Journal articles on the topic 'Facture toughness; Crack growth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Facture toughness; Crack growth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kuang, Jia Cai, Hong Lei Wang, Xin Gui Zhou, and Ying Jun Deng. "Fracture Toughness of CNTs/AlN Ceramics Tested by Indentation." Advanced Materials Research 177 (December 2010): 151–53. http://dx.doi.org/10.4028/www.scientific.net/amr.177.151.
Full textBlugan, Gurdial, Richard Dobedoe, I. Gee, Nina Orlovskaya, and Jakob Kübler. "Failure Behaviour of High Toughness Multi-Layer Si3N4 and Si3N4-TiN Based Laminates." Key Engineering Materials 290 (July 2005): 175–82. http://dx.doi.org/10.4028/www.scientific.net/kem.290.175.
Full textSuresh, S., and A. K. Vasudevan. "On the relationship between crack initiation toughness and crack growth toughness." Materials Science and Engineering 79, no. 2 (May 1986): 183–90. http://dx.doi.org/10.1016/0025-5416(86)90403-9.
Full textGu, Inhoy. "Crack-Tip-Acuity Effect on Crack Growth Initiation." Journal of Engineering Materials and Technology 109, no. 3 (July 1, 1987): 216–20. http://dx.doi.org/10.1115/1.3225966.
Full textQi, Hong Yu, Xiao Guang Yang, and Rui Li. "Interfacial Fracture Toughness of APS Thermal Barrier Coating under High Temperature." Key Engineering Materials 348-349 (September 2007): 181–84. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.181.
Full textPham, Hai Vu, and Makoto Nanko. "Crack-Healing Function of Nano-Ni/(ZrO2+Al2O3) Hybrid Materials." Materials Science Forum 804 (October 2014): 179–82. http://dx.doi.org/10.4028/www.scientific.net/msf.804.179.
Full textPavelko, Vitalijs. "On the Crack Quasi-Static Growth." Key Engineering Materials 827 (December 2019): 312–17. http://dx.doi.org/10.4028/www.scientific.net/kem.827.312.
Full textChasiotis, I., S. W. Cho, and K. Jonnalagadda. "Fracture Toughness and Subcritical Crack Growth in Polycrystalline Silicon." Journal of Applied Mechanics 73, no. 5 (December 10, 2005): 714–22. http://dx.doi.org/10.1115/1.2172268.
Full textZhang, M.-J., F.-X. Zhi, and X.-R. Su. "Fracture toughness and crack growth mechanism for multiphase polymers." Polymer Engineering and Science 29, no. 16 (August 1989): 1142–46. http://dx.doi.org/10.1002/pen.760291612.
Full textSevillano, J. Gil. "Toughness and Fatigue Crack Growth Rate of Textured Metals." Textures and Microstructures 12, no. 1-3 (January 1, 1990): 77–87. http://dx.doi.org/10.1155/tsm.12.77.
Full textWei, Yang. "Toughness increment by crack growth in toughened structural materials." Acta Mechanica Sinica 7, no. 2 (May 1991): 131–39. http://dx.doi.org/10.1007/bf02486840.
Full textFager, Leif-Olof, and J. L. Bassani. "Stable Crack Growth in Rate-Dependent Materials With Damage." Journal of Engineering Materials and Technology 115, no. 3 (July 1, 1993): 252–61. http://dx.doi.org/10.1115/1.2904215.
Full textMaksimov, A. B., I. P. Shevchenko, and I. S. Erokhina. "Determination of the metal toughness components in impact-bending test." Industrial laboratory. Diagnostics of materials 84, no. 12 (December 20, 2018): 68–72. http://dx.doi.org/10.26896/1028-6861-2018-84-12-68-72.
Full textDonners, M. A. H., L. J. M. G. Dortmans, and G. de With. "Adsorption and Kinetic Effects on Crack Growth in MnZn Ferrites." Journal of Materials Research 15, no. 6 (June 2000): 1377–88. http://dx.doi.org/10.1557/jmr.2000.0200.
Full textLiechti, K. M., and Y. S. Chai. "Three Dimensional Effects in Interfacial Crack Growth." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S271—S273. http://dx.doi.org/10.1115/1.3120825.
Full textStehn, Lars. "Fracture toughness and crack growth of brackish ice using chevron-notched specimens." Journal of Glaciology 40, no. 135 (1994): 415–26. http://dx.doi.org/10.1017/s0022143000007504.
Full textStehn, Lars. "Fracture toughness and crack growth of brackish ice using chevron-notched specimens." Journal of Glaciology 40, no. 135 (1994): 415–26. http://dx.doi.org/10.3189/s0022143000007504.
Full textOshima, Sota, Hisayoshi Ishida, Ryota Tanegashima, Takayuki Kusaka, and Tomo Takeda. "Experimental Characterization of Crack Growth Behavior in Adhesive Interface under Impact Loading." Key Engineering Materials 715 (September 2016): 116–21. http://dx.doi.org/10.4028/www.scientific.net/kem.715.116.
Full textLiu, Wen Lin, Wei Han, Zhi Tao Mu, Xiu Xia Wang, and Da Zhao Yu. "Research on Crack Growth Life and Sensibility Analysis of Influence Parameters in Crack Growth Life." Advanced Materials Research 317-319 (August 2011): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.207.
Full textWatt, D. F., Pamela Nadin, and S. B. Biner. "The Fracture Toughness of Hardened Tool Steels." Journal of Engineering Materials and Technology 109, no. 4 (October 1, 1987): 314–18. http://dx.doi.org/10.1115/1.3225983.
Full textKonosu, Shinji, Shinya Takagi, and Hidenori Shimazu. "110 Estimation of Stable Crack Growth in Fracture Toughness Testing." Proceedings of Ibaraki District Conference 2011.19 (2011): 19–20. http://dx.doi.org/10.1299/jsmeibaraki.2011.19.19.
Full textSingh, A., L. Tang, M. Dao, L. Lu, and S. Suresh. "Fracture toughness and fatigue crack growth characteristics of nanotwinned copper." Acta Materialia 59, no. 6 (April 2011): 2437–46. http://dx.doi.org/10.1016/j.actamat.2010.12.043.
Full textHornbogen, Erhard. "Fracture toughness and fatigue crack growth of grey cast irons." Journal of Materials Science 20, no. 11 (November 1985): 3897–905. http://dx.doi.org/10.1007/bf00552378.
Full textYang, Guoliang, Xuguang Li, Jingjiu Bi, and Shuaijie Cheng. "Dynamic Crack Initiation Toughness of Shale under Impact Loading." Energies 12, no. 9 (April 30, 2019): 1636. http://dx.doi.org/10.3390/en12091636.
Full textFitzgerald, A. M., R. S. Iyer, R. H. Dauskardt, and T. W. Kenny. "Subcritical Crack Growth in Single-crystal Silicon Using Micromachined Specimens." Journal of Materials Research 17, no. 3 (March 2002): 683–92. http://dx.doi.org/10.1557/jmr.2002.0097.
Full textZhu, Li Wei, Zhi Shou Zhu, Xin Nan Wang, and Chun Xiao Cao. "The Effect of Microstructure on Mechanical Properties and Fatigue Crack Growth Behavior of TC4-DT Alloy." Advanced Materials Research 490-495 (March 2012): 3767–72. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.3767.
Full textShenoy, Vijay B., and R. Krishna Kumar. "Dynamic Crack Growth in a Power Hardening Viscoplastic Material." Journal of Engineering Materials and Technology 116, no. 4 (October 1, 1994): 465–70. http://dx.doi.org/10.1115/1.2904314.
Full textČamagić, Ivica, Nemanja Vasić, Predrag Živković, Aleksandar Radović, Tamara Sedmak, Meri Burzić, and Zijah Burzić. "Compatibility of Endurance Limit and Fatigue Crack Growth Parameters in Evaluation of Low Alloyed Steel Welded Joint Behaviour." Advanced Materials Research 1111 (July 2015): 121–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1111.121.
Full textMa, Gang, Jiangteng Li, and Huiwen Wang. "Related Rule Study of Subcritical Crack Growth and Threshold Values in Transversely Isotropic Slates." Geofluids 2020 (October 29, 2020): 1–15. http://dx.doi.org/10.1155/2020/8843381.
Full textQiu, L. P., En Chun Zhu, Hua Zhang Zhou, and L. Y. Liu. "Fracture Toughness of Northeast China Larch." Key Engineering Materials 517 (June 2012): 661–68. http://dx.doi.org/10.4028/www.scientific.net/kem.517.661.
Full textPark, Sang Dae, Mitsugu Todo, and Kazuo Arakawa. "Effect of Annealing on Fracture Mechanism of Biodegradable Poly(lactic acid)." Key Engineering Materials 261-263 (April 2004): 105–10. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.105.
Full textOGASAWARA, Toshio, Naoto HIROSAKI, Yoshio AKIMUNE, and Eiichi YASUDA. "Fracture Toughness and Subcritical Crack Growth of Small Crack in Silicon Nitride at Room Temperature." Journal of the Ceramic Society of Japan 103, no. 1202 (1995): 1063–68. http://dx.doi.org/10.2109/jcersj.103.1063.
Full textRitchie, R. O., and A. W. Thompson. "On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys." Metallurgical Transactions A 16, no. 1 (January 1985): 233–48. http://dx.doi.org/10.1007/bf02815305.
Full textRitchie, R. O., and A. W. Thompson. "On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys." Metallurgical Transactions A 16, no. 2 (February 1985): 233–48. http://dx.doi.org/10.1007/bf02816050.
Full textZhao, Yong Xiang. "Fatigue Crack Growth Law Covering Threshold and Fracture Toughness for Railway LZ50 Axle Steel." Advanced Materials Research 544 (June 2012): 280–85. http://dx.doi.org/10.4028/www.scientific.net/amr.544.280.
Full textZehnder, Alan T., and Ares J. Rosakis. "Experimental Measurement of the Temperature Rise Generated During Dynamic Crack Growth in Metals." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S260—S265. http://dx.doi.org/10.1115/1.3120822.
Full textPerez Velasquez, C., D. Avendano Rodriguez, C. Narvaez Tovar, L. Mujica Roncery, and R. Rodríguez Baracaldo. "Fatigue Crack Growth and Fracture Toughness in a Dual Phase Steel: Effect of Increasing Martensite Volume Fraction." International Journal of Automotive and Mechanical Engineering 17, no. 3 (October 6, 2020): 8086–95. http://dx.doi.org/10.15282/ijame.17.3.2020.02.0606.
Full textWojteczko, Agnieszka, Radosław Lach, Kamil Wojteczko, Paweł Rutkowski, Dariusz Zientara, and Zbigniew Pędzich. "Subcritical crack growth in oxide and non-oxide ceramics using the constant stress rate test." Processing and Application of Ceramics 9, no. 4 (2015): 187–91. http://dx.doi.org/10.2298/pac1504187w.
Full textKAWAGUCHI, Yoshiaki, Yoshiaki YAMADE, and Teruo KISHI. "Fracture toughness evaluation of mullite with respect to slow crack growth." Journal of the Society of Materials Science, Japan 40, no. 451 (1991): 477–82. http://dx.doi.org/10.2472/jsms.40.477.
Full textSajuri, Z., N. A. Alang, Nur Azhani Abd Razak, and M. A. Aziman. "Fracture Toughness and Fatigue Crack Growth Behavior of Rail Track Material." Key Engineering Materials 462-463 (January 2011): 1109–14. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1109.
Full textHwu, K. L., and B. Derby. "Fracture of metal/ceramic laminates—II. Crack growth resistance and toughness." Acta Materialia 47, no. 2 (January 1999): 545–63. http://dx.doi.org/10.1016/s1359-6454(98)00358-9.
Full textMaugis, D. "Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement." Journal of Materials Science 20, no. 9 (September 1985): 3041–73. http://dx.doi.org/10.1007/bf00545170.
Full textManoharan, M., and J. J. Lewandowski. "Crack initiation and growth toughness of an aluminum metal-matrix composite." Acta Metallurgica et Materialia 38, no. 3 (March 1990): 489–96. http://dx.doi.org/10.1016/0956-7151(90)90155-a.
Full textCady, Carl M., and Cheng Liu. "Determination of fracture toughness using the compression fracture technique." EPJ Web of Conferences 250 (2021): 01026. http://dx.doi.org/10.1051/epjconf/202125001026.
Full textRasel, Sheikh Md, Foisal Ahmed Mirza, Ali Md Afsar, and Jung I. Song. "Evaluation of Fracture Toughness of Ceramic-Metal Functionally Graded Materials." Advanced Materials Research 123-125 (August 2010): 971–74. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.971.
Full textMorrison, J., and C. H. Laforce. "Fatigue Crack Growth Rate Testing of Gun Steels." Journal of Pressure Vessel Technology 108, no. 4 (November 1, 1986): 507–13. http://dx.doi.org/10.1115/1.3264821.
Full textAger, J. W., G. Balooch, and R. O. Ritchie. "Fracture, aging, and disease in bone." Journal of Materials Research 21, no. 8 (August 1, 2006): 1878–92. http://dx.doi.org/10.1557/jmr.2006.0242.
Full textMiyazaki, Hiroyuki, Hideki Hyuga, Yuichi Yoshizawa, Kiyoshi Hirao, and Tatsuki Ohji. "Measurement of Indentation Fracture Toughness of Silicon Nitride Ceramics: II, Effect of the Experimental Conditions." Key Engineering Materials 352 (August 2007): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.352.45.
Full textChao, L. Y., D. Singh, and D. K. Shetty. "Effects of Subcritical Crack Growth on Fracture Toughness of Ceramics Assessed in Chevron-Notched Three-Point Bend Tests." Journal of Engineering for Gas Turbines and Power 111, no. 1 (January 1, 1989): 168–73. http://dx.doi.org/10.1115/1.3240219.
Full textXu, Jie, Wei Song, Wenfeng Cheng, Lingyu Chu, Hanlin Gao, Pengpeng Li, and Filippo Berto. "Modelling of Fracture Toughness of X80 Pipeline Steels in DTB Transition Region Involving the Effect of Temperature and Crack Growth." Metals 10, no. 1 (December 23, 2019): 28. http://dx.doi.org/10.3390/met10010028.
Full text