To see the other types of publications on this topic, follow the link: FAMILIAL AMYOTROPHIC LATERAL SCLEROSIS.

Journal articles on the topic 'FAMILIAL AMYOTROPHIC LATERAL SCLEROSIS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'FAMILIAL AMYOTROPHIC LATERAL SCLEROSIS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Eestnes, Arnulf, and Svein Ivar Mellgren. "Familial amyotrophic lateral sclerosis." Acta Neurologica Scandinavica 61, no. 3 (January 29, 2009): 192–99. http://dx.doi.org/10.1111/j.1600-0404.1980.tb01482.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boylan, Kevin. "Familial Amyotrophic Lateral Sclerosis." Neurologic Clinics 33, no. 4 (November 2015): 807–30. http://dx.doi.org/10.1016/j.ncl.2015.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hand, Collette K., and Guy A. Rouleau. "Familial amyotrophic lateral sclerosis." Muscle & Nerve 25, no. 2 (February 2002): 135–59. http://dx.doi.org/10.1002/mus.10001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Millichap, J. Gordon. "Juvenile Familial Amyotrophic Lateral Sclerosis." Pediatric Neurology Briefs 12, no. 7 (July 1, 1998): 56. http://dx.doi.org/10.15844/pedneurbriefs-12-7-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Savinova, A. V., N. A. Shnayder, and R. F. Nasyrova. "Genetics of familial amyotrophic lateral sclerosis." Bulletin of Siberian Medicine 20, no. 3 (October 22, 2021): 193–202. http://dx.doi.org/10.20538/1682-0363-2021-3-193-202.

Full text
Abstract:
To analyze results of the studies covering modern scientific views on the genetics of familial amyotrophic lateral sclerosis (FALS).We searched for full-text publications containing the key words “amyotrophic lateral sclerosis”, “FALS”, and “genetics” in the literature for the past 10 years in both Russian and English in eLibrary, PubMed, Web of Science, and OMIM databases. In addition, the review includes earlier publications of historical interest.This review summarizes all existing information on four most widespread genes associated with FALS: SOD1, TARDBP, FUS, and C9ORF72. The review also describes the functions of these genes and possible pathogenetic mechanisms of motor neuron death in amyotrophic lateral sclerosis (ALS), such as mitochondrial dysfunction, oxidative stress, glutamate excitotoxicity, damage to axonal transport components, and pathological neurofilament aggregation.As modern methods of molecular genetic diagnostics evolve, our knowledge about multifactorial FALS genetics expands. This information should be taken into consideration in clinical practice of neurologists. Information about the genes associated with ALS and understanding of particular pathogenetic mechanisms of the disease play a key role in the development of effective therapeutic strategies.
APA, Harvard, Vancouver, ISO, and other styles
6

Freischmidt, Axel, Kathrin Müller, Lisa Zondler, Patrick Weydt, Alexander E. Volk, Anže Lošdorfer Božič, Michael Walter, et al. "Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers." Brain 137, no. 11 (September 5, 2014): 2938–50. http://dx.doi.org/10.1093/brain/awu249.

Full text
Abstract:
Abstract Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Brenner, David, Kathrin Müller, Thomas Wieland, Patrick Weydt, Sarah Böhm, Dorothée Lulé, Annemarie Hübers, et al. "NEK1mutations in familial amyotrophic lateral sclerosis." Brain 139, no. 5 (March 5, 2016): e28-e28. http://dx.doi.org/10.1093/brain/aww033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valdmanis, P. N., and G. A. Rouleau. "Genetics of familial amyotrophic lateral sclerosis." Neurology 70, no. 2 (January 7, 2008): 144–52. http://dx.doi.org/10.1212/01.wnl.0000296811.19811.db.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Fang, Freya Kamel, Paul Lichtenstein, Rino Bellocco, Pär Sparén, Dale P. Sandler, and Weimin Ye. "Familial aggregation of amyotrophic lateral sclerosis." Annals of Neurology 66, no. 1 (July 2009): 94–99. http://dx.doi.org/10.1002/ana.21580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Byrne, Susan, and Orla Hardiman. "Familial aggregation in amyotrophic lateral sclerosis." Annals of Neurology 67, no. 4 (October 2, 2009): 554. http://dx.doi.org/10.1002/ana.21883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Byrne, Susan, Peter Bede, Marwa Elamin, Kevin Kenna, Catherine Lynch, Russell McLaughlin, and Orla Hardiman. "Proposed criteria for familial amyotrophic lateral sclerosis." Amyotrophic Lateral Sclerosis 12, no. 3 (January 5, 2011): 157–59. http://dx.doi.org/10.3109/17482968.2010.545420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pfister, Ted, Ramnik Sekhon, Mitchell White, Patrick Scott, Susan Munro, Megan Johnston, Sanjay Kalra, and Lawrence Korngut. "Familial amyotrophic lateral sclerosis in Alberta, Canada." Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 14, no. 4 (January 4, 2013): 273–77. http://dx.doi.org/10.3109/21678421.2012.754044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Siddique, T., M. A. Pericak-Vance, B. R. Brooks, R. P. Roos, W. Y. Hung, J. P. Antel, T. L. Munsat, et al. "Linkage analysis in familial amyotrophic lateral sclerosis." Neurology 39, no. 7 (July 1, 1989): 919. http://dx.doi.org/10.1212/wnl.39.7.919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Özge, Aynur, Hakan Kaleagas, Cengiz Tataroglu, and Özgür ünal. "Juvenile familial amyotrophic lateral sclerosis: Two siblings." Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 3, no. 3 (January 2002): 163–64. http://dx.doi.org/10.1080/146608202760834184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yokoseki, Akio, Atsushi Shiga, Chun-Feng Tan, Asako Tagawa, Hiroyuki Kaneko, Akihide Koyama, Hiroto Eguchi, et al. "TDP-43mutation in familial amyotrophic lateral sclerosis." Annals of Neurology 63, no. 4 (April 2008): 538–42. http://dx.doi.org/10.1002/ana.21392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Faes, Liesbeth, and Geert Callewaert. "Mitochondrial dysfunction in familial amyotrophic lateral sclerosis." Journal of Bioenergetics and Biomembranes 43, no. 6 (November 10, 2011): 587–92. http://dx.doi.org/10.1007/s10863-011-9393-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Praline, Julien, Anne-Marie Guennoc, Patrick Vourc'h, Bertrand De Toffol, and Philippe Corcia. "Primary lateral sclerosis may occur within familial amyotrophic lateral sclerosis pedigrees." Amyotrophic Lateral Sclerosis 11, no. 1-2 (January 2010): 154–56. http://dx.doi.org/10.3109/17482960802483038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Souza, Paulo Victor Sgobbi de, Wladimir Bocca Vieira de Rezende Pinto, Marco Antônio Troccoli Chieia, and Acary Souza Bulle Oliveira. "Clinical and genetic basis of familial amyotrophic lateral sclerosis." Arquivos de Neuro-Psiquiatria 73, no. 12 (October 13, 2015): 1026–37. http://dx.doi.org/10.1590/0004-282x20150161.

Full text
Abstract:
Amyotrophic lateral sclerosis represents the most common neurodegenerative disease leading to upper and lower motor neuron compromise. Although the vast majority of cases are sporadic, substantial gain has been observed in the knowledge of the genetic forms of the disease, especially of familial forms. There is a direct correlation between the profile of the mutated genes in sporadic and familial forms, highlighting the main role ofC9orf72 gene in the clinical forms associated with frontotemporal dementia spectrum. The different genes related to familial and sporadic forms represent an important advance on the pathophysiology of the disease and genetic therapeutic perspectives, such as antisense therapy. The objective of this review is to signal and summarize clinical and genetic data related to familial forms of amyotrophic lateral sclerosis.
APA, Harvard, Vancouver, ISO, and other styles
19

