To see the other types of publications on this topic, follow the link: Factory and trade waste – South Africa – Biodegration.

Dissertations / Theses on the topic 'Factory and trade waste – South Africa – Biodegration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Factory and trade waste – South Africa – Biodegration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Semoli, Belemane Petrose. "Assessment of the practice and potential of industrial solid waste minimisation : case study of Stellenbosch." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50281.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2005.
ENGLISH ABSTRACT: There is increasing pressure on factories and government to practise cleaner technology. The public is becoming more and more environmentally aware and external pressure from international competitors is also forcing companies to adopt environmentally sound production practices. Our natural resources and the environment need environmentally friendly practices. Waste minimisation is not only prudent practice for manufacturing industries, but is also an integral part of environmental regulations in many countries, including South Africa. This research seeks to investigate the extent and potential for industrial waste minimisation in Stellenbosch. The objectives of this thesis are, firstly to establish and evaluate the present range and extent of industrial solid waste minimisation practices; secondly to identify and evaluate potential industrial solid waste minimisation measures that could (if necessary) be instituted in future; and finally to propose a general strategy for the minimisation of industrial solid waste in Stellenbosch. The findings reflect that currently there is little waste minimisation awareness and practice in Stellenbosch. The most common method of waste minimisation currently practised by industries is recycling through the selling of recyclables. The least common method is the equipment-related change method, due to the high costs involved in adopting this method. Based on the findings, a suitable regional waste management strategy was developed and this strategy could possibly be adopted elsewhere in South Africa. Key words: waste minimisation, waste management, re-use, recycling, factory, environment, practice, participation, cleaner technology, awareness, Stellenbosch
AFRIKAANSE OPSOMMING: Daar is toenemende druk op fabrieke sowel as op die regering om skoner tegnologie te beoefen. Die publiek raak ook toenemend meer omgewingsbewus en druk vanaf die kant van internasionale mededingers forseer maatskappye om praktyke in te stel wat gunstig is ten optigte van die omgewing. Ons natuurlike hulpbronne en die omgewing benodig omgewingsvriendelike vervaardigingspraktyke. Die beperking van afvalstowwe is nie net vir die fabriekswese 'n wyse praktyk nie, maar maak ook in vele lande, met inbegrip van Suid-Afrika, 'n integrale deel uit van regulasies met betrekking tot die omgewing. Hierdie navorsingsprojek poog om die omvang en potensiaal van beperking van afvalstowwe in Stellenbosch te ondersoek. Die doelwitte van die ondersoek is eertens om ondersoek in te stel na die huidige reikwydte en omvang van praktyke om vaste industriële afvalstowwe te beperk en dit te evalueer; tweedens om potensiële industriële vaste afvalstofbeperkingsmaatreëls wat, indien nodig, in die toekoms ingestel sou kon word, te indentifiseer en te evalueer; en dan uiteindelik 'n algemene strategie vir die beperking van vaste industriële afvalstowwe in Stellenbosch voor te stel. Die bevindings in hierdie tesis bewys dat daar tans gennge bewustheid van die noodaaklikheid van afvalstofbeperking in Stellenbosch is en dat dit ewe min in die praktyk toegepas word. Die mees algemene vorm van beperking van afvalstowwe in die fabriekswese is deur middel van verkoop van herwinbare afvalstowwe. Die mins algemene vorm van beperking van afvalstowwe hou verband met die vervanging van toerusting. Die rede hiervoor het te doen met die koste verbonde aan die strategie. Vanuit hierdie bevindings is toepaslike strategie vir die bestuur van afvalstowwe op streeksvlak ontwikkel. Hierdie strategie sou moontlik ook elders in Suid-Afrika toegepas kon word. Sleutelwoorde: beperking van afvalstowwe, afvalstofbestuur, hergebruik, herwinning, fabriek, omgewing, praktyk, deelname, skoner tegnologie, bewustheid, Stellenbosch
APA, Harvard, Vancouver, ISO, and other styles
2

Lipschitz, Steven. "Pollution control investment decisions and policy preferences of senior managers of the Southern African fish processing industry." Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/17268.

Full text
Abstract:
Bibliography: pages 134-147.
Pollution control regulations directed at the land-based factories of the Southern African fish processing industry do not appear to promote the required level of investment in pollution control systems. Two self-administered mail-questionnaires comprising undisguised fixed-alternative and open-ended questions were constructed to survey the opinions and viewpoints of a census consisting of twenty-seven senior managers responsible for making pollution control investments in the demersal and pelagic sectors of the fish processing industry. The first questionnaire was directed at establishing the relative importance of factors that influence waste and pollution control investment decisions as well as the perceptions and preferences of managers with regard to various pollution control policy options. Descriptive statistics such as the modal class were used to summarize the distribution of opinions and viewpoints within the research population. Rank ordered preference data was analyzed using a multidimensional unfolding computer algorithm. This structural multivariate statistical method is a special case of non-metric multidimensional scaling that generates perceptual maps which can aid in the discovery of the hidden structure underlying multidimensional decisions. Investments in waste and pollution control do not appear to have a high priority when compared to other strategic investments that the fish processing industry managers may make. The relative importance of factors that could influence the managers of the industry to invest in waste control equipment appear to be determined by the perceived financial returns that can be expected from such investments. Findings suggest that pollution control legislation is rendered ineffective due to inadequate enforcement. However, it appears that existing legislation needs to be rationalized in order to facilitate compliance. The most favoured pollution control instruments were those that lowered the cost of legally mandated expenses such as subsidies and income tax allowances. These were followed by permit systems which specified the allowable characteristics of discharges while allowing individual companies freedom of choice as to the method of achieving compliance. The second questionnaire was used to verify the researcher's interpretation of the findings and preliminary conclusions drawn from the replies to the first questionnaire.
APA, Harvard, Vancouver, ISO, and other styles
3

Moore, Bronwyn Ann. "Metal bioaccumulation and precious metal refinery wastewater treatment by phoma glomerata." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1009441.

Full text
Abstract:
The biosorption of copper, nickel, gold and platinum from single metal aqueous solutions by the nickel hyperaccumulator Berkheya coddii plant biomass was investigated. Potentiometric titrations of the biomass and determination of optimal sorption pH for each metal showed that nickel ions were released from the biomass into solution. The presence of free nickel ions interfered with the uptake of the other three metals and further biosorption investigations were discontinued. Three fungal isolates found colonising metal solutions were cultured and screened for their ability to remove 50 mg.l⁻¹ of copper, nickel, gold and platinum from solution and to survive and grow in precious metal refinery wastewaters. One isolate was selected for further studies based on its superior metal uptake capabilities (35 and 39 mg.l⁻¹ of gold and platinum, respectively) and was identified as Phoma glomerata. Copper, nickel, gold and platinum uptake studies revealed that nickel and gold were the most toxic metal ions, however, toxicity was dependent on pH. At pH 6 more biomass growth was achieved than at lower pH values and metal uptake increased by 51 and 17 % for copper and nickel, respectively. In addition, the production of extracellular polymeric substances played a role in base metal interaction. Precious metals were observed to be preferentially removed from solution, complete removal of gold and platinum was observed at all initial pH values, 89 % of copper was bioaccumulated at an initial metal concentration of 55 mg.l⁻¹ (pH 6) and only 23 % of nickel was removed from solution under the same conditions. Metal bioaccumulation was confirmed through transmission electron microscopy and micro particle induced X-ray emission. The effect of P. glomerata immobilised in a packed bed reactor on precious metal refinery wastewaters was investigated. It was found that the fungal isolate was not able to remove the high salt and chemical oxygen demand concentrations found in the wastewaters, however due to its ability to survive and grow in undiluted wastewater and remove metal ions from solution it may be utilised as a metal detoxification step in the treatment process train.
PDFCreator Version 0.9.0
AFPL Ghostscript 8.53
APA, Harvard, Vancouver, ISO, and other styles
4

De, Jager Debbie. "Membrane bioreactor application within the South African textile industry: pilot to full-scale." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/926.

Full text
Abstract:
Thesis submitted in the requirements for the degree Doctor Technologiae: Chemical Engineering in the Faculty of Engineering at the CAPE PENINSULA UNIVERSITY OF TECHNOLOGY, 2013
To date, limited information has been published on textile wastewater treatment, for re-use, in South Africa (SA), with treatment processes focusing on conventional wastewater treatment methods. A large contributor to the contamination of water within textile industries is from dyehouse processes. A major concern in textile wastewater treatment is the release of azo dyes and their metabolites, some of which are carcinogenic and mutanogenic, into the environment since they are xenobiotic and aerobically recalcitrant to biodegradation. A necessity therefore exists to find an effective treatment method capable of removing both the strong colour and the toxic organic compounds from textile wastewater. Membrane bioreactors (MBRs) are favoured when treating high-strength wastewater, since the membrane area is determined by the hydraulic throughput and not the biological load; no sludge is wasted and all bacteria are retained within the reactor, including specific bacteria capable of degrading the toxic, non-biodegradable constituents present in textile wastewater. MBR systems, using various configurations have been utilised extensively in the rest of the world to treat textile wastewater at both lab and pilot-scale. This DTech project formed part of a collaborative Water Research Commission (WRC) funded project K5/1900 - Pilot application of a dual-stage membrane bioreactor (dsMBR) for industrial wastewater treatment. The main purpose of this study was the on-site evaluation of a pilot-scale dsMBR incorporating two ultrafiltration (UF) sidestream membrane modules for the treatment, recovery and re-use of textile wastewater. The objectives of this project were to determine the treatment efficiency of the system; to evaluate the degree of colour removal from the textile wastewater; to improve residual colour removal within the system using treatment processes, such as NF and RO, as well as to propose a design and cost for a full-scale plant. A textile industry located in Bellville, Western Cape, was chosen as the industrial partner for the on-site evaluation of a semi-automated pilot wastewater treatment MBR plant using two 5.1 m2 Norit X-flow AirliftTM membrane modules. Since the wastewater treatment system was located on the premises, real continuously changing industrial wastewater was being treated. The industrial textile wastewater was treated in a series of tanks: 1) an anaerobic tank, which cleaved the azo bonds of the reactive dyes; 2) an anoxic tank containing reduced amounts of dissolved oxygen, in which denitrification occurred; and 3) an aerobic tank, in which i) nitrification, as well as ii) mineralisation of the aromatic amines occurred. The UF-membrane modules would account for the removal of any organic material. The wastewater stream was characterised by a chemical oxygen demand (COD) range of between 45 to 2,820 mg/L and an average biological oxygen demand (BOD) of 192.5 mg/L. The dsMBR achieved an average COD reduction of 75% with a maximum of 97% over the 220 day test period. The COD concentration obtained after dsMBR treatment averaged at 191 mg/L, which was well within the City of Cape Town industrial wastewater discharge standard. The average reduction in turbidity and TSS was 94% and 19.6%, respectively, during the UF-MBR stage of the system. Subsequent treatment of the UF permeate with nanofiltration (NF) for 4 days, alternated with reverse osmosis (RO) for 14 days removed both the residual colour and salt present in the UF permeate. A consistent reduction in the colour of the incoming wastewater was evident. The colour in the wastewater was reduced from an average of 659 ADMI units to ~12 ADMI units in the NF permeate, a lower American dye manufacturing index (ADMI) (i.e. method of colour representation) compared to the potable water (~17 ADMI units) utilised by the industrial partner in their dyeing processes. The colour was reduced from an average of 659 to ~20 ADMI units in the RO permeate, a lower ADMI and therefore colour when compared to the potable water. An average conductivity rejection of 91% was achieved with conductivity being reduced from an average of 7,700 to 693 μS/cm and the TDS reduced from an average of 5,700 to 473 mg/L, which facilitated an average TDS rejection of 92%. Based on the composition of the UF permeate fed to the RO membrane a maximum removal of 98.7% was achieved for both conductivity and total dissolved solids (TDS). The proposed full-scale plant would incorporate a UF-MBR system, followed by NF, RO, flocculation and a filter press. Therefore, the two waste products produced during operation of the proposed full-scale plant, would be the solid filter cakes and the liquid filtrate from the filter press. Implementing the proposed full-scale plant it would cost the industrial partner an operating cost of ZAR 113.85 and ZAR 3,415.49 to treat 97.1 m3 and 2,913 m3 of textile wastewater, respectively, per day and per month. This results in an annual saving of ZAR 845,848 on potable water expenses. This research, would provide SA textile industries, with an option to: 1) reduce their water consumption, thereby utilising less of a valuable decreasing commodity; 2) meet the SA government discharge standards and reduce their discharge costs; 3) reduce their carbon footprint (i.e. reduce their impact on the environment) by re-using their treated wastewater and therefore using less water from the municipality; and 4) decrease their annual expenditure on water, since the treated wastewater would be available for re-use.
APA, Harvard, Vancouver, ISO, and other styles
5

Van, Schalkwyk Antoinette. "Characterization and engineering of Bacillus megaterium AS-35, for use in biodegradation of processed olive wastewater." Thesis, University of Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&amp.

Full text
Abstract:

The popularization and health benefits associated with the &ldquo
Mediterranean diet&rdquo
saw a world wide increase in the production and consumption of processed olives and olive oil. During the brining of table olives large quantities of processed olive waste water is seasonally generated. This blackish-brown, malodours liquid is rich in organic and phenolic compounds, which cause environmental problems upon discarding. Currently, processed wastewater is discarded into large evaporation ponds where it poses serious environmental risks. The biodegradation of organic substrates present in the olive wastewater is inhibited by the high concentrations of phenolic compounds. In order to identify organisms which could potentially be used in the bioremediation of olive wastewater, 36 microbial strains were isolated from evaporation ponds in the Boland region of South Africa. Twenty five isolates were capable of growth on 50% olive wastewater and their bioremediation potential as well as their ability to produce valuable intermediate compounds were subsequently characterized. Based on the RPHPLC results, which showed that a number of chemical intermediates were produced in fermentation of olive wastewater, isolate AS-35 was selected for further analysis. Strain AS-35, identified as a Bacillus megaterium, was significantly influenced by the exposure to olive waste. The total cellular protein profile, generation time and cellular morphology of this isolate were dramatically affected by the introduction of olive waste. This study investigated the differential gene display of Bacillus megaterium following exposure to olive wastewater. Proteomic and transcriptomic differences of the organism cultured in nutrient rich LB and olive wastewater were compared. These results indicated that AS-35 expressed genes involved in glycolysis, tryptophan and nucleotide synthesis as well as the chaperones GroEL and DnaK during its growth in LB. In contrast, genes induced following the abolishment of glucose dependent catabolite repression, genes involved in biotin synthesis and ß
-oxidation of fatty or organic acids as well as a gene whose expression is regulated by stress induced s
B-dependent regulon were expressed during olive waste growth.

APA, Harvard, Vancouver, ISO, and other styles
6

Enitan, Abimbola Motunrayo. "Microbial community analysis of a UASB reactor and application of an evolutionary algorithm to enhance wastewater treatment and biogas production." Thesis, 2015. http://hdl.handle.net/10321/1276.

Full text
Abstract:
Submitted in complete fulfillment for the degree of Doctor of Philosophy (Biotechnology), Durban University of Technology, Durban, South Africa, 2015.
Anaerobic digestion, a proven and highly efficient biological process for treating industrial wastewater and biogas generation is an underutilized technology in South Africa. Some of the industries that have on-site anaerobic reactors tend to face problems in operating these reactors due to poor understanding of the process and implementation of the technology. This has resulted in high pollutant loads in their final effluents and low energy recovery. In this study, an on-site full–scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was extensively monitored in order to evaluate the efficiency in terms of effluent quality, biogas production and microbial structure. Furthermore, developed and adopted kinetic models were used to optimize the performance of the full–scale UASB reactor using a combined Pareto differential evolution (CPMDE) algorithm. A preliminary analysis of the raw wastewater has shown that the wastewater produced from the brewery industry was high in organic matter with a total chemical oxygen demand (COD) between 1096.41 to 8926.08 mg/L. The average removal efficiency of COD from the UASB reactor after treatment was 79% with a methane (CH4) production of 60-69% at temperature ranges of 28-32˚C and hydraulic retention time (HRT) of 12 h within the optimal pH range for anaerobic bacteria (6.6 and 7.3) under various organic loading rates. However, the results also showed an increase in total suspended solids (TSS), nitrogen (N2), ammonia (NH3) and orthophosphate concentrations when comparing the influent to the effluent, which indicated the necessity for further optimization of the reactor condition in order to reduce these effluent parameters to acceptable standards and to increase CH4 production. In order to optimize the process, a thorough understanding of microbial interaction was essential. A combination of different molecular techniques viz., fluorescence in–situ hybridization (FISH), polymerase chain reaction (PCR) and quantitative real-time PCR (QPCR) were employed to understand the microbial community structure of the granular sludge samples using species specific primers and probes. The results revealed that the dominance of diverse groups of eubacteria belonging to phyla Proteobacteria, Firmicutes and Chloroflexi and an uncultured candidate division WS6 with four different orders of methanogenic Archaea viz., Methanomicrobiales, Methanococcales, Methanobacteriales and Methanosarcinales belonging to hydrogenotrophic and aceticlastic methanogens were within the reactor samples. Quantification of the 16S rDNA copies of eubacteria and methanogenic Archaea using species-specific primers further confirmed the spatial distribution of these microorganisms within the different compartments of the reactor where, the upper compartments were dominated by eubacteria and the lower compartments by methanogenic Archaea. The concentration of Archaea per nanogram of DNA was much higher (96.28%) than eubacteria (3.78%) in lower compartments, while, the eubacteria concentration increased to 98.34% in upper compartments with a decrease in Archaea quantity (1.66%). A modified kinetic methane generation model (MMGM) was developed on the basis of mass balance principles with respect to substrate (COD) degradation and the endogenous decay rate to predict CH4 production efficiency of the reactor. Furthermore, a Stover–Kincannon kinetic model was adopted with the aim of predicting the final effluent quality in terms of COD concentration and model coefficients were determined using the data collected from the full–scale reactor. Thereafter, a model-based multi-objective optimization was carried out using the CPMDE algorithm with three–objective functions namely; maximization of volumetric CH4 production rate; minimization of effluent substrate concentration and minimization of biomass washout, in order to increase the overall efficiency of the UASB reactor. Important decision variables and constraints related to the process were set for the optimization. A set of non-dominated solutions with high CH4 production rates of between 2.78 and 5.06 L CH4/g COD/day at low biomass washout concentrations were obtained at almost constant solution for the effluent COD concentration. A high COD removal efficiency (85-87%) at ~30-31˚C and 8-9 h HRT was obtained for the multi-objective optimization problem formulated. This study could significantly contribute towards optimization of a full–scale UASB reactor treating brewery wastewater for better effluent quality and biogas production. Knowledge on the activity and performance of microbial community present in the granular sludge taken from the full–scale UASB reactor would contribute significantly to future optimization strategies of the reactor. In addition, optimization using an evolutionary algorithm under different operational conditions would help to save both time and resources wasted in operating anaerobic bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
7

Molote, Moratwe. "Application of process synthesis for the recovery of valuable chemicals from an industrial waste stream." Thesis, 2018. https://hdl.handle.net/10539/26034.

Full text
Abstract:
MSc Thesis
A dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Engineering to the Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2018
This work aims at designing and simulating on Aspen Plus process simulator a process that can recover valuable chemicals from a High Organic Waste (HOW) stream produced at Sasol Secunda plant, South Africa. The waste is made up of low boiling point organic components such as pyridine, acetonitrile and Methyl Ethyl Ketone and water. Currently, the waste is incinerated without energy recovery. This practice serves to exacerbate the already high greenhouse gases emissions from the plant, but more importantly, it results in the missed opportunity to maximize revenues through resale of recycled valuable chemicals. The recovery of valuable chemicals from the HOW is made difficult by the formations of azeotrope between organic components and water; at least 6 azeotropes exist in the HOW stream. In this work the emphasis is on pyridine because of its established market value and demand. Pyridine market size is about 400 million USD in 2017 and is expected to increase to over 600 million USD by 2021 mainly due to increased usage in the agrochemical industry. Water integration strategy was also assessed demand because of the reported need to improve water utilization efficiency at Sasol Secunda plant. The recovery was achieved in 2 separate steps: 1) water-pyridine mixture was separated from the rest of the HOW stream using fractional distillation and 2) pyridine enrichment section which was designed using thermodynamic tools such as residue curve maps and isovolatility curves. The rest of the HOW stream (light fractions) was sent to the currently used incinerator. Liquid-liquid extraction and azeotropic distillation were considered for the pyridine enrichment step. Results showed that the combination of liquid-liquid extraction and distillation offered the benefit of a lower entrainer to azeotropic mixture ratio (EA) compared to azeotropic distillation. This gave the lowest recorded EA at 0.320:1. The comparison between the proposed process and the incineration of the whole HOW stream showed that the implementation of the process proposed reduced the incineration load by 60wt% and CO and CO2 emissions by 50%. Dividing Wall column process integration technique was implemented to reduce the number of distillation columns in the proposed process and 10% reduction in the reboiler and condenser duties was observed. Implementation of DWC further improved the purity of the recovered pyridine from 96mol% to over 99.9mol%. Preliminary economic evaluation carried out on Aspen Plus showed that the proposed recovery process was profitable with an Internal Rate of Return (IRR) of 20% and a payback period of 4.5 years.
MT 2018
APA, Harvard, Vancouver, ISO, and other styles
8

Bopape, Mokgadi Fredericka. "Magnetically assisted removal of heavy metals from wastewater using bio-sorbents." 2013. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000731.

Full text
Abstract:
M. Tech. Chemical Engineering
Environmental pollution due to heavy metals is a global crisis. Contamination as a result of heavy metals from industries such as mining operations, electroplating facilities, etc. pose serious threats to the aquatic ecosystem, people and the environment. Lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu), mercury (Hg) and nickel (Ni) are common examples of heavy metal ions often detected in most effluents. They are characterised by their non-biodegradability, toxicity and tendency to accumulate in living organisms, and thereafter, cause various diseases and disorders. In this study, two nano-structured composite bio-sorbents were prepared to determine their metal binding capacity, effect of solution pH, contact time and elution in a magnetically assisted adsorption system. Consequently, this study aims to develop magnetically assisted adsorption process for industrial wastewater treatment for re-use.
APA, Harvard, Vancouver, ISO, and other styles
9

Hurth, Alexander. "Waste minimisation clubs in South Africa : towards a sustainable model." Thesis, 2005. http://hdl.handle.net/10413/4704.

Full text
Abstract:
Every time a good is produced, waste occurs as an unwanted by-product. Waste has become a real environmental issue across the world, contributing to the degradation of the environment and human health. As part of a local and international effort to lessen industrial pollution, a concept to reduce waste production at source was introduced to companies in the early 1990s. Pioneered in the Netherlands and the United Kingdom (UK), this concept has been termed 'waste minimisation'. Waste minimisation is achieved by implementing changes to business practices and processes, such as improved housekeeping (e.g. prevention of spills), and changes to equipment that is less wasteful. It is often undertaken by a group of organisations, including for example service providers, manufacturing companies and regulators that join a waste minimisation club (WMC). This provides an opportunity in which training can be received by, waste minimisation assessments made on, and information and ideas about waste reduction at source exchanged by member companies. WMCs have been used successfully in Europe to achieve waste minimisation in industry and residential communities. This study aims to contribute to the development of a sustainable WMC model in South Africa. It analyses the WMC support structures in South Africa and compares them to support structures offered in the UK. This offers a point of reference from which the impact of South African support structures on WMCs in general, and the Pietermaritzburg Waste Minimisation Club (PWMC) in particular, can be established. The PWMC consists of small and medium companies across sectors, each with less than 200 employees and with an annual turnover less than 40 million rand. The club was initiated by the Pollution Research Group of the University of KwaZulu-Natal (UKZN). It was the first of its kind in South Africa, having been facilitated on a small budget by staff and students from the UKZN. The study found that the self-help approach adopted by the PWMC was only partially successful. The PWMC was successful in terms of raising awareness of its members to waste minimisation issues. The study also found that member companies, both from the PWMC and WMCs generally, need to be shown in practical terms that 2 waste minimisation can result in financial savings before management buy-in can be attained. If more University manpower had been allocated, in the form of students for instance, to identify and orchestrate implementation of sustainable waste minimisation solutions, the PWMC member adoption rate of waste minimisation may have been raised. The small PWMC budget may have made this impossible, however. Lack of funding may also have prevented facilitators putting together a large support team, as has been done for a similar and more successful project in England. This demonstrates that self-help WMCs need an initial funding boost to be successful. This funding should be invested in gaining buy-in from company personnel rather than to drive the waste minimisation process on behalf of member companies. Driving waste minimisation on behalf of companies or 'hand-holding' leads to a passive acceptance of waste minimisation as is currently the case in South Africa, as well as 'shirking' as has been observed in the UK. Such a facilitated self-help approach can then lay the basis for WMCs, which use the support infrastructure established by their predecessors. Studies of WMCs in England and Wales based on a self-help approach showed that they achieved financial savings that are comparable to those in demonstration clubs. The promotion of such sustainable WMCs in South Africa needs to be performed by a central support agency such as the British Envirowise. Envirowise was seen to successfully promote waste minimisation among those it reached. However, it reached only a small percentage of overall industry. A successful South African agency therefore needs to promote itself effectively and nation-wide. A successful South African Envirowise organisation should also facilitate the creation of WMCs by leading a forum of industry, service providers, higher education and waste minimisation champions of proven worth, to create an action plan for WMC development for each province. Each province would then allocate funds for a waste minimisation champion who, in conjunction with the local development agency, would create a provincial action plan for the development of facilitated self-help WMCs. The local support and expertise recruited to form and manage WMCs would decrease costs and leverage income. This kind of support agency needs to be upheld by waste management legislation based on the concept of sustainable development, recognising the need for environmental protection alongside that of economic growth. To date no such legislation is in place in South Africa. It is hoped that the White Paper on Integrated Pollution and Waste Management, which endorses the principle of sustainable development alongside with the necessity to reduce waste at source, will form the basis for a successful South African WMC culture.
Thesis (M.Env.Dev.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
APA, Harvard, Vancouver, ISO, and other styles
10

Reiner, Monika. "Industrial waste minimisation in South Africa : a case study in the textile and metal finishing sectors." Thesis, 2002. http://hdl.handle.net/10413/4809.

Full text
Abstract:
Environmental legislation is becoming more stringent as people are realising the need for conservation and a reduction of environmental degradation in order to facilitate sustainable development. To ease legislative pressures, companies need to work together in symbiotic networks, whereby co-operation between companies results in far more innovative practices than if the companies acted individually. Success in an industrial network is largely dependent on cleaner production, where industries seek to redirect from waste treatment to waste minimisation. Cleaner production has already received international recognition and waste minimisation initiatives have been used as a tool of cleaner production. Two polluting industrial sectors within South Africa, the textile and metal finishing sectors, were chosen to investigate waste minimisation concepts. One company from each sector was used as a case study. The dissertation followed company network identification, potential to participate within an industrial symbiotic network, and waste minimisation opportunities. Suppliers and buyers, up and down the product line were identified. Relationships with these partners should be advanced such that environmental concerns are at the forefront of any decision-making. In light of developing industrial networks and maintaining symbiotic relationships, the company's potential was investigated by interviewing employees of various ranks. Both companies were partially suited to participate within an industrial symbiotic network and company-specific barriers were identified, such as ineffective internal communication. The waste minimisation investigation followed a four-phase approach of planning and organisation; pre-assessment; assessment; and feasibility study. In both the companies investigated, water savings were identified as the waste minimisation focus area with potential for improvement. In total, potential water savings of over R80 000 per annum were identified. In the textile company, the weaving department and bleach house were further investigated. Cloth weaving errors were attributed to machine stops, as each stop has the potential to result in a cloth fault. In the bleach house the potential existed to reduce the number of rinse tanks. Although a modem and automated process, the plating plant in the metal finishing company was identified as having potential waste minimisation opportunities. Of particular interest was the reduction of solution carry over from the plating tanks into subsequent tanks. Extended drip times were investigated. Additional waste minimisation opportunities included repairing pipe leaks, replacing the degreasing solvent, trichloroethylene, with a less harmful cleaning agent and establishing a symbiotic relationship with the oil supplier, Castrol. Over and above the main waste minimisation opportunities highlighted, other recommendations and potential savings were identified. Each case study emphasises that simple waste minimisation initiatives, without expending capital, reduce demands on natural resource, such as water, and benefit the company financially. Successful waste minimisation leads to further cleaner production initiatives, which may then initiate better network interactions with the further potential of promoting sustainable development.
Thesis (M.Sc.Eng.)-University of Natal, Durban, 2002.
APA, Harvard, Vancouver, ISO, and other styles
11

Ndlovu, Vuyani. "Waste water treatment of effluents from corn processing plant." Thesis, 2013. http://hdl.handle.net/10413/11095.

Full text
Abstract:
South Africa is facing numerous challenges that pertain to increasing water deficit and pollution of water resources. Only 40 out of 821 wastewater treatment works in South Africa achieved Green Drop certifications in the 2010 Green Drop assessments (DWA, 2011). This is not only threatening net water availability but also human health. South African water sources are comprised of 77 % surface water, 14 % return flows and 9 % groundwater (van Vuuren, 2009). This study was therefore intended to explore the quality, quantity and treatability of corn wet milling effluent resulting from Tongaat Hulett Starch Pty Ltd (THS) operations. THS is a major producer of corn derived starch and glucose in Africa. Amongst its three corn wet milling plants in Gauteng (Kliprivier, Germiston and Meyerton) and one in Western Cape (Bellville), 600000 tonnes of maize were processed in the 2011/2012 financial year. The objective of the study was to establish the wastewater footprint of the corn wet milling process. To achieve this, qualitative and quantitative characterisation studies were completed on effluents generated from the Germiston and Meyerton corn wet milling plants, respectively. This characterisation study was focused on volumetric and organic load analyses of the various sections of the corn wet milling process. A full scale anaerobic digestion treatability study of the Meyerton plant effluent was also conducted. The study results indicated that the combined effluent discharged to the Municipal sewer averaged between 2.9 and 3.1 m3/tonne of corn processed. The effluent generated resulted in an average chemical oxygen demand (COD) concentrations of between 6211 and 7790 mg/L, with suspended solid concentrations of between 635 and 899 mg/L. From the full scale anaerobic treatability study, a minimum of 87 % COD removal at organic volumetric loading rates (OLR) of between 0.3 and 3.9 kg COD/m3.d was achieved. It was concluded that corn wet milling effluent can be categorised as high strength in terms of COD concentrations. This type of effluent proved to be amenable to anaerobic digestion treatment. Anaerobic pretreatment of corn wet milling effluent can proportionately reduce pollution loading into the receiving municipal conventional wastewater treatment systems.
Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
APA, Harvard, Vancouver, ISO, and other styles
12

Tlhoaele, D. J. "An investigation into service delivery in the Mafikeng local municipality : a case study of solid waste management / D.J. Tlhoaele." Thesis, 2003. http://hdl.handle.net/10394/11328.

Full text
Abstract:
The study investigated solid waste management in the Mafikeng Municipality including the attitudes of the residents towards the waste management services rendered by the municipality. The study found the followings: the main sources of waste were from households due to minimal industrial activity in the area; that the residents had negative attitudes and perceptions about the waste management services provided by the Municipality. The majority of residents were not involved in the identification of needs and management of solid waste. They wanted to take an active role in the planning, design and implementation of the service especially where the formulation of policies are concerned; adequate policy mechanisms need to be adopted to enforce proper behaviour in waste disposal. The study recommends that: • the community be involved in planning, design and implementation of the service especially where the formulation of policies are concerned. • adequate policy mechanisms need to be adopted to enforce proper behaviour in waste disposal.
Thesis (MBA) North-West University, Mafikeng Campus, 2003
APA, Harvard, Vancouver, ISO, and other styles
13

Maleka, Mamohau Julia. "Investigation of causes of foaming in industrial waste water treatment and effects of substances in industrial waste water treatment." Thesis, 2012. http://hdl.handle.net/10352/420.

Full text
Abstract:
M-Tech: Chemistry (Vaal University of Technology)
ABSTRACT The research was aimed to study the causes of excessive foaming in a waste water treatment plant. Although the activated sludge process has been adopted to treat this industrial waste water , lots of problems were experienced by the inhibitory effects of toxic compounds that are found in industrial effluents and the foaming stability that was very high. Industrial waste water treatment using sludge processes was found to be more challenging than the normal municipal waste water treatment although the principle is the same; the foaming tendencies were found to be more in industrial waste water. In this study the composition of influents to the waste water treatment plant and operating parameter’s effects on foaming tendencies were examined. The foaming potential in the plant was found to be chemically related due to high contamination of compounds such as phenols, which played a major role in formation of stable foam. It was recommended that there must be pretreatment of the incoming influents to minimize their impact to waste water treatment.
APA, Harvard, Vancouver, ISO, and other styles
14

"An assessment of waste management practices in South Africa : a case study of Mariannhill landfill site, eThekwini Municipality." Thesis, 2009. http://hdl.handle.net/10413/294.

Full text
Abstract:
A number of environmental, social and economic problems are associated with waste disposal in landfill operations. The potential hazards associated with landfill operations are numerous and include fatal accidents, infrastructure damage, pollution of the local environment, harmful air emissions, to simple nuisance problems – such as dust, odour, vermin, and noise pollution. Further challenges include the availability of land and lack of municipal or other financing in the face of rising operation costs. Landfilling is, however, seen by many as an environmentally responsible and cost-effective solution to waste disposal. It is acknowledged however to lead to waste of resources by burying valuable materials that could have been reutilized. Careful engineering can resolve this shortcoming, yet the associated challenges and costs can become prohibitive. The regulatory environment also affects the prospects for adopting this approach to landfill site management in different contexts. The Mariannhill landfill site in eThekwini Municipality, South Africa, provides an opportunity to investigate both the range of challenges which these type of sites encounter, and the solutions which have been developed as a response. The central questions which this research seeks to answer are whether the practices adopted by the Mariannhill landfill site are replicable in other solid waste landfills around eThekwini and whether it can be viewed as an example of best practice in landfill site management more generally. The research finds that the main barrier to easy replication of systems followed at Mariannhill in other landfill sites is the difficulty in replicating the specific structures and character of management. Another key determining factor found is the prevailing attitudes to recycling and the environment in general in the society. Consumers choices are seen to be critical to the prospects for recycling of solid waste, including the size, degradability and recyclable potential of products purchased. In considering the potential for replication of the Mariannhill model as an example of best practice, it becomes clear that the technical aspects of operations at Mariannhill are the most easily replicable, yet other and equally important determinants of success are not easily replicable. These include the existing regulatory environment and prevailing societal attitudes towards recycling.
Thesis (M.T.R.P.)-University of KwaZulu-Natal, Durban, 2009.
APA, Harvard, Vancouver, ISO, and other styles
15

Ravele, Rembuluwani Solly. "Economic potential of gold mine waste: a case study of Consolidated Murchison Mine Waste." Diss., 2019. http://hdl.handle.net/11602/1445.

Full text
Abstract:
MESMEG
Department of Mining and Environmental Geology
The increase in the demand and market price of gold has led to reprocessing of gold tailings in many parts of the world. Mines are recently closing down due to depletion of resources and increasing mining costs leading to the reprocessing of old tailings dams. The cost of rehabilitation is high, and therefore a more convenient way of rehabilitation is required. The most convenient strategy identified here was to reprocess tailings for gold and use waste rocks as construction materials. The tailings residues (waste remaining after reprocessing) will be relocated to a more convenient place to avoid pollution. Gold reprocessing from tailings dams has gained momentum in South Africa especially in the Witwatersrand Basin where there are large volumes of tailings. Gold is being reprocessed from tailings in this area using hydraulic monitors. This study focused on the evaluation of gold and heavy metals within the tailings at Consolidated Murchison Mine tailings in Gravelotte, Limpopo province. Augering was conducted over the tailings up to a depth of 8 m along four sampling Profiles. The first profile had two sampling points, the second profile with three sampling points, the third and fourth profiles consisted of four and five sampling points respectively. Samples were collected at 1 m interval, therefore a total of 112 samples were collected and analysed for heavy metals using X-Ray Fluorescence spectrometry and 84 samples were analysed for gold using fire assaying. Tailings sampling was accompanied with tailings logging, taking note of colour, texture and moisture content. Based on this, the oxidation status of the tailings dam was determined. Oxidation zone of this tailings dam was mainly from top down to a depth of 3 m. The transitional zone was not identified, hence after the oxidation zone, the rest was unoxidized zone. This study established that gold was erratically distributed within the tailings dam with the lowest and highest values of 200 mg/kg and 1880 mg/kg respectively and the average was 670 mg/kg. The tonnage of tailings within the dam was found to be 13 280 310 tons with a total gold amount of 8 897. 81 kg. At the current world market, this interprets to US$ 306 932 396.00 (R 4 281 706 924.20). It was concluded that this tailings dam is economically viable for reprocessing, although previous studies have indicated that it is not possible to extract gold from tailings dams completely. The heavy metal content of Pb, Ni and Cr were found to be high with average values of (ppm); 5631.5, 2062.6 and 1345 v respectively. The metals with the lowest values were Cd, Co and Cu, averaging (ppm); 0.01 ppm, 19.8 ppm and 42.1 ppm respectively. Heavy metal content in soil around the tailings dam was gradually decreasing with distance from the tailings dam. Waste rocks have been used in some parts of the world as sub-base material for engineering construction, hence in this study, a total of 6 waste rock samples were collected using grab sampling method for geostatistical investigation. Such samples were subjected to various geotechnical tests which included particle size distribution analysis (sieve analysis), Atterberg limit tests and laboratory compaction test to determine their suitability for construction. The waste rock material was found to be suitable for road construction as it was classified under Group A-1-a using the AASHTO classification system. The material consisted mainly of rock fragments, gravel and sand material with minor silt/clay. In general, Consolidated Murchison mine waste was found to be suitable for road construction.
NRF
APA, Harvard, Vancouver, ISO, and other styles
16

Olaniyi, Foluke Comfort. "Development of Intervention Strategies for Management of Medical Waste in Vhembe District, South Africa." Thesis, 2020. http://hdl.handle.net/11602/1515.

Full text
Abstract:
PhD (Public Health)
Department of Public Health
Medical waste is a special type of hazardous waste generated from healthcare facilities. Mismanagement of this waste has a negative impact on healthcare workers, patients and their relatives, medical waste handlers and the community. South Africa, like many other developing countries, is resource-constrained in the management of medical waste and poor practices have been reported across the country, especially in the urban health facilities that have received more attention from researchers. This study was conducted to explore the practices and challenges of medical waste management in Vhembe District, a largely rural district in Limpopo province and develop intervention strategies for better management of the waste in the District. A convergent parallel approach of mixed method design was adopted to achieve the objectives of this study. The target population included the main stakeholders of medical waste management in the district: the Department of Health, healthcare facilities and the waste management company responsible for the treatment and disposal of medical waste in Limpopo Province. The study population from the Department of Health included representatives from the medical waste management section while the waste management company was represented by the manager of the company in Limpopo Province. The samples for the healthcare facilities were drawn from fifteen randomly selected healthcare facilities in the district and included the administrative heads, medical waste generators and medical waste handlers. The study was conducted in three phases. Phase 1 was a qualitative study during which the administrative heads of the selected healthcare facilities, personnel directly involved in medical waste management at the healthcare facilities as well as the representatives from the Department of Health and waste management company were engaged in in-depth interviews. This phase also involved voice recording, observations, field documentation and taking of relevant pictures. Thematic content analysis was used to analyze the data obtained. During phase 2 (quantitative study), a semi-structured questionnaire was employed for data collection from medical waste generators and handlers at the healthcare facilities. A total of 229 questionnaires were retrieved from the participants and were analyzed with the Statistical Package for Social Sciences version 25.0. Descriptive statistical analyses were performed; Chi-square and Cramer’s V tests were used to determine the associations between dependent and independent variables, as well as the strength of association where significant relationships exist. Statistical significant level was set at p<0.05 and the results are presented in tables and graphs. The results from both phases were interpreted and discussed simultaneously. Respondents and participants were assured of anonymity of their identities and confidentiality of the information they provided. They were given adequate information about the study and only those who volunteered participated in the study after appending their signatures on the informed consent form. In phase 3, the Medical Research Council Framework was used to develop intervention strategies for improved medical waste management in Vhembe District based on the Strength, Weakness, Opportunity and Threat (SWOT) and Political, Economic, Social, Technological, Environmental and Legal (PESTEL) analysis techniques. The study revealed inefficient practices of medical waste management in all the healthcare facilities. Rate of medical waste generation was 338.15kg/day, 19.2kg/day and 15.5kg/day of HCRW from the hospitals, community health centers and clinics respectively. Segregation practices were poor, and only 28.4% of respondents rated their healthcare institutions as being excellent with medical waste segregation. The type of occupation was found to be significantly associated with exposure to training (p=0.000) and the level of knowledge about medical waste management (p=0.000). Also, the use of personal protective equipment was found to be significantly associated with training (p=0.011). Transportation and temporary storage were not done according to the recommendation in the guidelines and incineration was the main means of treatment of the waste. The final product of waste treatment is being disposed into an hazardous waste landfill. The challenges encountered in the process of managing medical waste include lack of adequate funding and budget for medical waste management, ineffective and irregular training of healthcare workers, non-compliance to medical waste management guidelines, insufficient bins, substandard central storage rooms, insufficient personal protective equipment and unavailability of Hepatitis B vaccine. The strength, weakness, opportunities and threats of medical waste management in Vhembe District were analyzed and specific intervention strategies were developed to improve on the strength, minimize the weakness, take advantage of the opportunity and combat the threats. The developed strategies were validated. This study provides the evidences of poor management of medical waste in Vhembe District, and shows the need for urgent intervention measures to be put in place. We therefore recommend that the intervention strategies proposed here be evaluated and implemented to mitigate the untoward effects of poor medical waste management among healthcare workers and the community as a whole.
NRF
APA, Harvard, Vancouver, ISO, and other styles
17

Tshimange, Tshilidzi. "Modelling landfill site suitability in Gauteng Province using GIS." Diss., 2016. http://hdl.handle.net/11602/395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chamane, Ziphathele. "The effect of biomass acclimation on the co-digestion of toxic organic effluents in anaerobic digesters." Thesis, 2008. http://hdl.handle.net/10321/592.

Full text
Abstract:
Dissertation submitted in fulfillment of academic requirements for the Degree of Master of Technology: Chemical Engineering, Durban University of Technology, 2008.
Currently KwaZulu-Natal (KZN) province is populated with textile industry, which produces wastewater, some of which is not biodegradable. Due to the stringent environmental regulations the wastewater cannot be discharged into the rivers or public owned treatment systems. The alternative solution is to co-dispose this wastewater with easily biodegradable waste (labile effluent). The aim of this investigation was to develop a process protocol for the codigestion of high strength and toxic organic effluents under mesophilic conditions (35°C ± 2°C), with emphasis on the effect of biomass acclimation. A total of four effluents were chosen for this study, two labile (distillery and size) and two recalcitrant (scour dye and reactive dye). Two anaerobic batch experiments and two pilot scale trials were performed. The first batch anaerobic experiment investigated the influence of biomass source in anaerobic treatability. The second batch test investigated, whether biomass acclimation enhanced the biodegradability of pollutants. The pilot scale trials were the scale up version of the biomass acclimation test. The results showed sludge from Umbilo Wastewater Treatment Works was a superior biomass source, producing more gas and methane compared to Mpumalanga waste. For the high strength organic waste, the acclimated size and distillery samples produced 50% more biogas and methane compared to non-acclimated samples. This confirms that the biomass acclimation enhances the biodegradability. The biomass acclimation did not enhance the biodegradability of the recalcitrant effluent (scour dye). The pilot scale trials did not yield meaningful data; therefore it could not be proven if acclimation works on a larger scale.
APA, Harvard, Vancouver, ISO, and other styles
19

Potgieter, Frederick Theodore. "'n Ondersoek na die versteuring van die fauna in die Elsburg-Natalspruitsisteem deur die industriële en mynaflope in die Johannesburg-Oos-Randse gebiede." Thesis, 2014. http://hdl.handle.net/10210/11822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Iloms, Eunice Chizube. "Investigating industrial effluent impacts on municipal wastewater treatment plant." Diss., 2018. http://hdl.handle.net/10500/25877.

Full text
Abstract:
Industrial effluents with high concentrations of heavy metals are widespread pollutants of great concerns as they are known to be persistent and non-degradable. Continuous monitoring and treatment of the effluents become pertinent because of their impacts on wastewater treatment plants. The aim of this study is to determine the correlation between heavy metal pollution in water and the location of industries in order to ascertain the effectiveness of the municipal waste water treatment plant. Heavy metal identification and physico-chemical analysis were done using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and multi-parameter probe respectively. Correlation coefficients of the measured values were done to investigate the effect of the industrial effluents on the treatment plants. Heavy metal resistant bacteria were identified and characterised by polymerase chain reaction and sequencing. Leeuwkuil wastewater treatment plants were effective in maintaining temperature, pH, and chemical oxygen demand within South Africa green drop and SAGG Standards whereas the purification plant was effective in maintaining the values of Cu, Zn, Al, temperature, BOD, COD, and TDS within the SANS and WHO standard for potable water. This findings indicated the need for the treatment plants to be reviewed.The industrial wastewater were identified as a point source of heavy metal pollution that influenced Leeuwkuil wastewater treatment plants and the purification plants in Vaal, Vereenining South Africa. Pseudomonas aeruginosa, Serratia marcescens, Bacillus sp. strain and Bacillus toyonensis that showed 100% similarity were found to be resistant to Al, Cu, Pb and Zn. These identified bacteria can be considered for further study in bioremediation.
Environmental Sciences
M. Sc. (Environmental Science)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography