Academic literature on the topic 'Facteur de transcription EB (TFEB)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Facteur de transcription EB (TFEB).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Facteur de transcription EB (TFEB)"
Nezich, Catherine L., Chunxin Wang, Adam I. Fogel, and Richard J. Youle. "MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5." Journal of Cell Biology 210, no. 3 (August 3, 2015): 435–50. http://dx.doi.org/10.1083/jcb.201501002.
Full textMarkby, Greg Robert, and Kei Sakamoto. "Transcription factor EB and TFE3: new metabolic coordinators mediating adaptive responses to exercise in skeletal muscle?" American Journal of Physiology-Endocrinology and Metabolism 319, no. 4 (October 1, 2020): E763—E768. http://dx.doi.org/10.1152/ajpendo.00339.2020.
Full textDang, Thao Thi, and Sung Hoon Back. "Translation Inhibitors Activate Autophagy Master Regulators TFEB and TFE3." International Journal of Molecular Sciences 22, no. 21 (November 8, 2021): 12083. http://dx.doi.org/10.3390/ijms222112083.
Full textWundersitz, Sebastian, Cristina Pablo Tortola, Sibylle Schmidt, Ramon Oliveira Vidal, Melanie Kny, Alexander Hahn, Lukas Zanders, et al. "The Transcription Factor EB (TFEB) Sensitizes the Heart to Chronic Pressure Overload." International Journal of Molecular Sciences 23, no. 11 (May 25, 2022): 5943. http://dx.doi.org/10.3390/ijms23115943.
Full textSu, Qian, Bin Zheng, Chen-yao Wang, Yun-zhi Yang, Wen-wen Luo, Shu-min Ma, Xin-hua Zhang, et al. "Oxidative Stress Induces Neuronal Apoptosis Through Suppressing Transcription Factor EB Phosphorylation at Ser467." Cellular Physiology and Biochemistry 46, no. 4 (2018): 1536–54. http://dx.doi.org/10.1159/000489198.
Full textChang, Jin-Zhe, Shu-Dong Chen, Hui Zheng, and Hua-Ping Zhang. "Downregulation of transcription factor EB inhibits the growth and metastasis of colorectal carcinomas." European Journal of Inflammation 16 (January 2018): 205873921880533. http://dx.doi.org/10.1177/2058739218805333.
Full textCesana, Marcella, Gennaro Tufano, Francesco Panariello, Nicolina Zampelli, Susanna Ambrosio, Rossella De Cegli, Margherita Mutarelli, et al. "EGR1 drives cell proliferation by directly stimulating TFEB transcription in response to starvation." PLOS Biology 21, no. 3 (March 8, 2023): e3002034. http://dx.doi.org/10.1371/journal.pbio.3002034.
Full textArgüello, Graciela, Elisa Balboa, Pablo J. Tapia, Juan Castro, María José Yañez, Pamela Mattar, Rodrigo Pulgar, and Silvana Zanlungo. "Genistein Activates Transcription Factor EB and Corrects Niemann–Pick C Phenotype." International Journal of Molecular Sciences 22, no. 8 (April 19, 2021): 4220. http://dx.doi.org/10.3390/ijms22084220.
Full textWang, Shujun, Yanse Chen, Hongluan Wu, Xiaoyu Li, Haiyan Xiao, Qingjun Pan, and Hua-Feng Liu. "Role of Transcription Factor EB in Mitochondrial Dysfunction of Cisplatin-Induced Acute Kidney Injury." International Journal of Molecular Sciences 24, no. 3 (February 3, 2023): 3028. http://dx.doi.org/10.3390/ijms24033028.
Full textCorà, Davide, Federico Bussolino, and Gabriella Doronzo. "TFEB Signalling-Related MicroRNAs and Autophagy." Biomolecules 11, no. 7 (July 4, 2021): 985. http://dx.doi.org/10.3390/biom11070985.
Full textDissertations / Theses on the topic "Facteur de transcription EB (TFEB)"
Armani, Andrea. "Transcription factor EB controls metabolic flexibility during exercise." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422410.
Full textIl muscolo scheletrico è il tessuto più abbondante dell’organismo e rappresenta più del 40% della massa corporea. Questo organo è responsabile del 30% della spesa energetica a riposo, suggerendo la sua importanza non solo a livello di locomozione ma anche nel controllo del metabolismo a livello sistemico. Infatti il muscolo scheletrico è un tessuto estremamente dinamico, capace di modulare il suo metabolismo in seguito a stimoli di diversa natura. Uno stimolo che attiva maggiori adattamenti metabolici è l’esercizio, che è noto attivare anche l’autofagia. L’esercizio fisico stimola molti effetti benefici sul contenuto e funzionalità mitocondriale, ossidazione degli acidi grassi e assorbimento del glucosio; tuttavia, è considerato uno stimolo che danneggia la normale omeostasi delle fibre muscolari per cui necessita di essere controbilanciato dall’attivazione di meccanismi trascrizionalmente controllati che contrastano gli stress meccanici e metabolici prodotti durante la contrazione. Il ruolo dei fattori di trascrizione FoxO e TFEB nel regolare la degradazione proteica e l’autofagia è largamente conosciuto. Tuttavia, il ruolo di TFEB nel muscolo scheletrico e i suoi possibili effetti nel regolare gli adattamenti derivanti dall’esercizio in questo tessuto non sono ancora chiari. TFEB è stato proposto come fattore chiave nel coordinare autofagia e biogenesi lisosomiale in cellule in coltura, con diverse evidenze che dimostrano la regolazione della sua attività. In particolare è noto come la fosforilazione operata da mTORC1 sia in grado di prevenire l’attivazione di TFEB sequestrandolo nel citoplasma. Tuttavia, non esistono dati riguardanti le possibili fosfatasi coinvolte nell’attivazione di TFEB. Mediante l’utilizzo di uno High Content Screening in grado di monitorare la traslocazione di TFEB nel nucleo durante la starvation, abbiamo identificato il gene PPP3CB, codificante la subunità catalitica della calcineurina, come uno dei migliori geni coinvolti nella rilocalizzazione di TFEB. Abbiamo dimostrato che l’attività della calcineurina è necessaria e sufficiente per spingere TFEB nel nucleo, dove può espletare la sua funzione. Tuttavia, la calcineurina è noto essere attiva nel muscolo scheletrico durante la contrazione come conseguenza dei transienti di calcio. Per questo motivo ci siamo chiesti se l’attività della calcineurina possa influenzare la traslocazione di TFEB nel nucleo anche nel muscolo scheletrico durante l’esercizio fisico. Utilizzando un reporter TFEB-GFP abbiamo dimostrato che l’attività della calcineurina è necessaria e sufficiente a promuovere la traslocazione nucleare di TFEB anche nel muscolo scheletrico durante la contrazione. Tuttavia il significato fisiologico di questo avvenimento rimane da essere spiegato. Per rispondere a questa domanda abbiamo usato degli approcci di gain e loss of function utilizzando infezioni virali con vettori per l’overespressione di TFEB, una linea di topi con delezione muscolo specifica di TFEB e un’altra linea in cui l’overespressione di TFEB può essere attivata in muscolo grazie al tamoxifen. Da uno studio di espressione genica in muscoli overesprimenti TFEB e TFEB deficienti, abbiamo trovato che le vie di segnale principalmente coinvolte dalle manipolazioni genetiche erano quelle correlate alla biogenesi mitocondriale, utilizzo dei lipidi e omeostasi del glucosio. Abbiamo perciò cominciato a dissezionare il ruolo di TFEB nel muscolo scheletrico provando che la sua attivazione è richiesta per la biogenesi mitocondriale, che è per l'appunto aumentata nei muscoli transgenici. Infatti, in questi abbiamo trovato un aumento nel numero e nella dimensione dei mitocondri, mentre abbiamo riportato solo una piccola percentuale di mitocondri disfunzionali nei muscoli knockout. Questi cambiamenti sono accompagnati da un’attivazione dei geni TFEB-dipendenti responsabili per la biogenesi e funzionalità mitocondriale. Inoltre, questi cambiamenti morfometrici e di espressione genica correlano con un aumento nella respirazione mitocondriale e nell’attività dei complessi della catena respiratoria. Per questo motivo i muscoli transgenici producono più ATP dei wildtype, mentre i muscoli KO presentano una ridotta sintesi di ATP a causa di una disfunzionalità della membrana mitocondriale che dissipa il gradiente protonico. Tuttavia, per capire se questi cambiamenti dipendono direttamente da TFEB indipendentemente da PGC1α, abbiamo monitorato l’espressione di NRF1/2, TFAM e altri geni coinvolti nella biogenesi mitocondriale in un modello in cui PGC1α è deleto e TFEB overespresso. Questi dati di espressione uniti alle misure delle attività dei complessi dimostrano che TFEB è in grado di indurre autonomamente la biogenesi mitocondriale legandosi direttamente ai promotori dei geni NRF1 e NRF2. A questo punto abbiamo sottoposto a esercizio i topi riscontrando che gli animali transgenici resistono maggiormente all’attività fisica; al contrario i topi KO presentano una marcata intolleranza all’esercizio a causa della scarsa produzione di ATP. Per spiegare meglio questo fenomeno, grazie a misurazioni di parametri metabolici abbiamo riscontrato che i topi KO fanno affidamento maggiormente nell’ossidazione del glucosio sia a riposo che durante le fasi iniziali dell’esercizio fisico, spiegando l’intolleranza con la fine delle riserve di glicogeno. Inoltre, le quantificazioni del lattato nel siero prima e dopo l’esercizio suggeriscono che i muscoli KO dipendono maggiormente dalla glicolisi anaerobia a differenza delle controparti wildtype e transgenica. A questo punto, per investigare più in dettaglio il ruolo dell’ossidazione del glucosio che sembra essere alla base dell’intolleranza all’esercizio, abbiamo misurato i livelli di glucosio intramuscolare negli animali KO, notando che a riposo questi presentano una riduzione considerevole delle riserve. Per questo motivo gli animali KO, dopo i primi momenti di esercizio, sono costretti a cambiare il loro metabolismo verso una maggiore ossidazione degli acidi grassi che comunque non riesce a supportare la domanda energetica a causa dei mitocondri disfunzionali. Tutte queste evidenze indicano che TFEB controlla più il metabolismo rispetto all’autofagia la quale non è influenzata dalla modulazione genetica di TFEB; più in dettaglio TFEB sembra controllare direttamente il metabolismo del glucosio che è alterato negli animali TFEB-deficienti. Un ridotto assorbimento del glucosio e una ridotta sintesi del glicogeno durante gli EU-clamps spiegano perché le riserve di glicogeno sono ridotte negli animali KO mentre la controparte transgenica ne accumula in più. Questi effetti fenotipici sono accompagnati da un cambiamento nell’espressione di geni connessi all’omeostasi del glucosio, con maggiore presenza di trascritti per i trasportatori di glucosio and regolatori della sintesi del glicogeno nei muscoli transgenici, anche in assenza di PGC1α. Inoltre, l’overespressione di TFEB è in grado di modulare anche l’attività di nNOS e AMPK, influenzando l’omeostasi del glucosio non solo dal punto di visto trascrizionale, ma impattando anche sulle vie di segnale ad esso correlate. In conclusione tutte queste scoperte sostengono fortemente una nuova visione di TFEB come un fattore chiave nella regolazione della flessibilità metabolica durante l’esercizio fisico in modo indipendente da PGC1α.
Marchand, Benoît. "Rôle des Glycogène synthase kinases 3 (GSK3) dans la régulation de l’autophagie et du facteur de transcription EB (TFEB) dans les cellules pancréatiques tumorales humaines." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8185.
Full textBALDASSARI, Federica. "Involvement of transcription factor EB (TFEB) and c subunit of mitochondrial F1/FO ATP synthase in cellular homeostasis." Doctoral thesis, Università degli studi di Ferrara, 2015. http://hdl.handle.net/11392/2389104.
Full textAlvarez, Valadez Karla. "Targeting intracellular cholesterol transport for inducing lysosomal damage and immunogenic cell death in cancer." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL123.
Full textLysosomes serve as an intracellular platform that coordinates anabolic and catabolic processes, cell signaling, and transcriptional programs. These organelles allow the adaptation of cancer cells to a changing microenvironment by supplying them with essential metabolites and energy for their survival and proliferation. A major player in the lysosomal adaptive response is the transcription factor EB (TFEB), which is part of the microphthalmia/transcription factor E (MIT/TFE) family of transcription factors. TFEB plays a pivotal role in driving the expression of several genes associated with lysosome function and biogenesis, including those participating in autophagy. The latter is a critical lysosomal catabolic process in the cell. While TFEB and autophagy function as adaptive mechanisms to reestablish cellular homeostasis in response to stressors, TFEB-induced lysosomal biogenesis and enlargement can render cancer cells more vulnerable to compounds targeting lysosomes. This vulnerability opens the door for developing new strategies to combat cancers by simultaneously targeting the lysosome and activating TFEB. This study initially aimed to uncover novel pharmacological agents that function as agonists of TFEB and exhibit substantial cytotoxicity against cancer cells. By conducting cell-based drug screening of the Prestwick library, consisting of 1200 Food and Drug Administration (FDA)-approved compounds, we identified two antidepressants, sertraline and indatraline, as potent inducers of TFEB nuclear translocation. Both compounds promoted cholesterol accumulation within lysosomes, resulting in lysosomal membrane permeabilization, disruption of autophagy, and cell death. Molecular docking analysis unveiled that indatraline and sertraline may inhibit cholesterol traffic by binding to the same cavity where cholesterol typically binds to the lysosomal cholesterol transporters, Niemann-Pick type C1 (NPC1) and NPC2. In cancer cells, sertraline and indatraline elicited immunogenic cell death, converting dying cells into prophylactic vaccines that were able to protect against tumor growth in mice. In a therapeutic setting, a single dose of each compound was sufficient to significantly reduce the outgrowth of established tumors in a T cell-dependent manner. These results identify sertraline and indatraline as immunostimulatory agents that operate through a novel mechanism that connects lysosomal cholesterol accumulation to lysosomal membrane permeabilization, ultimately leading to immunogenic cell death. These results support the repositioning of sertraline and indatraline as immunostimulatory agents for cancer treatment and encourage the broadening of this study to other lysosomal cholesterol transport inhibitors
Bois, Philipp Du. "Transcriptional regulation of MuRF1 in skeletal muscle atrophy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/17079.
Full textSkeletal muscle mass is permanently balanced as a result of fine tuned protein synthesis and degradation mechanisms. Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis, which happens in a variety of conditions, such as aging, starvation, cancer, cachexia or denervation. Degradation of muscle mass can sometimes be useful, e.g. as source for lipids, amino acids and glucose in case of critical malnutrition as well as several other physiological conditions. But a solid composition and thereby functional maintenance of muscles is necessary for healthy individuals as well as individuals suffering from atrophy releasing diseases as to retain their mobility and to preserve full heart functions. Since degradation of structural proteins in muscle tissue has been addressed mainly to the ubiquitin-proteasome-system, the regulation of the participating components needs to be understood in detail to develop constructive treatments and therapies for atrophy prevention. One of the key enzymes in skeletal and heart muscle atrophy is the E3 ubiquitin ligase MuRF1. Its expression levels and protein content was found to be elevated in almost every know atrophy model. MuRF1 is very critical for the muscles composition and thus their functional integrity, as it marks and initiates degradation of structural and contractile proteins via the UPS. Since MuRF1 plays a prominent role in muscle atrophy, its transcriptional regulation needs to be well understood to develop effective therapies for all the different atrophy models MuRF1 has been linked to. Several transcription factors have been identified to regulate MuRF1 at different ratios and in diverse atrophy models. Importantly, they do not explain all MuRF1 inducing events observed. To fill some of the remaining knowledge gaps, the studies aims were to find new transcriptional regulators for MuRF1 and to analyze potential involvements of the obtained candidates in pathways affecting skeletal muscle atrophy.
Bécot, Anaïs. "Les APP-CTFs au cœur du processus pathologique de la maladie d’Alzheimer : contribution du système lysosomal-autophagique et de la sécrétion exosomale." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://theses.univ-cotedazur.fr/2019AZUR6039.
Full textAlzheimer’s disease (AD) is characterized by the pathological accumulation of extracellular and intracellular aggregates (Aβ and Tau) in the brain. AD is also associated with an early alteration of the major degradation pathway of aggregated proteins, the autophagic-lysosomal pathway. Recent works have suggested that this defectcouldbothbeacauseandaconsequenceofearlyintraneuronalaccumulation of C99 (also named as APP-CTFβ), the direct precursor of Aβ. Due to its toxicity, C99 could be a possible key player of AD etiology. The accumulation of this product occurs mainly within organelles of the endolysosomal network, but our recent observations also indicate an extracellular accumulation of C99 in later stages of the disease, or in conditions where the Aβ-generating enzyme, γ-secretase, is blocked. The first aim of my PhD project was to investigate the possible beneficial effect of restoringlysosomal-autophagicfunctiononC99accumulation. Tothisend, weused a viral strategy to overexpress TFEB, a master regulator of both lysosome biogenesis and autophagy, in a mouse model of AD (3xTg-AD mouse). Two approaches were tested aiming to express TFEB either before or after the beginning of C99 accumulation, by injecting AAV-TFEBs into the ventricles of newborn mice or by stereotaxic injection into 3 month-old mice, respectively. These studies have shown a strong TFEB-mediated reduction of C99 accumulation when using both the preventive and curative approach. The aim of the second part of my PhD work was to understand the reasons of the extracellular accumulation of C99. We postulated that this C99-associated immunostaining could correspond to exosomal-associated C99. Exosomes are nanosizedvesiclesofendocyticoriginthatarereleasedfromcellsandknowntotransport neurotoxic proteins. In our study based on pharmacological, immunocytochemical and genetic approaches, we have confirmed this hypothesis and have shown the presence of C99, and of its direct derived-fragment C83 (APP-CTFα), existing as both monomers and oligomers, in exosomes purified from AD cell and mouse models. Moreover, our data have shown that the levels of these APP-CTFs are strongly increased by γ-secretase inhibition, thus explaining the higher levels of extracellular staining in γ-secretase treated animals. In conclusion, my PhD work shows 1) a new potential therapeutic strategy based on TFEB activation aiming to reduce early C99 accumulation and 2) the presence of monomeric and oligomeric C99 in exosomes in AD models and a link between γ-secretase inhibition and oligomerisation. Future studies are needed to elucidate the exact role of these C99-enriched exosomes in AD
Book chapters on the topic "Facteur de transcription EB (TFEB)"
Gonçalves, João, Helena Soares, Norman L. Eberhardt, Sarah C. R. Lummis, David R. Soto-Pantoja, David D. Roberts, Umadas Maitra, et al. "TFEB/Transcription Factor EB (AGS12)." In Encyclopedia of Signaling Molecules, 1842. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_101354.
Full textLi, Wei, Yang Liu, Min Hao, Meng Yang, Shuang Zhao, Zhenxing Liu, and Aipo Diao. "Expression of Transcription Factor EB (TFEB) Promotes Cancer Cell Proliferation, Migration and Invasion." In Lecture Notes in Electrical Engineering, 745–53. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4801-2_77.
Full text"TFEB/Transcription Factor EB (AGS12)." In Encyclopedia of Signaling Molecules, 5373. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_103808.
Full text