Vucic, Steve, and Matthew Kiernan. "Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis." Current Molecular Medicine 9, no. 3 (April 1, 2009): 255–72. http://dx.doi.org/10.2174/156652409787847173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nalini, A., G. Yeshraj, and M. Veerendrakumar. "Familial amyotrophic lateral sclerosis: First report from India." Neurology India 54, no. 3 (2006): 304. http://dx.doi.org/10.4103/0028-3886.27161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vucic, Steve, Garth A. Nicholson, Adriano Chio, and Matthew C. Kiernan. "Apparent anticipation in SOD1 familial amyotrophic lateral sclerosis." Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 14, no. 5-6 (February 15, 2013): 452–56. http://dx.doi.org/10.3109/21678421.2013.764569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Finsterer, J., and B. Mamoli. "Liquorpheresis (CSF filtration) in familial amyotrophic lateral sclerosis." Spinal Cord 37, no. 8 (August 1999): 592–93. http://dx.doi.org/10.1038/sj.sc.3100857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Leone, M. "Parental sex effect in familial amyotrophic lateral sclerosis." Neurology 41, no. 8 (August 1, 1991): 1292. http://dx.doi.org/10.1212/wnl.41.8.1292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Beaujeux, T. P., E. L. Schofield, P. J. Shaw, and J. D. Wood. "SOD1 aggregation in familial amyotrophic lateral sclerosis (FALS)." Biochemical Society Transactions 30, no. 3 (June 1, 2002): A85. http://dx.doi.org/10.1042/bst030a085b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Maurelli, M., E. Marchioni, D. Bosone, S. Boni, W. Bolzani, R. Cerretano, F. Simonetti, and F. Savoldi. "Familial adult amyotrophic lateral sclerosis: report of cases." Italian Journal of Neurological Sciences 13, no. 1 (February 1992): 75–79. http://dx.doi.org/10.1007/bf02222892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Swash, Michael, and Nigel Leigh. "Criteria for Diagnosis of Familial Amyotrophic Lateral Sclerosis." Neuromuscular Disorders 2, no. 1 (January 1992): 7–9. http://dx.doi.org/10.1016/0960-8966(92)90020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mulder, D., L. Kurland, K. Offord, and C. Beard. "Familial adult motor neuron disease: amyotrophic lateral sclerosis." Neurology 36, no. 4 (April 1, 1986): 511–17. http://dx.doi.org/10.1212/wnl.36.4.511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gurney, Mark E. "Transgenic animal models of familial amyotrophic lateral sclerosis." Journal of Neurology 244, S2 (May 1997): S15—S20. http://dx.doi.org/10.1007/bf03160575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gros-Louis, Francois, Claudia Gaspar, and Guy A. Rouleau. "Genetics of familial and sporadic amyotrophic lateral sclerosis." Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1762, no. 11-12 (November 2006): 956–72. http://dx.doi.org/10.1016/j.bbadis.2006.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dilliott, Allison A., Catherine M. Andary, Meaghan Stoltz, Andrey A. Petropavlovskiy, Sali M. K. Farhan, and Martin L. Duennwald. "DnaJC7 in Amyotrophic Lateral Sclerosis." International Journal of Molecular Sciences 23, no. 8 (April 7, 2022): 4076. http://dx.doi.org/10.3390/ijms23084076.

Full text
Abstract:
Protein misfolding is a common basis of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Misfolded proteins, such as TDP-43, FUS, Matrin3, and SOD1, mislocalize and form the hallmark cytoplasmic and nuclear inclusions in neurons of ALS patients. Cellular protein quality control prevents protein misfolding under normal conditions and, particularly, when cells experience protein folding stress due to the fact of increased levels of reactive oxygen species, genetic mutations, or aging. Molecular chaperones can prevent protein misfolding, refold misfolded proteins, or triage misfolded proteins for degradation by the ubiquitin–proteasome system or autophagy. DnaJC7 is an evolutionarily conserved molecular chaperone that contains both a J-domain for the interaction with Hsp70s and tetratricopeptide domains for interaction with Hsp90, thus joining these two major chaperones’ machines. Genetic analyses reveal that pathogenic variants in the gene encoding DnaJC7 cause familial and sporadic ALS. Yet, the underlying ALS-associated molecular pathophysiology and many basic features of DnaJC7 function remain largely unexplored. Here, we review aspects of DnaJC7 expression, interaction, and function to propose a loss-of-function mechanism by which pathogenic variants in DNAJC7 contribute to defects in DnaJC7-mediated chaperoning that might ultimately contribute to neurodegeneration in ALS.
APA, Harvard, Vancouver, ISO, and other styles
31

Frecker, M. F., F. C. Fraser, E. Andermann, and W. E. M. Pryse-Phillips. "Association Between Alzheimer Disease and Amyotrophic Lateral Sclerosis?" Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 17, no. 1 (February 1990): 12–14. http://dx.doi.org/10.1017/s0317167100029942.

Full text
Abstract:
ABSTRACT:We report two cases of Alzheimer disease (AD) — one of them familial — in which the patient also had amyotrophic lateral sclerosis (ALS), and one patient with familial AD who had a son with ALS. Three further cases of probable ALS were found in pedigrees of AD reported from the literature. It is proposed that this association is not coincidental, but may suggest an etiological factor in common.
APA, Harvard, Vancouver, ISO, and other styles
32

Lehky, Tanya, and Christopher Grunseich. "Juvenile Amyotrophic Lateral Sclerosis: A Review." Genes 12, no. 12 (November 30, 2021): 1935. http://dx.doi.org/10.3390/genes12121935.

Full text
Abstract:
Juvenile amyotrophic lateral sclerosis (JALS) is a rare group of motor neuron disorders with gene association in 40% of cases. JALS is defined as onset before age 25. We conducted a literature review of JALS and gene mutations associated with JALS. Results of the literature review show that the most common gene mutations associated with JALS are FUS, SETX, and ALS2. In familial cases, the gene mutations are mostly inherited in an autosomal recessive pattern and mutations in SETX are inherited in an autosomal dominant fashion. Disease prognosis varies from rapidly progressive to an indolent course. Distinct clinical features may emerge with specific gene mutations in addition to the clinical finding of combined upper and lower motor neuron degeneration. In conclusion, patients presenting with combined upper and lower motor neuron disorders before age 25 should be carefully examined for genetic mutations. Hereditary patterns and coexisting features may be useful in determining prognosis.
APA, Harvard, Vancouver, ISO, and other styles
33

Navarro, Etiane, and Charles J. Golden. "A-151 Cognitive Impairment in Amyotrophic Lateral Sclerosis." Archives of Clinical Neuropsychology 36, no. 6 (August 30, 2021): 1205. http://dx.doi.org/10.1093/arclin/acab062.169.

Full text
Abstract:
Abstract Objective Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease caused by degeneration of the upper and lower motor neurons. This literature review examines the recurring etiology of cognitive impairments in ALS through empirical literature. The current study explores ALS across different subtypes and potential cognitive impairments. Two classifications are primarily examined ALS, and ALS with frontotemporal dementia (ALS-FTD). Involving three categories: familial inheritance pattern, genetic mutation, or sporadic. Neuropsychological studies affirm cognitive impairments in individuals diagnosed with ALS and ALS-FTD. Data Selection Data was culled from the American Psychological Association (PsycInfo), PubMed, Google Scholar. Terms used in this literature review include cognitive impairment in ALS and ALS-FTD, executive function deficiencies in ALS, neuropsychology in ALS, neuropsychological deficits in ALS, neuropsychological assessments for ALS, cognitive impairments in familial ALS, genetic ALS, and sporadic ALS, familial ALS, sporadic ALS, genetic mutations involved in ALS. Search dates December 20–23 of 2020 and March 3–4 of 2021. A total of 40 studies were examined. Data Synthesis ALS-patients demonstrate a significant cognitive impairment. However, influencing comorbidities accompanying the disease may be contributing to these impairments. Researchers employed neuroimaging and neuropsychological batteries to further understand influencing factors involved in ALS and cognition. Conclusions Researchers now understand ALS as a multi-symptomatic disorder and acknowledge the presence of cognitive impairments at various encased levels. There are limitations in neuropsychological batteries that accommodate for executive dysfunctions observed in ALS patients. Future studies should explore neuropsychological assessments that accommodate for motor deficits and dysarthria when assessing cognitive impairment in ALS patients.
APA, Harvard, Vancouver, ISO, and other styles
34

Ebben, Matthew R., Mona Shahbazi, Dale J. Lange, and Ana C. Krieger. "REM behavior disorder associated with familial amyotrophic lateral sclerosis." Amyotrophic Lateral Sclerosis 13, no. 5 (June 7, 2012): 473–74. http://dx.doi.org/10.3109/17482968.2012.673172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Turner, Bradley, and Julie Atkin. "ER Stress and UPR in Familial Amyotrophic Lateral Sclerosis." Current Molecular Medicine 6, no. 1 (February 1, 2006): 79–86. http://dx.doi.org/10.2174/156652406775574550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Talbot, K. "Familial versus sporadic amyotrophic lateral sclerosis--a false dichotomy?" Brain 134, no. 12 (November 3, 2011): 3429–34. http://dx.doi.org/10.1093/brain/awr296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Iwasaki, Yasuo, Masao Kinoshita, and Ken Ikeda. "Concurrence of familial amyotrophic lateral sclerosis with ribbing's disease." International Journal of Neuroscience 58, no. 3-4 (January 1991): 289–92. http://dx.doi.org/10.3109/00207459108985445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, L., B. Popko, and R. P. Roos. "The unfolded protein response in familial amyotrophic lateral sclerosis." Human Molecular Genetics 20, no. 5 (December 15, 2010): 1008–15. http://dx.doi.org/10.1093/hmg/ddq546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Orrell, RichardW, AndrewW King, and JackieS deBelleroche. "Parental influence on inheritance of familial amyotrophic lateral sclerosis." Lancet 345, no. 8946 (February 1995): 391–92. http://dx.doi.org/10.1016/s0140-6736(95)90381-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Millecamps, Stéphanie, Séverine Boillée, Elodie Chabrol, William Camu, Cécile Cazeneuve, François Salachas, Pierre-François Pradat, et al. "Screening of OPTN in French familial amyotrophic lateral sclerosis." Neurobiology of Aging 32, no. 3 (March 2011): 557.e11–557.e13. http://dx.doi.org/10.1016/j.neurobiolaging.2010.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Koppers, Max, Marka M. van Blitterswijk, Lotte Vlam, Paulina A. Rowicka, Paul W. J. van Vught, Ewout J. N. Groen, Wim G. M. Spliet, et al. "VCP mutations in familial and sporadic amyotrophic lateral sclerosis." Neurobiology of Aging 33, no. 4 (April 2012): 837.e7–837.e13. http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

van Doormaal, Perry T. C., Wouter van Rheenen, Marka van Blitterswijk, Raymond D. Schellevis, Helenius J. Schelhaas, Marianne de Visser, Anneke J. van der Kooi, Jan H. Veldink, and Leonard H. van den Berg. "UBQLN2 in familial amyotrophic lateral sclerosis in the Netherlands." Neurobiology of Aging 33, no. 9 (September 2012): 2233.e7–2233.e8. http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hemminki, Kari, Xinjun Li, Jan Sundquist, and Kristina Sundquist. "Familial risks for amyotrophic lateral sclerosis and autoimmune diseases." neurogenetics 10, no. 2 (December 17, 2008): 111–16. http://dx.doi.org/10.1007/s10048-008-0164-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Köroğlu, Çiğdem, Rezzak Yılmaz, Mine Hayriye Sorgun, Seyhun Solakoğlu, and Özden Şener. "GNE missense mutation in recessive familial amyotrophic lateral sclerosis." neurogenetics 18, no. 4 (October 31, 2017): 237–43. http://dx.doi.org/10.1007/s10048-017-0527-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shang, Yulei, and Eric J. Huang. "Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis." Brain Research 1647 (September 2016): 65–78. http://dx.doi.org/10.1016/j.brainres.2016.03.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lemmens, R., V. Race, N. Hersmus, G. Matthijs, L. Van Den Bosch, P. Van Damme, B. Dubois, S. Boonen, A. Goris, and W. Robberecht. "TDP-43 M311V mutation in familial amyotrophic lateral sclerosis." Journal of Neurology, Neurosurgery & Psychiatry 80, no. 3 (March 1, 2009): 354–55. http://dx.doi.org/10.1136/jnnp.2008.157677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wicks, P., S. Abrahams, B. Papps, A. Al-Chalabi, C. E. Shaw, P. N. Leigh, and L. H. Goldstein. "SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis." Journal of Neurology 256, no. 2 (February 2009): 234–41. http://dx.doi.org/10.1007/s00415-009-0078-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fecto, Faisal. "SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis." Archives of Neurology 68, no. 11 (November 1, 2011): 1440. http://dx.doi.org/10.1001/archneurol.2011.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rademakers, Rosa, Heather Stewart, Mariely Dejesus-Hernandez, Charles Krieger, Neill Graff-Radford, Marife Fabros, Hannah Briemberg, Neil Cashman, Andrew Eisen, and Ian R. A. Mackenzie. "Fusgene mutations in familial and sporadic amyotrophic lateral sclerosis." Muscle & Nerve 42, no. 2 (April 16, 2010): 170–76. http://dx.doi.org/10.1002/mus.21665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Orell, Richard W., James Habgood, Petter Rudge, Russell J. M. Lane, and Jackie S. de Belleroche. "Difficulties in distinguishing sporadic from familial amyotrophic lateral sclerosis." Annals of Neurology 39, no. 6 (June 1996): 810–12. http://dx.doi.org/10.1002/ana.410390620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography