Academic literature on the topic 'FANCJ DNA Helicase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FANCJ DNA Helicase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "FANCJ DNA Helicase"

1

Gupta, Rigu, Sudha Sharma, Joshua A. Sommers, Mark K. Kenny, Sharon B. Cantor, and Robert M. Brosh. "FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein." Blood 110, no. 7 (October 1, 2007): 2390–98. http://dx.doi.org/10.1182/blood-2006-11-057273.

Full text
Abstract:
The BRCA1 associated C-terminal helicase (BACH1, designated FANCJ) is implicated in the chromosomal instability genetic disorder Fanconi anemia (FA) and hereditary breast cancer. A critical role of FANCJ helicase may be to restart replication as a component of downstream events that occur during the repair of DNA cross-links or double-strand breaks. We investigated the potential interaction of FANCJ with replication protein A (RPA), a single-stranded DNA-binding protein implicated in both DNA replication and repair. FANCJ and RPA were shown to coimmunoprecipitate most likely through a direct interaction of FANCJ and the RPA70 subunit. Moreover, dependent on the presence of BRCA1, FANCJ colocalizes with RPA in nuclear foci after DNA damage. Our data are consistent with a model in which FANCJ associates with RPA in a DNA damage-inducible manner and through the protein interaction RPA stimulates FANCJ helicase to better unwind duplex DNA substrates. These findings identify RPA as the first regulatory partner of FANCJ. The FANCJ-RPA interaction is likely to be important for the role of the helicase to more efficiently unwind DNA repair intermediates to maintain genomic stability.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Yuliang, Kazuo Shin-ya, and Robert M. Brosh. "FANCJ Helicase Defective in Fanconia Anemia and Breast Cancer Unwinds G-Quadruplex DNA To Defend Genomic Stability." Molecular and Cellular Biology 28, no. 12 (April 21, 2008): 4116–28. http://dx.doi.org/10.1128/mcb.02210-07.

Full text
Abstract:
ABSTRACT FANCJ mutations are associated with breast cancer and genetically linked to the bone marrow disease Fanconi anemia (FA). The genomic instability of FA-J mutant cells suggests that FANCJ helicase functions in the replicational stress response. A putative helicase with sequence similarity to FANCJ in Caenorhabditis elegans (DOG-1) and mouse (RTEL) is required for poly(G) tract maintenance, suggesting its involvement in the resolution of alternate DNA structures that impede replication. Under physiological conditions, guanine-rich sequences spontaneously assemble into four-stranded structures (G quadruplexes [G4]) that influence genomic stability. FANCJ unwound G4 DNA substrates in an ATPase-dependent manner. FANCJ G4 unwinding is specific since another superfamily 2 helicase, RECQ1, failed to unwind all G4 substrates tested under conditions in which the helicase unwound duplex DNA. Replication protein A stimulated FANCJ G4 unwinding, whereas the mismatch repair complex MSH2/MSH6 inhibited this activity. FANCJ-depleted cells treated with the G4-interactive compound telomestatin displayed impaired proliferation and elevated levels of apoptosis and DNA damage compared to small interfering RNA control cells, suggesting that G4 DNA is a physiological substrate of FANCJ. Although the FA pathway has been classically described in terms of interstrand cross-link (ICL) repair, the cellular defects associated with FANCJ mutation extend beyond the reduced ability to repair ICLs and involve other types of DNA structural roadblocks to replication.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Yuliang, Joshua A. Sommers, Avvaru N. Suhasini, Thomas Leonard, Julianna S. Deakyne, Alexander V. Mazin, Kazuo Shin-ya, Hiroyuki Kitao, and Robert M. Brosh. "Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes." Blood 116, no. 19 (November 11, 2010): 3780–91. http://dx.doi.org/10.1182/blood-2009-11-256016.

Full text
Abstract:
Abstract Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly conserved cysteine of the iron-sulfur domain. Given the genetic linkage of the FANCJ-A349P allele to FA, we investigated the effect of this particular mutation on the biochemical and cellular functions of the FANCJ protein. Purified recombinant FANCJ-A349P protein had reduced iron and was defective in coupling adenosine triphosphate (ATP) hydrolysis and translocase activity to unwinding forked duplex or G-quadruplex DNA substrates or disrupting protein-DNA complexes. The FANCJ-A349P allele failed to rescue cisplatin or telomestatin sensitivity of a FA-J null cell line as detected by cell survival or γ-H2AX foci formation. Furthermore, expression of FANCJ-A349P in a wild-type background exerted a dominant-negative effect, indicating that the mutant protein interferes with normal DNA metabolism. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind DNA or destabilize protein bound to DNA is required for its role in DNA repair.
APA, Harvard, Vancouver, ISO, and other styles
4

Lowran, Kaitlin, Laura Campbell, Phillip Popp, and Colin G. Wu. "Assembly of a G-Quadruplex Repair Complex by the FANCJ DNA Helicase and the REV1 Polymerase." Genes 11, no. 1 (December 19, 2019): 5. http://dx.doi.org/10.3390/genes11010005.

Full text
Abstract:
The FANCJ helicase unfolds G-quadruplexes (G4s) in human cells to support DNA replication. This action is coupled to the recruitment of REV1 polymerase to synthesize DNA across from a guanine template. The precise mechanisms of these reactions remain unclear. While FANCJ binds to G4s with an AKKQ motif, it is not known whether this site recognizes damaged G4 structures. FANCJ also has a PIP-like (PCNA Interacting Protein) region that may recruit REV1 to G4s either directly or through interactions mediated by PCNA protein. In this work, we measured the affinities of a FANCJ AKKQ peptide for G4s formed by (TTAGGG)4 and (GGGT)4 using fluorescence spectroscopy and biolayer interferometry (BLI). The effects of 8-oxoguanine (8oxoG) on these interactions were tested at different positions. BLI assays were then performed with a FANCJ PIP to examine its recruitment of REV1 and PCNA. FANCJ AKKQ bound tightly to a TTA loop and was sequestered away from the 8oxoG. Reducing the loop length between guanine tetrads increased the affinity of the peptide for 8oxoG4s. FANCJ PIP targeted both REV1 and PCNA but favored interactions with the REV1 polymerase. The impact of these results on the remodeling of damaged G4 DNA is discussed herein.
APA, Harvard, Vancouver, ISO, and other styles
5

White, Malcolm F. "Structure, function and evolution of the XPD family of iron–sulfur-containing 5′→3′ DNA helicases." Biochemical Society Transactions 37, no. 3 (May 20, 2009): 547–51. http://dx.doi.org/10.1042/bst0370547.

Full text
Abstract:
The XPD (xeroderma pigmentosum complementation group D) helicase family comprises a number of superfamily 2 DNA helicases with members found in all three domains of life. The founding member, the XPD helicase, is conserved in archaea and eukaryotes, whereas the closest homologue in bacteria is the DinG (damage-inducible G) helicase. Three XPD paralogues, FancJ (Fanconi's anaemia complementation group J), RTEL (regular of telomere length) and Chl1, have evolved in eukaryotes and function in a variety of DNA recombination and repair pathways. All family members are believed to be 5′→3′ DNA helicases with a structure that includes an essential iron–sulfur-cluster-binding domain. Recent structural, mutational and biophysical studies have provided a molecular framework for the mechanism of the XPD helicase and help to explain the phenotypes of a considerable number of mutations in the XPD gene that can cause three different genetic conditions: xeroderma pigmentosum, trichothiodystrophy and Cockayne's syndrome. Crystal structures of XPD from three archaeal organisms reveal a four-domain structure with two canonical motor domains and two unique domains, termed the Arch and iron–sulfur-cluster-binding domains. The latter two domains probably collaborate to separate duplex DNA during helicase action. The role of the iron–sulfur cluster and the evolution of the XPD helicase family are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Schwab, Rebekka A., Jadwiga Nieminuszczy, Kazuo Shin-ya, and Wojciech Niedzwiedz. "FANCJ couples replication past natural fork barriers with maintenance of chromatin structure." Journal of Cell Biology 201, no. 1 (March 25, 2013): 33–48. http://dx.doi.org/10.1083/jcb.201208009.

Full text
Abstract:
Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer–predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ suppresses heterochromatin spreading by coupling fork movement through replication barriers with maintenance of chromatin structure. We propose that FANCJ plays an essential role in counteracting chromatin compaction associated with unscheduled replication fork stalling and restart, and suppresses tumorigenesis, at least partially, in this replication-specific manner.
APA, Harvard, Vancouver, ISO, and other styles
7

Awate, Sanket, Joshua A. Sommers, Arindam Datta, Sumeet Nayak, Marina A. Bellani, Olivia Yang, Christopher A. Dunn, et al. "FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links." Nucleic Acids Research 48, no. 16 (August 14, 2020): 9161–80. http://dx.doi.org/10.1093/nar/gkaa660.

Full text
Abstract:
Abstract FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ’s catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
APA, Harvard, Vancouver, ISO, and other styles
8

Pugh, Robert A., Masayoshi Honda, Haley Leesley, Alvin Thomas, Yuyen Lin, Mark J. Nilges, Isaac K. O. Cann, and Maria Spies. "The Iron-containing Domain Is Essential in Rad3 Helicases for Coupling of ATP Hydrolysis to DNA Translocation and for Targeting the Helicase to the Single-stranded DNA-Double-stranded DNA Junction." Journal of Biological Chemistry 283, no. 3 (November 20, 2007): 1732–43. http://dx.doi.org/10.1074/jbc.m707064200.

Full text
Abstract:
Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing an iron-sulfur (FeS) cluster. This insertion may represent an auxiliary domain responsible for modifying helicase activity or for conferring specificity for selected DNA repair intermediates. The importance of the FeS cluster for the fine-tuning of Rad3-DNA interactions is illustrated by several clinically relevant point mutations in the FeS domain of human Bach1 (FancJ) and XPD helicases that result in distinct disease phenotypes. Here we analyzed the substrate specificity of the Rad3 (XPD) helicase from Ferroplasma acidarmanus (FacRad3) and probed the importance of the FeS cluster for Rad3-DNA interactions. We found that the FeS cluster stabilizes secondary structure of the auxiliary domain important for coupling of single-stranded (ss) DNA-dependent ATP hydrolysis to ssDNA translocation. Additionally, we observed specific quenching of the Cy5 fluorescent dye when the FeS cluster of a bound helicase is positioned in close proximity to a Cy5 fluorophore incorporated into the DNA molecule. Taking advantage of this Cy5 quenching, we developed an equilibrium assay for analysis of the Rad3 interactions with various DNA substrates. We determined that the FeS cluster-containing domain recognizes the ssDNA-double-stranded DNA junction and positions the helicase in an orientation consistent with duplex unwinding. Although it interacts specifically with the junction, the enzyme binds tightly to ssDNA, and the single-stranded regions of the substrate are the major contributors to the energetics of FacRad3-substrate interactions.
APA, Harvard, Vancouver, ISO, and other styles
9

Mailand, Niels. "A DNA helicase remodeling proteins: How DNA-protein crosslink repair unfolds via FANCJ." Molecular Cell 83, no. 1 (January 2023): 3–5. http://dx.doi.org/10.1016/j.molcel.2022.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yaneva, Denitsa, Justin L. Sparks, Maximilian Donsbach, Shubo Zhao, Pedro Weickert, Rachel Bezalel-Buch, Julian Stingele, and Johannes C. Walter. "The FANCJ helicase unfolds DNA-protein crosslinks to promote their repair." Molecular Cell 83, no. 1 (January 2023): 43–56. http://dx.doi.org/10.1016/j.molcel.2022.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "FANCJ DNA Helicase"

1

Sandhu, Rima. "Roles of DNA Helicase Mph1/FANCM and its Interaction Partner Mte1 in Double Strand Break Processing During Meiosis." Cleveland State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=csu1495657135159849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mishra, Anup. "Targeting RAD51C Pathological Mutants by Synthetic Lethality and Extended Functions of RAD51C/XRCC3 in Mitochondrial Genome Maintenance." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4155.

Full text
Abstract:
To counteract the potentially calamitous effects of genomic instability in the form of double-strand breaks (DSBs), cells have evolved with two major mechanisms. First, DNA non¬homologous end joining (NHEJ) which requires no significant homology, and second, homologous recombination (HR) that uses intact sequences on the sister chromatid or homologous chromosome as a template to repair the broken DNA. Although NHEJ repairs DSBs in all stages of cell cycle; it is generally error-prone due to insertions or deletions of few nucleotides at the breakpoint. In contrast, DSBs that are generated during S and G2 phase of the cell are preferentially repaired by HR that utilizes neighboring sister chromatid as a template. A central role in the HR reaction is promoted by the RAD51 recombinase which polymerizes onto single-stranded DNA (ssDNA), catalyzes pairing and strand invasion with homologous DNA molecule. Assembly of RAD51 monomers onto ssDNA is a relatively slow process and is facilitated by several mediator proteins. The tumor suppressor protein BRCA2 is the best-characterized RAD51 mediator in DSB repair by HR. Many reports in the past two decades have established that RAD51 recruitment at break sites also depends on the RAD51 paralogs. Mammalian cells encode five RAD51 paralogs; RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 which share 20–30% identity at amino acid level with RAD51 and with each other. In addition to their role in HR, RAD51 paralogs have been identified to be involved in DNA damage signaling and replication fork maintenance. In addition, mouse knockout of RAD51 paralogs causes early embryonic lethality. Recent studies show that germline mutations in all five RAD51 paralogs cause various types of cancer including breast and ovarian cancers. Pedigree analyses revealed that similar to BRCA1 and BRCA2, pathological missense mutants of RAD51C were of high penetrance. Historically, defects in the DNA repair pathways have been exploited for cancer chemo-and radiotherapy. In an attempt to develop better cancer therapeutic approaches, the concept of synthetic lethality for cancer therapy has been recently proposed. One such example is the use of PARP1 inhibitors to treat tumors carrying mutations in HR genes, such as BRCA1 and BRCA2. Inhibition of PARP1 compromises single-strand break repair (SSBR) pathway. Upon replication fork collision, the accumulated SSBs are converted to one-ended DSBs, which are efficiently repaired by the HR for cell survival. As a result, HR-deficient tumors with BRCA1-or BRCA2-deficiency exhibit extreme sensitivity to PARP-1 inhibition resulting in cell death. This approach was highly successful in targeting tumors with severe defects in Fanconi anemia (FA)-BRCA proteins which led to PARP inhibitors being tested in clinical trials. However, targeting cancer cells that express hypomorphic mutants of HR proteins is highly challenging since such partially functional mutants require a high dosage of PARP inhibitors for effective sensitization which renders normal cells toxic and can also lead to tumor resistance. The pathological RAD51C mutants that were identified in breast and ovarian cancer patients are hypomorphic with partial repair function. The first part of my Ph.D. thesis is aimed at developing an effective strategy to target cells that express hypomorphic RAD51C mutants. To this end, we used RAD51C deficient CL-V4B hamster cells and expressed the pathological RAD51C mutants associated with breast and ovarian cancers. Cells expressing RAD51C mutants that were severely defective for HR function exhibited high sensitivity to low doses of PARP1 inhibitor (4-ANI). These cells also accumulated in G2/M and displayed chromosomal aberrations. However, RAD51C mutants that were hypomorphic were partially sensitized even at higher concentrations of PARP inhibitor. RAD51C/ CL-V4B cells displayed higher PARP activity compared WT V79B cells. Notably, PARP activity was directly proportional to the sensitivity of RAD51C mutants towards 4-ANI where highly sensitive RAD51C mutants showed higher PARP activity and vice versa. Increased PARP activity was associated with replication stress as confirmed by an increase of PARP activity in cells treated with replication stress inducer, hydroxyurea (HU). Notably, treatment of CL-V4B cells with PARP1 inhibitor (4-ANI) resulted in the accumulation of PARP1 onto the chromatin which eventually led to the formation of DSBs which suggests that PARP1 entrapment triggers replication fork collapse leading to one-ended DSBs in S-phase. To further understand the molecular mechanism of PARP inhibitor-induced toxicity of RAD51C deficient cells, we carried out chromatin fractionation from V79B and CL-V4B cells at varying time points of 4-ANI treatment. Surprisingly, there was an enhanced loading of NHEJ proteins on chromatin in CL-V4B compared to V79B cells. Consistently, an increased error-prone NHEJ was observed in CL-V4B cells which resulted in increased chromosomal aberrations and cell death. Furthermore, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV restored this phenotype. Thus, error-prone NHEJ in collaboration with PARP inhibition sensitizes RAD51C deficient cells. Since ionizing radiation (IR) is known to stimulate NHEJ activity, we hypothesized that irradiation in combination with PARP inhibitor would further sensitize the RAD51C deficient tumors. Strikingly, stimulation of NHEJ by a low dose of IR in the PARP inhibitor-treated RAD51C deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity ‘synergistically’. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a ‘synergistic approach’ and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other HR pathway genes. In addition to nuclear functions, RAD51 paralogs RAD51C and XRCC3 have been shown to localize to mitochondria and contribute to mitochondrial genome stability. However, the molecular mechanism by which RAD51 and RAD51 paralogs carry out this function is unclear. The second part of my thesis was dedicated to studying whether RAD51C/XRCC3 facilitates mitochondrial DNA replication and the underlying mechanism by which RAD51C/XRCC3 participate in mitochondrial genome maintenance during unperturbed conditions. Using mitochondrial subfractionation we show that RAD51 and RAD51 paralogs (RAD51C and XRCC3) are an integral part of mitochondrial nucleoid and absence of RAD51C/XRCC3 and RAD51 prevents the restoration of mtDNA upon depletion of mtDNA. This suggests that RAD51 and RAD5C/XRCC3 participate in mtDNA replication. To determine whether this function of RAD51C is exclusive to mitochondria we expressed NLS mutant of RAD51C which was defective for nuclear functions. Interestingly, cells expressing RAD51C R366Q were able to efficiently repopulate the depleted mtDNA after EtBr stress similar to that of WT RAD51C expressing cells, suggesting a nuclear independent function of RAD51C in mitochondrial genome maintenance. mtDNA-IP analysis revealed that RAD51 and RAD51C/XRCC3 are recruited to the mtDNA control regions spontaneously along with mitochondrial polymerase POLG. Moreover, RAD51 was found to associate with TWINKLE helicase and this association was required for the recruitment of RAD51 and RAD51C/XRCC3 at the D-loop. As in nucleus, mtDNA replisome also encounters replication stresses like altered dNTP pools, a collision between replication and transcription machinery, rNTP incorporation, oxidative stress which hampers replication fork progression. Using Dideoxycytidine (ddC) as replication stress inducer in mitochondria, we observed nearly 3-4 fold enrichment of RAD51, RAD51C, XRCC3 and POLG at the mtDNA mutation hotspot region D310. Notably, RAD51C/XRCC3 deficient cells exhibited increased lesions in the mitochondrial genome spontaneously, pointing towards the importance of RAD51C/XRCC3 in the prevention of mtDNA lesions. Moreover, RAD51C/XRCC3 deficiency prevented the repair of ddC induced mtDNA lesions. Given that RAD51C/XRCC3 and RAD51 are localized to mtDNA control regions along with POLG and their deficiency affects mtDNA replication we were curious to learn the effect of RAD51C/XRCC3 deficiency on the recruitment of POLG in mtDNA. To test this we performed a mtDNA-IP assay of POLG in RAD51C deficient cells which revealed that deficiency of RAD51C/XRCC3 and RAD51 affected the recruitment of POLG on mtDNA control regions. As a consequence RAD51C/XRCC3 deficient cells exhibit aberrant mitochondrial functions. These findings propose a mechanism for a direct role of RAD51C/XRCC3 in maintaining the mtDNA integrity under replication stress conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography