Contents
Academic literature on the topic 'Facteur d'épissage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Facteur d'épissage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Facteur d'épissage"
Soufari-Rouba, Heddy. "Etude structurale et fonctionnelle du facteur d'épissage alternatif tissu spécifique MEC-8 chez C.elegans." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0406/document.
Full textIn multicellular organisms, proteomic diversity in each cell and tissue is provided initially by selective expression of gene subsets from the total genome, which are further subjected to alternative splicing, such that a different pattern of exons can be retained or excluded in the final protein coding mRNA. We are investigating the molecular details of the tissue-specific splicing factor protein MEC-8 from the worm Caenorhabditis elegans. The MEC-8 mutant protein is responsible for a touch insensitive phenotype in Caenorhabditis elegans, relating to its role as an alternative splicing factor. More precisely, MEC-8 can bind to the mec-2 pre-mRNA, a component of mechanosensory receptor, to regulate the production of a certain isoform required for transducing the touch signal. Previous studies of the conserved RNA Recognition Motif (RRM) domain in orthologues from vertebrate (RBPMS) and insect (couch potato; CPO) have demonstrated a homodimerization motif in MEC-8 RRM1. However, MEC-8 also contains a second RRM domain in the C-terminus that is not found in the characterized RBPMS and CPO proteins. We have therefore expressed the independent RNA-binding domains of MEC-8 as well as the full-length protein and have used these constructs in a variety of biophysical assays. We identified the optimal RNA binding sequence for both the RRM1 and RRM2, and quantified the penalty of sequence variations. The investigation has also been extended to the homologous domains from human RBPMS and Drosophila CPO, which show a high affinity to the same RNA sequence. We therefore find that despite differences in function and localization, the members of the RBPMS protein family all bind to the same RNA motif. Atomic details of binding have also been obtained by using a combination of NMR spectroscopy and X-ray crystallography. The ligand-bound complexes reveal a surprising similarity in the architecture of the bound ligand for the first and second RRM domains from MEC-8
Catherine, Kamtchueng. "Identification des éléments CIS d'ARN et développement d'un gène rapporteur pour caractériser les facteurs d'épissage qui contrôlent l'expression du facteur de transcription pro-apoptotique TAF6?" Mémoire, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6317.
Full textMiné, Manuèle. "Investigations biochimiques et moléculaires des déficits en pyruvate déshydrogénase et étude d'une mutation intronique impliquant le facteur d'épissage SC35." Paris 5, 2004. http://www.theses.fr/2004PA05P640.
Full textEdmond, Valérie. "Caractérisation de nouvelles fonctions biologiques et modifications post-traductionnelles du facteur d'épissage SC35 dans des modèles cellulaires de carcinomes pulmonaires." Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00531801.
Full textFic, Weronika. "Mise en évidence du rôle du facteur d'épissage B52 au cours de l'organogenèse de l'oeil chez la drosophile et son implication dans la localisation de la topoisomérase I." Montpellier 2, 2007. http://www.theses.fr/2007MON20205.
Full textKobayashi, Lejars Asaki. "UHM-ULM interactions in spliceosomal complexes : structural characterization and targeting with small molecules." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL042.
