stable α-phase FAPbI3. The resulting light-absorbing layer was composed of (FAPbI3)0.95 (FAPbBr3)0.05, but δ-phase FAPbI3 could be still observed. To suppress the formation of δ-phase FAPbI3 , methylammonium chloride (MACl) was added to the (FAPbI3)0.95 (FAPbBr3)0.05 precursor solution. At an optimal MACl content of 40 mol%, perovskites with improved crystallinity and large crystallite size could be fabricated, resulting in a perovskite solar-cell efficiency of 18.204%.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Menglong, Weizhe Wang, Fangliang Gao, and Dongxiang Luo. "g-C3N4-Stabilised Organic–Inorganic Halide Perovskites for Efficient Photocatalytic Selective Oxidation of Benzyl Alcohol." Catalysts 11, no. 4 (April 16, 2021): 505. http://dx.doi.org/10.3390/catal11040505.

Full text
Abstract:
The outstanding optoelectronic performance and facile synthetic approach of metal halide perovskites has inspired additional applications well beyond efficient solar cells and light emitting diodes (LEDs). Herein, we present an alternative option available for the optimisation of selective and efficient oxidation of benzylic alcohols through photocatalysis. The materials engineering of hybrids based on formamidine lead bromide (FAPbBr3) and graphic carbon nitride (g-C3N4) is achieved via facile anti-solvent approach. The photocatalytic performance of the hybrids is highly reliant on weight ratio between FAPbBr3 and g-C3N4. Besides, the presence of g-C3N4 dramatically enhances the long-term stability of the hybrids, compared to metal oxides hybrids. Detailed optical, electrical and thermal studies reveal the proposed novel photocatalytic and stability behaviours arising in FAPbBr3 and g-C3N4 hybrid materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Miaozi, Juanhong Wang, Chaohuang Mai, Yangke Cun, Binbin Zhang, Guohui Huang, Danmu Yu, et al. "Bifacial passivation towards efficient FAPbBr3-based inverted perovskite light-emitting diodes." Nanoscale 12, no. 27 (2020): 14724–32. http://dx.doi.org/10.1039/d0nr02323j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Franz, Alexandra, Daniel M. Többens, Frederike Lehmann, Martin Kärgell, and Susan Schorr. "The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr3." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 2 (March 20, 2020): 267–74. http://dx.doi.org/10.1107/s2052520620002620.

Full text
Abstract:
This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr3) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr3. The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present.
APA, Harvard, Vancouver, ISO, and other styles
5

Tjahjana, Liliana, Kwan Lee, Xin Yu Chin, Landobasa Y. M. Tobing, Gede W. P. Adhyaksa, Dao Hua Zhang, Muhammad Danang Birowosuto, and Hong Wang. "Controlling Spontaneous Emission from Perovskite Nanocrystals with Metal–Emitter–Metal Nanostructures." Crystals 11, no. 1 (December 22, 2020): 1. http://dx.doi.org/10.3390/cryst11010001.

Full text
Abstract:
We show the increase of the photoluminescence intensity ratio (PLR) and the emission rate enhancement of perovskite cesium lead bromide (CsPbBr3) and formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) in the presence of single and double gold layer cavities, which we refer to as Metal-Emitter (ME) and Metal-Emitter-Metal (MEM) nanostructures. Up to 1.9-fold PLRs and up to 5.4-fold emission rate enhancements were obtained for FAPbBr3 NCs confined by double gold layers, which are attributed to plasmonic confinement from the gold layers. The experimentally obtained values are validated by analytical calculations and electromagnetic simulations. Such an effective method of manipulation of the spontaneous emission by simple plasmonic nanostructures can be utilized in sensing and detection applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Jinqiu, Fengrui Hu, Yong Zhou, Chunfeng Zhang, Xiaoyong Wang, and Min Xiao. "Polarized emission from single perovskite FAPbBr3 nanocrystals." Journal of Luminescence 221 (May 2020): 117032. http://dx.doi.org/10.1016/j.jlumin.2020.117032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rubino, Andrea, Tahiyat Huq, Jakub Dranczewski, Gabriel Lozano, Mauricio E. Calvo, Stefano Vezzoli, Hernán Míguez, and Riccardo Sapienza. "Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals." Journal of Materials Chemistry C 8, no. 45 (2020): 15990–95. http://dx.doi.org/10.1039/d0tc04790b.

Full text
Abstract:
Experimental evidence and characterization of nonlinear third harmonic generation from hybrid FAPbBr3 perovskite nanocrystals embedded in a porous thin film demonstrate a new potential application of these semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
8

Paul, Tufan, Soumen Maiti, Upasana Mukherjee, Suvankar Mondal, Aditi Sahoo, and Kalyan Kumar Chattopadhyay. "Cube shaped FAPbBr3 for piezoelectric energy harvesting devices." Materials Letters 301 (October 2021): 130264. http://dx.doi.org/10.1016/j.matlet.2021.130264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Zhenjie, Xulan Xue, Zhihui Kang, Rong Wang, Han Zhang, and Wenyu Ji. "Achieving high-performance in situ fabricated FAPbBr3 and electroluminescence." Optics Letters 46, no. 17 (August 30, 2021): 4378. http://dx.doi.org/10.1364/ol.439183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Yongfei, Yongqi Liang, Yajuan Wang, Fengwan Guo, Licheng Sun, and Dongsheng Xu. "Planar FAPbBr3 Solar Cells with Power Conversion Efficiency above 10%." ACS Energy Letters 3, no. 8 (July 2, 2018): 1808–14. http://dx.doi.org/10.1021/acsenergylett.8b00540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Yulu, Tao Ding, Xiao Luo, Yuyang Tian, Xin Lu, and Kaifeng Wu. "Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals." Chemistry of Materials 32, no. 1 (December 9, 2019): 549–56. http://dx.doi.org/10.1021/acs.chemmater.9b04297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Migunov, D., K. Eidelman, A. Kozmin, D. Saranin, I. Ermanova, D. Gudkov, and A. Alekseev. "Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers." Eurasian Chemico-Technological Journal, no. 1 (February 20, 2019): 83. http://dx.doi.org/10.18321/ectj795.

Full text
Abstract:
Improvement of methods for imaging of the volume structure of photoactive layers is one of the important directions towards development of highly efficient solar cells. In particular, volume structure of photoactive layer has critical influence on perovskite solar cell performance and life time. In this study, a perovskite photoactive layer cross-section was prepared by using Focused Ion Beam (FIB) and imaged by Atomic Force Microscopy (AFM) methods. The proposed approach allows using advances of AFM for imaging structure of perovskites in volume. Two different types of perovskite layers was investigated: FAPbBr3 and MAPbBr3. The heterogeneous structure inside film, which consist of large crystals penetrating the film as well as small particles with sizes of several tens nanometers, is typical for FAPbBr3. The ordered nanocrystalline structure with nanocrystals oriented at 45 degree to film surface is observed in MAPbBr3. An optimized sample preparation route, which includes FIB surface polishing by low energy Ga ions at the angles around 10 degree to surface plane, is described and optimal parameters of surface treatment are discussed. Use of AFM phase contrast method provides high contrast imaging of perovskite structure due to strong dependence of phase shift of oscillating probe on materials properties. The described method of imaging can be used for controllable tuning of perovskite structure by changes of the sample preparation routes.
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Guozhen, Haiying Zheng, Liangzheng Zhu, Ahmed Alsaedi, Tasawar Hayat, Xu Pan, Li'e Mo, and Songyuan Dai. "Adjusting the Introduction of Cations for Highly Efficient and Stable Perovskite Solar Cells Based on (FAPbI3 )0.9 (FAPbBr3 )0.1." ChemSusChem 11, no. 14 (July 3, 2018): 2436–43. http://dx.doi.org/10.1002/cssc.201800658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Xiaozhe, Qi Wang, Zhijun Chai, and Wenzhi Wu. "The thermal stability of FAPbBr3 nanocrystals from temperature-dependent photoluminescence and first-principles calculations." RSC Advances 10, no. 72 (2020): 44373–81. http://dx.doi.org/10.1039/d0ra07668f.

Full text
Abstract:
The thermal properties of FAPbBr3 perovskite nanocrystals (PNCs) is investigated by use of temperature-dependent steady-state/time-resolved photoluminescence and first-principle calculations.
APA, Harvard, Vancouver, ISO, and other styles
15

Mannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Antonino La Magna, Alessandra Alberti, Davide Ceratti, and David Cahen. "Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals." Journal of Physical Chemistry Letters 11, no. 7 (March 9, 2020): 2490–96. http://dx.doi.org/10.1021/acs.jpclett.0c00295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Feng, Mengna Sun, Xiyu Luo, Dongdong Zhang, and Lian Duan. "Modulation of ligand conjugation for efficient FAPbBr3 based green light-emitting diodes." Materials Chemistry Frontiers 4, no. 5 (2020): 1383–89. http://dx.doi.org/10.1039/c9qm00768g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Patra, Avijit, Suman Bera, Diptam Nasipuri, Sumit Kumar Dutta, and Narayan Pradhan. "Tuning Facets and Controlling Monodispersity in Organic–Inorganic Hybrid Perovskite FAPbBr3 Nanocrystals." ACS Energy Letters 6, no. 8 (July 7, 2021): 2682–89. http://dx.doi.org/10.1021/acsenergylett.1c01108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tong, Yu-Long, Ya-Wen Zhang, Kangzhe Ma, Rui Cheng, Fengxiang Wang, and Su Chen. "One-Step Synthesis of FA-Directing FAPbBr3 Perovskite Nanocrystals toward High-Performance Display." ACS Applied Materials & Interfaces 10, no. 37 (August 28, 2018): 31603–9. http://dx.doi.org/10.1021/acsami.8b10366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ying, Hangkai, Yifan Liu, Yuxi Dou, Jibo Zhang, Zhenli Wu, Qi Zhang, Yi-Bing Cheng, and Jie Zhong. "Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells." Frontiers of Optoelectronics 13, no. 3 (July 20, 2020): 272–81. http://dx.doi.org/10.1007/s12200-020-1031-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Lung-Chien, Kuan-Lin Lee, Ching-Ho Tien, and Hsiang-Yu Wei. "FAPbBr3−xIx perovskite quantum dots red Light-Emitting diodes with double confinement layer structure." Materials Science and Engineering: B 264 (February 2021): 114969. http://dx.doi.org/10.1016/j.mseb.2020.114969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sui, Laizhi, Guangming Niu, Jutao Jiang, Qingyi Li, Yutong Zhang, Guorong Wu, Feiming Li, and Kaijun Yuan. "Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr3 Nanocrystals Encapsulated by Siliceous Nanosphere." Journal of Physical Chemistry C 124, no. 26 (June 12, 2020): 14390–99. http://dx.doi.org/10.1021/acs.jpcc.0c03676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sutanto, Albertus A., Valentin I. E. Queloz, Inés Garcia-Benito, Kari Laasonen, Berend Smit, Mohammad Khaja Nazeeruddin, Olga A. Syzgantseva, and Giulia Grancini. "Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances." APL Materials 7, no. 4 (April 2019): 041110. http://dx.doi.org/10.1063/1.5087246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Slimi, B., M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, and Bernabé Marí. "Synthesis and characterization of perovskite FAPbBr3−x I x thin films for solar cells." Monatshefte für Chemie - Chemical Monthly 148, no. 5 (March 28, 2017): 835–44. http://dx.doi.org/10.1007/s00706-017-1958-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Guo, Yongchang, Bingsuo Zou, Fan Yang, Xuan Zheng, Hui Peng, and Jianping Wang. "Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation." Physical Chemistry Chemical Physics 23, no. 17 (2021): 10153–63. http://dx.doi.org/10.1039/d1cp01136g.

Full text
Abstract:
In organic–inorganic hybrid lead halide perovskites with a naturally arranged layered structure, the dielectric polarization effect caused by the dielectric mismatch between the organic and inorganic layers takes effect in their optical responses.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhao, Haifeng, Hongting Chen, Sai Bai, Chaoyang Kuang, Xiyu Luo, Pengpeng Teng, Chunyang Yin, et al. "High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals with Rationally Designed Aromatic Ligands." ACS Energy Letters 6, no. 7 (June 8, 2021): 2395–403. http://dx.doi.org/10.1021/acsenergylett.1c00812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Long, Yan Meng, Caixia Xu, and Ping Chen. "Room temperature two-photon-pumped random lasers in FAPbBr3/polyethylene oxide (PEO) composite perovskite thin film." RSC Advances 8, no. 64 (2018): 36910–14. http://dx.doi.org/10.1039/c8ra07452f.

Full text
Abstract:
Solution-processed organic–inorganic halide lead perovskites have attracted increasing attention due to their great potential in low-cost, effective, and versatile light emission applications and large-scale portable optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
27

Huang, Haowei, Jiwu Zhao, Yijie Du, Chen Zhou, Menglong Zhang, Zhuan Wang, Yuxiang Weng, et al. "Direct Z-Scheme Heterojunction of Semicoherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force." ACS Nano 14, no. 12 (June 23, 2020): 16689–97. http://dx.doi.org/10.1021/acsnano.0c03146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Subbiah, Anand S., Sumanshu Agarwal, Neha Mahuli, Pradeep Nair, Maikel van Hest, and Shaibal K. Sarkar. "Stable p-i-n FAPbBr3 Devices with Improved Efficiency Using Sputtered ZnO as Electron Transport Layer." Advanced Materials Interfaces 4, no. 8 (February 10, 2017): 1601143. http://dx.doi.org/10.1002/admi.201601143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yao, Mengnan, Jizhong Jiang, Deyu Xin, Yao Ma, Wei Wei, Xiaojia Zheng, and Liang Shen. "High-Temperature Stable FAPbBr3 Single Crystals for Sensitive X-ray and Visible Light Detection toward Space." Nano Letters 21, no. 9 (April 21, 2021): 3947–55. http://dx.doi.org/10.1021/acs.nanolett.1c00700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Shuhui, Xi Ke, Qizan Chen, Runda Huang, Weizhe Wang, Kunqiang Wang, Kaixiang Shu, et al. "In-situ growth behavior of FAPbBr3 on two-dimensional materials for photocatalytic reaction to controllable products." Journal of Catalysis 402 (October 2021): 143–53. http://dx.doi.org/10.1016/j.jcat.2021.08.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Yawen, Byeong Jo Kim, Hua Wu, Gerrit Boschloo, and Erik M. J. Johansson. "Efficient and Stable FAPbBr3 Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer." ACS Applied Energy Materials 4, no. 9 (September 16, 2021): 9276–82. http://dx.doi.org/10.1021/acsaem.1c01512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alehdaghi, Hassan, Anil Kanwat, Mohammad Zirak, Eric Moyen, Won-Chul Choi, and Jin Jang. "Quasi-2D organic cation-doped formamidinium lead bromide (FAPbBr3) perovskite light-emitting diodes by long alkyl chain." Organic Electronics 79 (April 2020): 105626. http://dx.doi.org/10.1016/j.orgel.2020.105626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Trinh, Cong Tai, Duong Nguyen Minh, Kwang Jun Ahn, Youngjong Kang, and Kwang-Geol Lee. "Organic–Inorganic FAPbBr3 Perovskite Quantum Dots as a Quantum Light Source: Single-Photon Emission and Blinking Behaviors." ACS Photonics 5, no. 12 (November 21, 2018): 4937–43. http://dx.doi.org/10.1021/acsphotonics.8b01130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Peng, Shaomin, Zuoliang Wen, Taikang Ye, Xiangtian Xiao, Kaiyang Wang, Junmin Xia, Jiayun Sun, et al. "Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr3 Nanoplatelets with Enhanced Stability and Charge Transport." ACS Applied Materials & Interfaces 12, no. 28 (June 22, 2020): 31863–74. http://dx.doi.org/10.1021/acsami.0c08552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Shuang, Changbo Deng, Lupiao Tao, Zhanpeng Lu, Wenjun Zhang, and Weijie Song. "Crystallization Control and Defect Passivation via a Cross-Linking Additive for High-Performance FAPbBr3 Perovskite Solar Cells." Journal of Physical Chemistry C 125, no. 23 (June 6, 2021): 12551–59. http://dx.doi.org/10.1021/acs.jpcc.1c02987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zu, Yanqing, Jun Xi, Lu Li, Jinfei Dai, Shuangpeng Wang, Feng Yun, Bo Jiao, Hua Dong, Xun Hou, and Zhaoxin Wu. "High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays." ACS Applied Materials & Interfaces 12, no. 2 (December 23, 2019): 2835–41. http://dx.doi.org/10.1021/acsami.9b18140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huo, Benjun, Jie Yang, Yao Bian, Daofu Wu, Julin Feng, Jiaer Zhou, Qiang Huang, Fan Dong, and Xiaosheng Tang. "Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal." Chemical Engineering Journal 406 (February 2021): 126740. http://dx.doi.org/10.1016/j.cej.2020.126740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Xin, Meng Xu, Yingying Hao, Jinghua Fu, Fangbao Wang, Binbin Zhang, Stephanie Bennett, Paul Sellin, Wanqi Jie, and Yadong Xu. "Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr3) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature." ACS Applied Materials & Interfaces 13, no. 13 (March 25, 2021): 15383–90. http://dx.doi.org/10.1021/acsami.1c00174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Diroll, Benjamin T., Arun Mannodi-Kanakkithodi, Maria K. Y. Chan, and Richard D. Schaller. "Spectroscopic Comparison of Thermal Transport at Organic–Inorganic and Organic-Hybrid Interfaces Using CsPbBr3 and FAPbBr3 (FA = Formamidinium) Perovskite Nanocrystals." Nano Letters 19, no. 11 (October 11, 2019): 8155–60. http://dx.doi.org/10.1021/acs.nanolett.9b03502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Han, Dengbao, Muhammad Imran, Mengjiao Zhang, Shuai Chang, Xian-gang Wu, Xin Zhang, Jialun Tang, et al. "Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process." ACS Nano 12, no. 8 (August 6, 2018): 8808–16. http://dx.doi.org/10.1021/acsnano.8b05172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mu, Yan-Fei, Chao Zhang, Meng-Ran Zhang, Wen Zhang, Min Zhang, and Tong-Bu Lu. "Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr3/α-Fe2O3 for Boosting Photocatalysis of CO2 Reduction Coupled with Water Oxidation." ACS Applied Materials & Interfaces 13, no. 19 (May 7, 2021): 22314–22. http://dx.doi.org/10.1021/acsami.1c01718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Filippo Giannazzo, Salvatore Valastro, Giuseppe Fisicaro, Antonino La Magna, Davide Ceratti, and Alessandra Alberti. "CsPbBr3, MAPbBr3, and FAPbBr3 Bromide Perovskite Single Crystals: Interband Critical Points under Dry N2 and Optical Degradation under Humid Air." Journal of Physical Chemistry C 125, no. 9 (February 25, 2021): 4938–45. http://dx.doi.org/10.1021/acs.jpcc.0c10144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Xuemei, Lei Yu, Qi Kang, Lu Chen, Yuchen Jin, Guizheng Zou, and Dazhong Shen. "Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination." Electrochimica Acta 360 (November 2020): 136992. http://dx.doi.org/10.1016/j.electacta.2020.136992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Yanan, Lihui Liu, Wei Wang, Wenzhu Zhang, Hongtao Yu, Jie Qian, Yanfeng Chen, et al. "Enhanced stability and performance of light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals via ligand compensation with n-octylphosphonic acid." Journal of Materials Chemistry C 8, no. 29 (2020): 9936–44. http://dx.doi.org/10.1039/d0tc01694b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Feiming, Lan Yang, Zhixiong Cai, Ke Wei, Fangyuan Lin, Jie You, Tian Jiang, Yiru Wang, and Xi Chen. "Enhancing exciton binding energy and photoluminescence of formamidinium lead bromide by reducing its dimensions to 2D nanoplates for producing efficient light emitting diodes." Nanoscale 10, no. 44 (2018): 20611–17. http://dx.doi.org/10.1039/c8nr04986f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nguyen, Lan Anh Thi, Duong Nguyen Minh, Ye Yuan, Sudeshna Samanta, Lin Wang, Dongzhou Zhang, Naohisa Hirao, Jaeyong Kim, and Youngjong Kang. "Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites." Nanoscale 11, no. 13 (2019): 5868–73. http://dx.doi.org/10.1039/c8nr09780a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Yukang, Chuying Wang, and Zhengtao Deng. "Colloidal synthesis of monolayer-thick formamidinium lead bromide perovskite nanosheets with a lateral size of micrometers." Chemical Communications 54, no. 32 (2018): 4021–24. http://dx.doi.org/10.1039/c8cc01466c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lu, Na, Di Wang, Meina Han, Bojin Zhao, Guozheng Wu, and Zhanggui Hu. "Growth of two-dimensional formamidine lead halide perovskite single-crystalline sheets and their optoelectronic properties." Chemical Communications 57, no. 15 (2021): 1939–42. http://dx.doi.org/10.1039/d0cc06957d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Lung-Chien, Ching-Ho Tien, Zong-Liang Tseng, and Jun-Hao Ruan. "Enhanced Efficiency of MAPbI3 Perovskite Solar Cells with FAPbX3 Perovskite Quantum Dots." Nanomaterials 9, no. 1 (January 19, 2019): 121. http://dx.doi.org/10.3390/nano9010121.

Full text
Abstract:
We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm2, and a fill factor (FF) of 48.6%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Tianfei, Yan Meng, Miaosheng Wang, Mingxing Li, Mahshid Ahmadi, Zuhong Xiong, Shubin Yan, Ping Chen, and Bin Hu. "Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission." Journal of Materials Chemistry C 7, no. 27 (2019): 8287–93. http://dx.doi.org/10.1039/c9tc01906e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography