Dissertations / Theses on the topic 'Factorization system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Factorization system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Agagu, Tosin. "Recommendation Approaches Using Context-Aware Coupled Matrix Factorization." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/37012.
Full textTabari, Michel, and Rawand Sultani. "A comparison of matrix factorization algorithms for a movie recommender system." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229734.
Full textRekommendationssystem används alltmer för att förbättra användarupplevelser. Dessa kan implementeras i många sammanhang som i streamingplattformen Netflix för att rekommendera filmer till sina användare. Det finns många sätt att implementera rekommendationssystem och i denna rapport undersöktes två av dessa metoder - Weighted Alternating Least Squares och Stochastic Gradient Descent - som ligger inom kategorin av matrisfaktorisering och deras diverse prestandamått som träningstid, felkonvergens samt kvalitén på förslagen. Till vår hjälp användes TensorFlow, ett ramverk för maskininlärning som utvecklats av Google som har tillhandahållit oss modeller och algoritmer. Resultatet var att Weighted Alternating Least Squares modellen visade sig vara bättre med avseende på kvalitén på förslagen och vi fann även att kvalitén var starkt beroende av modellens parametrar, då vi fann att optimala förslag för en modell kan hittas genom korrekt justering av dessa parametrar. Vi drog slutsatsen att valet av modell beror på den data som undersöks och att optimala parametrar för en modell inte direkt kan överföras till en annan.
Winck, Ryder Christian. "Simultaneous control of coupled actuators using singular value decomposition and semi-nonnegative matrix factorization." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45907.
Full textGoda, Sai Bharath. "Recommender system for recipes." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/17741.
Full textDepartment of Computing and Information Sciences
Daniel A. Anderson
Most of the e-commerce websites like Amazon, EBay, hotels, trip advisor etc. use recommender systems to recommend products to their users. Some of them use the knowledge of history/ of all users to recommend what kind of products the current user may like (Collaborative filtering) and some use the knowledge of the products which the user is interested in and make recommendations (Content based filtering). An example is Amazon which uses both kinds of techniques.. These recommendation systems can be represented in the form of a graph where the nodes are users and products and edges are between users and products. The aim of this project is to build a recommender system for recipes by using the data from allrecipes.com. Allrecipes.com is a popular website used all throughout the world to post recipes, review them and rate them. To understand the data set one needs to know how the recipes are posted and rated in allrecipes.com, whose details are given in the paper. The network of allrecipes.com consists of users, recipes and ingredients. The aim of this research project is to extensively study about two algorithms adsorption and matrix factorization, which are evaluated on homogeneous networks and try them on the heterogeneous networks and analyze their results. This project also studies another algorithm that is used to propagate influence from one network to another network. To learn from one network and propagate the same information to another network we compute flow (influence of one network on another) as described in [7]. The paper introduces a variant of adsorption that takes the flow values into account and tries to make recommendations in the user-recipe and the user-ingredient networks. The results of this variant are analyzed in depth in this paper.
Hedlund, Jesper, and Tengstrand Emma Nilsson. "A Comparison between Different Recommender System Approaches for a Book and an Author Recommender System." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166378.
Full textBroman, Nils. "Comparasion of recommender systems for stock inspiration." Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176408.
Full textSundaramurthy, Roshni. "Recommender System for Gym Customers." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166147.
Full textJohansson, Angela. "Distributed System for Factorisation of Large Numbers." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1883.
Full textThis thesis aims at implementing methods for factorisation of large numbers. Seeing that there is no deterministic algorithm for finding the prime factors of a given number, the task proves rather difficult. Luckily, there have been developed some effective probabilistic methods since the invention of the computer so that it is now possible to factor numbers having about 200 decimal digits. This however consumes a large amount of resources and therefore, virtually all new factorisations are achieved using the combined power of many computers in a distributed system.
The nature of the distributed system can vary. The original goal of the thesis was to develop a client/server system that allows clients to carry out a portion of the overall computations and submit the result to the server.
Methods for factorisation discussed for implementation in the thesis are: the quadratic sieve, the number field sieve and the elliptic curve method. Actually implemented was only a variant of the quadratic sieve: the multiple polynomial quadratic sieve (MPQS).
Nguyen, Le Ha Vy. "Stability and stabilization of several classes of fractional systems with delays." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112387/document.
Full textWe consider two classes of linear time-invariant fractional systems with commensurate orders and discrete delays. The first one consists of multi-input single-output fractional systems with output or input delays. The second one consists of single-input single-output fractional neutral systems with commensurate delays. We study the stabilization of the first class of systems using the factorization approach. We derive left and right coprime factorizations and Bézout factors, which are the elements to constitute the set of all stabilizing controllers. For the second class of systems, we are interested in the critical case where some chains of poles are asymptotic to the imaginary axis. First, we approximate asymptotic poles in order to determine their location relative to the axis. Then, when appropriate, necessary and sufficient conditions for H-infinity-stability are derived. This stability analysis is then extended to classical delay systems of the same form and finally a unified approach for both classes of neutral delay systems with commensurate delays (standard and fractional) is proposed. Next, the stabilization of a subclass of fractional neutral systems is studied. First, the set of all stabilizing controllers is derived. Second, we prove that a large class of fractional controllers with delays cannot eliminate in the closed loop chains of poles asymptotic to the imaginary axis if such chains are present in the controlled systems
Kišac, Matej. "Distribuované aplikace s využitím frameworku Windows Communication Foundation." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242060.
Full textCampos, Ludio Edson da Silva. "Um estudo sobre fatorações de matrizes e a resolução de sistemas lineares." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306088.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T23:10:07Z (GMT). No. of bitstreams: 1 Campos_LudioEdsondaSilva_M.pdf: 1007258 bytes, checksum: 78308663e7f18b51bedeb284cadca66a (MD5) Previous issue date: 2008
Resumo: Neste trabalho abordamos algumas fatorações de matrizes, com vistas à resolução de sistemas lineares através de métodos diretos. Enfocamos particularmente as decomposições LU, Cholesky e QR, cujo uso tem sido largamente difundido em implementações computacionais. Nosso objetivo é apresentar um texto didático, acessível a alunos de graduação, que contemple a teoria básica de cada fatoração, incluindo a demonstração dos principais resultados, e que também forneça condições para uma primeira implementação de cada decomposição. Sugerimos alguns algoritmos, que foram implementados no software livre OCTAVE, através dos quais comparamos o tempo gasto para resolução de alguns sistemas lineares, utilizando as fatorações citadas
Abstract: In this work we discuss some matrix factorizations, with a view to the resolution of linear systems through direct methods. We focus particularly the LU, Cholesky and QR decompositions, whose use has been widely spread in computer implementations. Our goal is to present a didactic text, accessible to undergraduate students, which contemplates the basic theory of each factorization, including the demonstration of the main result and that also provide conditions for a first implementation of each decomposition. We suggest some algorithms that were scheduled in the free software OCTAVE, through which we compare the time elapsed for the resolution of a few linear systems, using the factorizations cited.
Mestrado
Algebra linear
Mestre em Matemática
Backlund, Alexander. "Switching hybrid recommender system to aid the knowledge seekers." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414623.
Full textLee, Eun-Joo. "Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/650.
Full textNorth, Paige Randall. "Type theoretic weak factorization systems." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/265152.
Full textParambath, Shameem Ahamed Puthiya. "Matrix Factorization Methods for Recommender Systems." Thesis, Umeå universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-74181.
Full textMerkel, Wolfgang. "Factorization of numbers with physical systems." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59347.
Full textStrömqvist, Zakris. "Matrix factorization in recommender systems : How sensitive are matrix factorization models to sparsity?" Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352653.
Full textGráca, Martin. "Neuronové sítě pro doporučování knih." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385949.
Full textJikuya, Ichiro, and Ichijo Hodaka. "A Floquet-like factorization for linear periodic systems." IEEE, 2009. http://hdl.handle.net/2237/13921.
Full textLopez, Jose Elias. "Structurally constrained control systems using a factorization approach." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12213.
Full textIncludes bibliographical references (leaves 122-129).
by Jose Elias Lopez.
Ph.D.
Ching, Bryan. "OPTIMIZING LEMPEL-ZIV FACTORIZATION FOR THE GPU ARCHITECTURE." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1238.
Full textCASTRO, GUSTAVO AYRES DE. "AN APPROACH TO CONTROL OF NONLINEAR SYSTEMS THROUGH COPRIME FACTORIZATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9402@1.
Full textO trabalho apresenta uma teoria de fatorações coprimas para sistemas não lineares e aplicações dessa teoria em problemas de controle. A parte inicial é exatamente a teoria de fatorações coprimas, que se assemelha à versão linear. O problema da estabilização de sistemas não lineares é resolvido através de realimentação aditiva, com pré e pós compensadores dinâmicos não lineares. A solução para esse problema é dada na forma da classe de compensadores que estabilizam o sistema. São também apresentadas condições para a estabilidade na presença de ruídos aditivos. Outro problema bastante relevante do ponto de vista de controles é o da especificação da dinâmica do sistema de malha fechada. O enfoque apresenta soluções de caráter local, o que permite que a dinâmica a ser especificada seja definida apenas sobre uma restrição do espeço de entrada. Dessa forma tornou-se factível a especificação de dinâmicas dentro de uma classe relativamente ampla. São discutidas possibilidades para o problema da regulação. Também utilizando condiçòes locais é apresentada uma teoria de estabilização robusta com relação a perturbações não estruturadas. Algumas soluções explícitas e relativamente estruturadas são apresentadas.
The control of nonlinear systems via coprime factorization is the subject of this dissertation. Initially, a broad theory concerning nonlinear factorizations is presented. The class of stabilizing controllers for a given nonlinear plant is derived using that theory. Then, there are derived sufficient conditions for the closed loop system are also presented. One of the major departures from the original work on nonlinear factorizations is the fact that the solutions presented need only to be locally derived, which allows a wider class of dynamics to be assigned for the closed loop input- output transference relation. The robust control of nonlinear systems is achieved through the use of locally defined solutions, allowing to control systems subject to some relatively structured perturbations.
Sinani, Klajdi. "Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Genaralized Coprime Factorizations." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/64425.
Full textMaster of Science
Hogg, Jonathan David. "High performance Cholesky and symmetric indefinite factorizations with applications." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4892.
Full textXarez, Isabel Margarida da Costa Andrade. "Reflections of universal algebras into semilattices, their Galois theories, and related factorization systems." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11367.
Full textEstabelecemos uma condição suficiente para a preservação dos produtos finitos, pelo reflector de uma variedade de álgebras universais numa subvariedade, que é, também, condição necessária se a subvariedade for idempotente. Esta condição é estabelecida, seguidamente, num contexto mais geral e caracteriza reflexões para as quais a propriedade de ser semi-exacta à esquerda e a propriedade, mais forte, de ter unidades estáveis, coincidem. Prova-se que reflexões simples e semi-exactas à esquerda coincidem, no contexto das variedades de álgebras universais e caracterizam-se as classes do sistema de factorização derivado da reflexão. Estabelecem-se resultados que ajudam a caracterizar morfismos de cobertura e verticais-estáveis em álgebras universais e no contexto mais geral já referido. Caracterizam-se as classes de morfismos separáveis, puramente inseparáveis e normais. O estudo dos morfismos de descida de Galois conduz a condições suficientes para que o seu par kernel seja preservado pelo reflector.
We begin with a sufficient condition for the preservation of finite products by a reflector from a variety of universal algebras into a subvariety, which is also a necessary condition when the subvariety is idempotent. This condition is then stated in a more general setting and this characterizes reflections for which semileftexactness and the stronger stable units property are the same. It is shown that simple and semi-left-exact reflections coincide in the context of varieties of universal algebras, and characterizations of the classes of the derived reflective factorization system are given. Several statements help then to characterize covering and stably-vertical morphisms of universal algebras, and in the more general setting referred to above. The classes of separable, purely inseparable and normal morphisms are characterized as well. The study of Galois descent morphisms provides conditions under which their kernel pairs are preserved by the reflector.
Holländer, John. "Investigating the performance of matrix factorization techniques applied on purchase data for recommendation purposes." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20624.
Full textFujimoto, Kenji. "Synthesis and Analysis of Nonlinear Control Systems Based on Transformations and Factorizations." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/151484.
Full textMagolu, Monga-Made. "Sparse approximate block factorizations for solving symmetric positive (semi)definite linear systems." Doctoral thesis, Universite Libre de Bruxelles, 1992. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212924.
Full textWu, Min. "On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras." Nice, 2005. http://www.theses.fr/2005NICE4026.
Full textSokal, Bruno. "Semi-blind receivers for multi-relaying mimo systems using rank-one tensor factorizations." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25988.
Full textSubmitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-15T20:38:29Z No. of bitstreams: 1 2017_dis_bsokal.pdf: 1689224 bytes, checksum: f0e2e9424de721f23bf0629ba55330c1 (MD5)
Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Prezado Bruno: Existe uma orientação para que normalizemos as dissertações e teses da UFC, em suas paginas pré-textuais e lista de referencias, pelas regras da ABNT. Por esse motivo, sugerimos consultar o modelo de template, para ajudá-lo nesta tarefa, disponível em: http://www.biblioteca.ufc.br/educacao-de-usuarios/templates/ Vamos agora as correções sempre de acordo com o template: 1. As informações da capa, folha de rosto (que segue a capa) e ficha catalográfica devem ser em língua portuguesa, mesmo que sua dissertação esteja em língua inglesa. A partir da folha de aprovação, devem ser em língua inglesa. 2. Exemplificando a capa, as informações que devem aparecer são pela ordem (Toadas em Maiúsculo e negrito): Nome da universidade, do centro, do departamento e nome do programa; Nome do aluno; Título; Cidade e data. 2. A folha de rosto também tem informações que não são necessárias. Consulte o template para ver uso de maiúsculas, negrito e ordem de apresentação das informações. 3. A ficha catalográfica deve vir antes da folha de aprovação e não depois desta. 4. A folha de aprovação não deve ter as informações do quadro no alto da folha, nem deve ser em negrito. Veja modelo no template. 5. De acordo com a ABNT mesmo escrita em outro idioma, primeiro coloca-se o resumo na língua portuguesa e depois o Abstract. As palavras RESUMO e ABSTRCT vem ser em caixa alta, negrito e no centro da folha. Não devem iniciar com paragrafo. Essa folhas são contadas mas não numeradas. Só a partir da introdução é que são numeradas. 6. Veja no template a ordem das folhas a partir dos agradecimentos e como devem ser apresentadas. 7. Na lista de figuras mantenha o mesmo espaço entre as linhas. 8. O sumário não deve conter as informações anteriores a INTRODUÇÃO, deve ser em negrito e sem recuo de paragrafo. Observe o uso de Caixa alta, itálico nas seções. Após a conclusão devem vir os APÊNDICES e as REFERENCIAS. 9. Na lista de referencias, pela ABNT, deve-se iniciar pelo sobrenome do autor, seguido do prenome. Elaboramos ferramentas para ajuda-lo a gerar as referencias e gerenciadores bibliográficos disponivel em: http://www.biblioteca.ufc.br/ferramentas-de-pesquisa/ Em artigos de revistas usa-se a seguinte nomenclatura para volume, numero e páginas: v. , n. , p. Não se destacam subtítulos e nos artigos de revistas se destaca-se apenas o ´nome da revista. Att. Marlene Rocha 3366-9620 mmarlene@ufc.br on 2017-09-18T11:38:11Z (GMT)
Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-20T14:04:25Z No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5)
Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-21T17:44:15Z (GMT) No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5)
Made available in DSpace on 2017-09-21T17:44:15Z (GMT). No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5) Previous issue date: 2017-07-27
Cooperative communications have shown to be an alternative to combat the impairments of signal propagation in wireless communications, such as path loss and shadowing, creating a virtual array of antennas for the source. In this work, we start with a two-hop MIMO system using a a single relay. By adding a space-time filtering step at the receiver, we propose a rank-one tensor factorization model for the resulting signal. Exploiting this model, two semi-blind receivers for joint symbol and channel estimation are derived: i) an iterative receiver based on the trilinear alternating least squares (Tri-ALS) algorithm and ii) a closed-form receiver based on the truncated higher order SVD (T-HOSVD). For this system, we also propose a space-time coding tensor having a PARAFAC decomposition structure, which gives more flexibility to system design, while allowing an orthogonal coding. In the second part of this work, we present an extension of the rank-one factorization approach to a multi-relaying scenario and a closed-form semi-blind receiver based on coupled SVDs (C-SVD) is derived. The C-SVD receiver efficiently combines all the available cooperative links to enhance channel and symbol estimation performance, while enjoying a parallel implementation.
Comunicações cooperativas têm mostrado ser uma alternativa para combater os efeitos de propagação do sinal em comunicações sem-fio, como, por exemplo, a perda por percurso e sombreamento, criando um array virtual de antenas para a fonte transmissora. Neste trabalho, toma-se como ponto de partida um modelo de sistema MIMO de dois saltos com um único relay. Adicionando um estágio de filtragem no receptor, é proposta uma fatoração de rank-um para o sinal resultante. A partir deste modelo, dois receptores semi-cegos para estimação conjunta de símbolo e canal são propostos: i) um receptor iterativo baseado no algoritmo trilinear de mínimos quadrados alternados (Tri-ALS) e ii) um receptor de solução fechada baseado na SVD de ordem superior truncada (T-HOSVD). Para este sistema, é também proposto um tensor de codificação espacial-temporal com uma estrutura PARAFAC, o que permite maior flexibilidade de design do sistema, além de uma codificação ortogonal. Na segunda parte deste trabalho, é apresentada uma extensão da fatoração de rank-um para o cenário multi-relay e um receptor semi-cego de solução fechada baseado em SVD's acopladas (C-SVD) é desenvolvido. O receptor C-SVD combina de modo eficiente todos os links cooperativos disponíveis, melhorando o desempenho da estimação de símbolos e de canal, além de oferecer uma implementação paralelizável.
Ercan, Eda. "Probabilistic Matrix Factorization Based Collaborative Filtering With Implicit Trust Derived From Review Ratings Information." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612529/index.pdf.
Full textHäger, Alexander. "Contextualizing music recommendations : A collaborative filtering approach using matrix factorization and implicit ratings." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167068.
Full textYao, Sirui. "Evaluating, Understanding, and Mitigating Unfairness in Recommender Systems." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103779.
Full textDoctor of Philosophy
Recommender systems are information filtering tools that discover potential matching between users and items. However, a recommender system, if not properly built, may not treat users and items equitably, which raises ethical and legal concerns. In this research, we explore the implication of fairness in the context of recommender systems, study the relation between unfairness in recommender output and inequality in the underlying population, and propose effective unfairness mitigation approaches. We start with finding unfairness metrics appropriate for recommender systems. We focus on the task of rating prediction, which is a crucial step in recommender systems. We propose a set of unfairness metrics measured as the disparity in how much predictions deviate from the ground truth ratings. We also offer a mitigation method to reduce these forms of unfairness in matrix factorization models Next, we look deeper into the factors that contribute to error-based unfairness in matrix factorization models and identify four types of biases that contribute to higher subpopulation error. Then we propose personalized regularization learning (PRL), which is a mitigation strategy that learns personalized regularization parameters to directly addresses data biases. The learned per-user regularization parameters are interpretable and provide insight into how fairness is improved. Third, we conduct a theoretical study on the long-term dynamics of the inequality in the fitting (e.g., interest, qualification, etc.) between users and items. We first mathematically formulate the transition dynamics of user-item fit in one step of recommendation. Then we discuss the existence and uniqueness of system equilibrium as the one-step dynamics repeat. We also show that depending on the relation between item categories and the recommendation policies (unconstrained or fair), recommendations in one item category can reshape the user-item fit in another item category. In summary, we examine different fairness criteria in rating prediction and recommendation, study the dynamics of interactions between recommender systems and users, and propose mitigation methods to promote fairness and equality.
NÓBREGA, Caio Santos Bezerra. "Uma estratégia para predição da taxa de aprendizagem do gradiente descendente para aceleração da fatoração de matrizes." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/362.
Full textMade available in DSpace on 2018-04-11T14:50:08Z (GMT). No. of bitstreams: 1 CAIO SANTOS BEZERRA NÓBREGA - DISSERTAÇÃO PPGCC 2014..pdf: 983246 bytes, checksum: 5eca7651706ce317dc514ec2f1aa10c3 (MD5) Previous issue date: 2014-07-30
Capes
Sugerir os produtos mais apropriados aos diversos tipos de consumidores não é uma tarefa trivial, apesar de ser um fator chave para aumentar satisfação e lealdade destes. Devido a esse fato, sistemas de recomendação têm se tornado uma ferramenta importante para diversas aplicações, tais como, comércio eletrônico, sites personalizados e redes sociais. Recentemente, a fatoração de matrizes se tornou a técnica mais bem sucedida de implementação de sistemas de recomendação. Os parâmetros do modelo de fatoração de matrizes são tipicamente aprendidos por meio de métodos numéricos, tal como o gradiente descendente. O desempenho do gradiente descendente está diretamente relacionada à configuração da taxa de aprendizagem, a qual é tipicamente configurada para valores pequenos, com o objetivo de não perder um mínimo local. Consequentemente, o algoritmo pode levar várias iterações para convergir. Idealmente,é desejada uma taxa de aprendizagem que conduza a um mínimo local nas primeiras iterações, mas isto é muito difícil de ser realizado dada a alta complexidade do espaço de valores a serem pesquisados. Começando com um estudo exploratório em várias bases de dados de sistemas de recomendação, observamos que, para a maioria das bases, há um padrão linear entre a taxa de aprendizagem e o número de iterações necessárias para atingir a convergência. A partir disso, propomos utilizar modelos de regressão lineares simples para predizer, para uma base de dados desconhecida, um bom valor para a taxa de aprendizagem inicial. A ideia é estimar uma taxa de aprendizagem que conduza o gradiente descendenteaummínimolocalnasprimeirasiterações. Avaliamosnossatécnicaem8bases desistemasderecomendaçãoreaisecomparamoscomoalgoritmopadrão,oqualutilizaum valorfixoparaataxadeaprendizagem,ecomtécnicasqueadaptamataxadeaprendizagem extraídas da literatura. Nós mostramos que conseguimos reduzir o número de iterações até em 40% quando comparados à abordagem padrão.
Suggesting the most suitable products to different types of consumers is not a trivial task, despite being a key factor for increasing their satisfaction and loyalty. Due to this fact, recommender systems have be come an important tool for many applications, such as e-commerce, personalized websites and social networks. Recently, Matrix Factorization has become the most successful technique to implement recommendation systems. The parameters of this model are typically learned by means of numerical methods, like the gradient descent. The performance of the gradient descent is directly related to the configuration of the learning rate, which is typically set to small values, in order to do not miss a local minimum. As a consequence, the algorithm may take several iterations to converge. Ideally, one wants to find a learning rate that will lead to a local minimum in the early iterations, but this is very difficult to achieve given the high complexity of search space. Starting with an exploratory study on several recommendation systems datasets, we observed that there is an over all linear relationship between the learnin grate and the number of iterations needed until convergence. From this, we propose to use simple linear regression models to predict, for a unknown dataset, a good value for an initial learning rate. The idea is to estimate a learning rate that drives the gradient descent as close as possible to a local minimum in the first iteration. We evaluate our technique on 8 real-world recommender datasets and compared it with the standard Matrix Factorization learning algorithm, which uses a fixed value for the learning rate over all iterations, and techniques fromt he literature that adapt the learning rate. We show that we can reduce the number of iterations until at 40% compared to the standard approach.
Ingverud, Patrik. "Complexity evaluation of CNNs in tightly coupled hybrid recommender systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232027.
Full textI denna rapport utvärderade vi komplexiteten på ett neuralt faltningsnätverk (eng. Convolutional Neural Network) i form av antal filter, storleken på filtren och regularisering, i form av avhopp (eng. dropout), för att se hur dessa hyperparametrar påverkade träffsäkerheten för rekommendationer i ett hybridrekommendationssystem. Vi utvärderade även hur förträning av det neurala faltningsnätverket påverkade träffsäkerheten för rekommendationer i jämförelse med ett icke förtränat neuralt faltningsnätverk. Resultaten visade trender på att en mindre komplex modell, det vill säga mindre och färre filter, gav bättre resultat. Även mindre regularisering, i form av avhopp, gav bättre resultat för mindre komplexa modeller. Gällande jämförelsen med förtränade modeller och icke förtränade modeller visade de experimentella resultaten nästan ingen skillnad för de två kompaktare dataseten medan förträning gav lite sämre resultat på det glesaste datasetet.
Dias, Pedro Ricardo Gomes. "Recommending media content based on machine learning methods." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/6581.
Full textInformation is nowadays made available and consumed faster than ever before. This information technology generation has access to a tremendous deal of data and is left with the heavy burden of choosing what is relevant. With the increasing growth of media sources, the amount of content made available to users has become overwhelming and in need to be managed. Recommender systems emerged with the purpose of providing personalized and meaningful content recommendations based on users’ preferences and usage history. Due to their utility and commercial potential, recommender systems integrate many audiovisual content providers and represent one of their most important and valuable services. The goal of this thesis is to develop a recommender system based on matrix factorization methods, capable of providing meaningful and personalized product recommendations to individual users and groups of users, by taking into account users’ rating patterns and biased tendencies, as well as their fluctuations throughout time.
Zeng, Jingying. "Latent Factor Models for Recommender Systems and Market Segmentation Through Clustering." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1491255524283942.
Full textParimi, Rohit. "Collaborative filtering approaches for single-domain and cross-domain recommender systems." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20108.
Full textComputing and Information Sciences
Doina Caragea
Increasing amounts of content on the Web means that users can select from a wide variety of items (i.e., items that concur with their tastes and requirements). The generation of personalized item suggestions to users has become a crucial functionality for many web applications as users benefit from being shown only items of potential interest to them. One popular solution to creating personalized item suggestions to users is recommender systems. Recommender systems can address the item recommendation task by utilizing past user preferences for items captured as either explicit or implicit user feedback. Numerous collaborative filtering (CF) approaches have been proposed in the literature to address the recommendation problem in the single-domain setting (user preferences from only one domain are used to recommend items). However, increasingly large datasets often prevent experimentation of every approach in order to choose the one that best fits an application domain. The work in this dissertation on the single-domain setting studies two CF algorithms, Adsorption and Matrix Factorization (MF), considered to be state-of-the-art approaches for implicit feedback and suggests that characteristics of a domain (e.g., close connections versus loose connections among users) or characteristics of data available (e.g., density of the feedback matrix) can be useful in selecting the most suitable CF approach to use for a particular recommendation problem. Furthermore, for Adsorption, a neighborhood-based approach, this work studies several ways to construct user neighborhoods based on similarity functions and on community detection approaches, and suggests that domain and data characteristics can also be useful in selecting the neighborhood approach to use for Adsorption. Finally, motivated by the need to decrease computational costs of recommendation algorithms, this work studies the effectiveness of using short-user histories and suggests that short-user histories can successfully replace long-user histories for recommendation tasks. Although most approaches for recommender systems use user preferences from only one domain, in many applications, user interests span items of various types (e.g., artists and tags). Each recommendation problem (e.g., recommending artists to users or recommending tags to users) can be considered unique domains, and user preferences from several domains can be used to improve accuracy in one domain, an area of research known as cross-domain recommender systems. The work in this dissertation on cross-domain recommender systems investigates several limitations of existing approaches and proposes three novel approaches (two Adsorption-based and one MF-based) to improve recommendation accuracy in one domain by leveraging knowledge from multiple domains with implicit feedback. The first approach performs aggregation of neighborhoods (WAN) from the source and target domains, and the neighborhoods are used with Adsorption to recommend target items. The second approach performs aggregation of target recommendations (WAR) from Adsorption computed using neighborhoods from the source and target domains. The third approach integrates latent user factors from source domains into the target through a regularized latent factor model (CIMF). Experimental results on six target recommendation tasks from two real-world applications suggest that the proposed approaches effectively improve target recommendation accuracy as compared to single-domain CF approaches and successfully utilize varying amounts of user overlap between source and target domains. Furthermore, under the assumption that tuning may not be possible for large recommendation problems, this work proposes an approach to calculate knowledge aggregation weights based on network alignment for WAN and WAR approaches, and results show the usefulness of the proposed solution. The results also suggest that the WAN and WAR approaches effectively address the cold-start user problem in the target domain.
Martin, Andrew John. "A High Performance Parallel Sparse Linear Equation Solver Using CUDA." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310603635.
Full textWang, Xiwei. "Data Privacy Preservation in Collaborative Filtering Based Recommender Systems." UKnowledge, 2015. http://uknowledge.uky.edu/cs_etds/35.
Full textHerrmann, Julien. "Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1043/document.
Full textThroughout this thesis, we have designed memory-aware algorithms and scheduling techniques suitedfor modern memory architectures. We have shown special interest in improving the performance ofmatrix computations on multiple levels. At a high level, we have introduced new numerical algorithmsfor solving linear systems on large distributed platforms. Most of the time, these linear solvers rely onruntime systems to handle resources allocation and data management. We also focused on improving thedynamic schedulers embedded in these runtime systems by adding static information to their decisionprocess. We proposed new memory-aware dynamic heuristics to schedule workflows, that could beimplemented in such runtime systems.Altogether, we have dealt with multiple state-of-the-art factorization algorithms used to solve linearsystems, like the LU, QR and Cholesky factorizations. We targeted different platforms ranging frommulticore processors to distributed memory clusters, and worked with several reference runtime systemstailored for these architectures, such as P A RSEC and StarPU. On a theoretical side, we took specialcare of modelling convoluted hierarchical memory architectures. We have classified the problems thatare arising when dealing with these storage platforms. We have designed many efficient polynomial-timeheuristics on general problems that had been shown NP-complete beforehand
Rouet, François-Henry. "Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0070/document.
Full textWe consider the solution of very large sparse systems of linear equations on parallel architectures. In this context, memory is often a bottleneck that prevents or limits the use of direct solvers, especially those based on the multifrontal method. This work focuses on memory and performance issues of the two memory and computationally intensive phases of direct methods, that is, the numerical factorization and the solution phase. In the first part we consider the solution phase with sparse right-hand sides, and in the second part we consider the memory scalability of the multifrontal factorization. In the first part, we focus on the triangular solution phase with multiple sparse right-hand sides, that appear in numerous applications. We especially emphasize the computation of entries of the inverse, where both the right-hand sides and the solution are sparse. We first present several storage schemes that enable a significant compression of the solution space, both in a sequential and a parallel context. We then show that the way the right-hand sides are partitioned into blocks strongly influences the performance and we consider two different settings: the out-of-core case, where the aim is to reduce the number of accesses to the factors, that are stored on disk, and the in-core case, where the aim is to reduce the computational cost. Finally, we show how to enhance the parallel efficiency. In the second part, we consider the parallel multifrontal factorization. We show that controlling the active memory specific to the multifrontal method is critical, and that commonly used mapping techniques usually fail to do so: they cannot achieve a high memory scalability, i.e. they dramatically increase the amount of memory needed by the factorization when the number of processors increases. We propose a class of "memory-aware" mapping and scheduling algorithms that aim at maximizing performance while enforcing a user-given memory constraint and provide robust memory estimates before the factorization. These techniques have raised performance issues in the parallel dense kernels used at each step of the factorization, and we have proposed some algorithmic improvements. The ideas presented throughout this study have been implemented within the MUMPS (MUltifrontal Massively Parallel Solver) solver and experimented on large matrices (up to a few tens of millions unknowns) and massively parallel architectures (up to a few thousand cores). They have demonstrated to improve the performance and the robustness of the code, and will be available in a future release. Some of the ideas presented in the first part have also been implemented within the PDSLin (Parallel Domain decomposition Schur complement based Linear solver) solver
Thapa, Nirmal. "CONTEXT AWARE PRIVACY PRESERVING CLUSTERING AND CLASSIFICATION." UKnowledge, 2013. http://uknowledge.uky.edu/cs_etds/15.
Full textFathollahzadeh, Pedram. "Improving Food Recipe Suggestions with Hierarchical Classification of Food Recipes." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224782.
Full textAtt ge personliga rekommendationer har blivit en central del av många plattformar och fortsätter att bli det då tillgången till stora mängder data har ökat. Genom att ge personliga rekommendationer baserat på användares intressen, istället för att rekommendera det som är populärt, förbättrar användarupplevelsen och kan attrahera fler kunder. För att kunna producera personliga rekommendationer så vänder sig många plattformar till maskininlärningsalgoritmer. När det kommer till matrecept, så brukar dessa maskininlärningsalgoritmer bestå av hybrida metoder som sammanfogar collaborative filtering, innehållsbaserande metoder och matrisfaktorisering. De flesta innehållsbaserande metoderna baseras på ingredienser och har visats vara effektiva. Däremot, så kan det vara kostsamt för datorer att ta hänsyn till varenda ingrediens i varje matrecept. Därför undersöker denna artikel om att klassificera recept hierarkiskt efter matkultur och huvudprotein också kan förbättra rekommendationer när bara collaborative filtering och matrisfaktorisering används. Denna innehållsbaserande metod har en struktur av hierarkisk klassificering, där recept först indelas efter matkultur, specifik matkultur och till slut vad huvudproteinet är. Resultaten visar att innehållsbaserande metoden kan förbättra receptförslagen, men inte på en statistisk signifikant nivå, och kan reducera gleshet i en matris med tillsatta betyg från olika användare med olika recept något. Däremot så påverkas den ansenligt när det är glest med tillgänglighet av data.
Eatit
Lee, Joonseok. "Local approaches for collaborative filtering." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53846.
Full textGuillou, Frédéric. "On recommendation systems in a sequential context." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30041/document.
Full textThis thesis is dedicated to the study of Recommendation Systems under a sequential setting, where the feedback given by users on items arrive one after another in the system. After each feedback, the system has to integrate it and try to improve future recommendations. Many techniques or evaluation methods have already been proposed to study the recommendation problem. Despite that, such sequential setting, which is more realistic and represent a closer framework to a real Recommendation System evaluation, has surprisingly been left aside. Under a sequential context, recommendation techniques need to take into consideration several aspects which are not visible for a fixed setting. The first one is the exploration-exploitation dilemma: the model making recommendations needs to find a good balance between gathering information about users' tastes or items through exploratory recommendation steps, and exploiting its current knowledge of the users and items to try to maximize the feedback received. We highlight the importance of this point through the first evaluation study and propose a simple yet efficient approach to make effective recommendation, based on Matrix Factorization and Multi-Armed Bandit algorithms. The second aspect emphasized by the sequential context appears when a list of items is recommended to the user instead of a single item. In such a case, the feedback given by the user includes two parts: the explicit feedback as the rating, but also the implicit feedback given by clicking (or not clicking) on other items of the list. By integrating both feedback into a Matrix Factorization model, we propose an approach which can suggest better ranked list of items, and we evaluate it in a particular setting
Donfack, Simplice. "Methods and algorithms for solving linear systems of equations on massively parallel computers." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112042.
Full textMulticore processors are considered to be nowadays the future of computing, and they will have an important impact in scientific computing. In this thesis, we study methods and algorithms for solving efficiently sparse and dense large linear systems on future petascale machines and in particular these having a significant number of cores. Due to the increasing communication cost compared to the time the processors take to perform arithmetic operations, our approach embrace the communication avoiding algorithm principle by doing some redundant computations and uses several adaptations to achieve better performance on multicore machines.We decompose the problem to solve into several phases that would be then designed or optimized separately. In the first part, we present an algorithm based on hypergraph partitioning and which considerably reduces the fill-in incurred in the LU factorization of sparse unsymmetric matrices. In the second part, we present two communication avoiding algorithms that are adapted to multicore environments. The main contribution of this part is to reorganize the computations such as to reduce bus contention and using efficiently resources. Then, we extend this work for clusters of multi-core processors. In the third part, we present a new scheduling and optimization approach. Data locality and load balancing are a serious trade-off in the choice of the scheduling strategy. On NUMA machines for example, where the data locality is not an option, we have observed that in the presence of noise, performance could quickly deteriorate and become difficult to predict. To overcome this bottleneck, we present an approach that combines a static and a dynamic scheduling approach to schedule the tasks of our algorithms.Our results obtained on several architectures show that all our algorithms are efficient and lead to significant performance gains. We can achieve from 30 up to 110% improvement over the corresponding routines of our algorithms in well known libraries
Déhaye, Vincent. "Characterisation of a developer’s experience fields using topic modelling." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171946.
Full textZarudniev, Mykhailo. "Synthèse de fréquence par couplage d'oscillateurs spintroniques." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00804561.
Full textJonsson, Isak. "Recursive Blocked Algorithms, Data Structures, and High-Performance Software for Solving Linear Systems and Matrix Equations." Doctoral thesis, Umeå : Univ, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160.
Full text