Full textGene expression requires many layers ofregulation among which splicing consists in the removalof sequences from primary transcripts. For thisprocess, a macromolecular machinery, the spliceosome,undergoes a dynamic assembly through protein-protein, RNA-RNA and protein-RNA interactionsin a stepwise manner. The simplified view of assemblyof the spliceosome is that first, the ribonucleoproteinU1 snRNP recognizes the 5’ splice site, Splicing Factor1 (SF1) binds the branchpoint sequence andU2snRNP auxiliary factor (U2AF) binds the polypyrimidinetract and 3' splice site (complex E). U2AF assiststhe recruitment of U2 snRNP to the branch point sequenceto form the A complex. Later, the recruitmentof U4/U6-U5 tri-snRNP forges the B complex, uponwhich, structural rearrangements release U1 and U4snRNPs leading to the catalytic C complex. U2AF is aheterodimer, with its 35kDa subunit (U2AF35) boundthrough its U2AF Homology Motif (UHM) domain tothe ULM (UHM Ligand Motif) of the 65kDa subunit(U2AF65). In addition, U2AF65 presents two RNArecognition motifs, a C-terminal UHM and a N-terminalarginine-serine (RS) rich low complexity domain(LCD). In this model, the RS domain of U2AF65 stabilizesthe U2snRNA-branchpoint sequence duplex andthe U2AF65-UHM domain recognizes successively theULM motif of SF1 and several ULMs in the U2snRNPsubunit SF3b155. In vitro, the affinity of U2AF65 forSF1 is relatively better than for SF3b155. LCD are often involved in the formation of condensatesthrough liquid-liquid phase separation (LLPS),which contribute for example to the compartmentalizationof biological molecules in membrane-less organelles.We have previously reported that U2AF65promotes the formation of such condensates viaLLPS. In line with this work, we have characterized theU2AF65 interactions supported by condensates formationrelatively to physicochemical parameters, includingsalt concentration and temperature, as wellas the length of the RS domain and its amino acidcomposition. Furthermore, LLPS can be modulatedby post-translational modifications. We havedemonstrated that the phosphorylation state of theRS domain modulates the formation of U2AF65condensates in vitro. Using pulldown experimentsand immunoprecipitations, we demonstrate thatthe deletion of the RS domain prevents the interactionof U2AF65 with both SF1 and SF3b155, whichstrongly indicates the actual contribution of the RSdomain in UHM-ULM interaction.In parallel, we compared, using nuclear magneticresonance (NMR) spectroscopy, the interactions ofthe hydrophobic core of the U2AF65-UHM domainwith the ULM domains of SF1 and SF3b155. Perturbationsof the 15N-U2AF65-UHM HSQC spectrumindicates that SF3b155 interaction with U2AF65-UHM is supported by at least three ULMs, which isconsistent with previous reports. In agreement, increasingthe stoichiometry of U2AF65-UHM against15N-SF3b155-ULM reveals stepwise changes inchemical shift perturbations of at least three tryptophanresidues, in the SF3b155-ULM spectrum. Interestingly,these HSQC spectra of SF3b155-ULMdid not reveal any structuration upon U2AF65-UHMbinding, suggesting a role of this dynamics to favourthe binding to several ULMs and the formationof U2AF65 condensates in the presence ofSF3b155.Lastly, we initiated a collaboration with the Synsightcompany in order to identify molecules ableto perturbate UHM-ULM interactions. Through insilico analyses, we obtained a small molecule (C13)displaying affinity for U2AF65-UHM as evidenced byNMR analyses. Through NMR and molecular dynamics(MD) simulations, we obtained insights intothe C13 binding mode in the U2AF65-UHM hydrophobicpocket. Using an in vitro binding assay, weshowed that C13 can modulate the binding ofU2AF65 to SF3b155. These promising results suggestthat UHM-ULM interactions could be targetedto fight specific diseases such as cancers
Vautrin, Audrey. "Etude des dérégulations de l'épissage alternatif du pré-ARN messager de la troponine T cardiaque humaine associées aux dystrophies myotoniques de types 1 et 2 et des caractéristiques du facteur d'épissage MBNL1 impliqué dans ces pathologies." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10141/document.
Full textAmplifications of CTG motifs in the human DMPK gene are responsible for Myotonic Dystrophy of type 1. The resulting CUG repeats in pre-mRNAs capture the MBNL1 splicing factor, leading to mis-regulation of MBNL1 pre-mRNA targets. Due to the recent discovery of MBNL1 and its numerous isoforms (9) resulting from alternative splicing, little is known on how MBNL1 regulates splicing and how a decreased level of available MBNL1 generates splicing miss-regulations. First, we defined which of the MBNL1 alternative and constitutive exons are required for: i) RNA binding, ii) splicing activity and, iii) MBNL1 sub-cellular localization. Second, for a more precise definition of the MBNL1 RNA binding properties, we performed SELEX experiments using a library of RNA stem-loop structures containing a 18-nt long randomized sequence. Its leads to the identification of 12-nt long sequence adopting a peculiar stem-loop structure, whose importance for MBNL1 binding was revealed by its preservation by compensatory base-pair mutations. Finally, based on the above data, we studied the mechanisms involved in regulation of hcTNT exon 5 splicing. By in cellulo assays, we defined the hcTNT pre-mRNA region required for both normal inclusion and for the trans-dominant effect of CUG repeats. Within this region, we identified six new potential MBNL1 sites and demonstrated their functional role by in vitro and in cellulo assays. We also identified several additional splicing regulatory elements involved in normal and CUG-deregulated exon 5 inclusion and already showed a role of hnRNP H in splicing regulation. Altogether, our data bring new information important for understanding the pathology
Tari, Manel. "Etude du rôle des facteurs d'épissage à domaines UHM dans la régulation de l'épissage alternatif." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLE041.
Full textU2AF65, CAPERα, PUF60 and SPF45 are splicing factors that hold similar domains called UHM that interact during the early splicing steps with ULM domains proteins, such as SF3b155. Using biochemical approaches, we highlighted the formation of macromolecular assemblies by U2AF65 and CAPERα in contact with the multi-ULM domain of SF3b155. The inhibition of the expression of the UHM splicing factors by shRNA, followed by a qPCR analysis of 65 cassette exons led us to identify an activating role of CAPERα, U2AF65 and PUF60 and a repressing role of SPF45 in splicing. Particularly, CAPERα and U2AF65 activate splicing of cassette exons presenting long pyrimidine-rich 5' flanking regions. Moreover, these regions favor the formation of macromolecular assemblies of U2AF65 and CAPERα. On the basis of these results, we propose a model in which multivalent interactions lead to CAPERα and U2AF65 macromolecular assemblies; these assemblies present a particular affinity on one hand for long pyrimidine-rich introns and on the other one for the multi-ULM domain of SF3b155. All these interactions promote 3' splice sites recognition
Rodrigues, Amélie. "Modélisation d'une forme de rétinite pigmentaire et validation d'une approche de thérapie génique, à l'aide de cellules rétiniennes dérivées de cellules iPS humaines." Thesis, Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS520.pdf.
Full textGeneration of retinal cells from human iPS cells offers the opportunity to study the effects of specific disease-causing mutations in an in vitro human system. Our project consisted of modeling specific form of Retinits Pigmentosa (RP) using patient iPS cells. We first optimized a differentiation protocol to obtain retinal organoids with a structural organization closer to the retina in vivo, allowing advanced photoreceptor maturation. Using this tool, we were able to fully recapitulate the RP phenotype (degeneration of rods and cones), observed in patients with mutation in RHODOPSINE gene, coding for the visual pigment. Then, we used the same approach to understand the pathogenicity of RP related to mutations in PRPF31 gene, coding for a splicing factor. Retinal organoids summarized the degeneration of mature rods and secondary loss of cones, as observed in patients. Furthermore, PRPF31-mutated retinal pigmented epithelial cells exhibited also structural and functional defective phenotype. These retinal degenerative phenotypes are correlated with a lower level expression of PRPF31 protein, linking causal mutations to an haploinsufficiency mechanism. We thus have developed a gene augmentation strategy, bringing an additional wild type copy of PRPF31 through CRISPR/Cas9 or using an AAV vector, that both allowed the rescue of retinal cell degeneration
Ismaili, Naïma. "Identification et caractérisation de deux facteurs d'épissage chez trypanosoma brucei :modèle d'interactions impliquées dans le trans-épissage." Doctoral thesis, Universite Libre de Bruxelles, 1998. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212073.
Full text