Academic literature on the topic 'FACIAL DATASET'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FACIAL DATASET.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FACIAL DATASET"
Xu, Xiaolin, Yuan Zong, Cheng Lu, and Xingxun Jiang. "Enhanced Sample Self-Revised Network for Cross-Dataset Facial Expression Recognition." Entropy 24, no. 10 (October 17, 2022): 1475. http://dx.doi.org/10.3390/e24101475.
Full textKim, Jung Hwan, Alwin Poulose, and Dong Seog Han. "The Extensive Usage of the Facial Image Threshing Machine for Facial Emotion Recognition Performance." Sensors 21, no. 6 (March 12, 2021): 2026. http://dx.doi.org/10.3390/s21062026.
Full textOliver, Miquel Mascaró, and Esperança Amengual Alcover. "UIBVFED: Virtual facial expression dataset." PLOS ONE 15, no. 4 (April 6, 2020): e0231266. http://dx.doi.org/10.1371/journal.pone.0231266.
Full textBodavarapu, Pavan Nageswar Reddy, and P. V. V. S. Srinivas. "Facial expression recognition for low resolution images using convolutional neural networks and denoising techniques." Indian Journal of Science and Technology 14, no. 12 (March 27, 2021): 971–83. http://dx.doi.org/10.17485/ijst/v14i12.14.
Full textWang, Xiaoqing, Xiangjun Wang, and Yubo Ni. "Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks." Computational Intelligence and Neuroscience 2018 (July 9, 2018): 1–10. http://dx.doi.org/10.1155/2018/7208794.
Full textManikowska, Michalina, Damian Sadowski, Adam Sowinski, and Michal R. Wrobel. "DevEmo—Software Developers’ Facial Expression Dataset." Applied Sciences 13, no. 6 (March 17, 2023): 3839. http://dx.doi.org/10.3390/app13063839.
Full textBordjiba, Yamina, Hayet Farida Merouani, and Nabiha Azizi. "Facial expression recognition via a jointly-learned dual-branch network." International journal of electrical and computer engineering systems 13, no. 6 (September 1, 2022): 447–56. http://dx.doi.org/10.32985/ijeces.13.6.4.
Full textBüdenbender, Björn, Tim T. A. Höfling, Antje B. M. Gerdes, and Georg W. Alpers. "Training machine learning algorithms for automatic facial coding: The role of emotional facial expressions’ prototypicality." PLOS ONE 18, no. 2 (February 10, 2023): e0281309. http://dx.doi.org/10.1371/journal.pone.0281309.
Full textYap, Chuin Hong, Ryan Cunningham, Adrian K. Davison, and Moi Hoon Yap. "Synthesising Facial Macro- and Micro-Expressions Using Reference Guided Style Transfer." Journal of Imaging 7, no. 8 (August 11, 2021): 142. http://dx.doi.org/10.3390/jimaging7080142.
Full textJin, Zhijia, Xiaolu Zhang, Jie Wang, Xiaolin Xu, and Jiangjian Xiao. "Fine-Grained Facial Expression Recognition in Multiple Smiles." Electronics 12, no. 5 (February 22, 2023): 1089. http://dx.doi.org/10.3390/electronics12051089.
Full textDissertations / Theses on the topic "FACIAL DATASET"
Yu, Kaimin. "Towards Realistic Facial Expression Recognition." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9459.
Full textGodavarthy, Sridhar. "Microexpression Spotting in Video Using Optical Strain." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1642.
Full textKUMAR, NAVEEN. "MULTIMODAL HYBRID BIOMETRIC IDENTIFICATION USING FACIAL AND ELECTROCARDIOGRAM FEATURES." Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16314.
Full textMoreira, Gonçalo Rebelo de Almeida. "Neuromorphic Event-based Facial Identity Recognition." Master's thesis, 2021. http://hdl.handle.net/10316/98251.
Full textA investigação na área do reconhecimento facial existe já há mais de meio século. O grandeinteresse neste tópico advém do seu tremendo potencial para impactar várias indústrias, comoa de vídeovigilância, autenticação pessoal, investigação criminal, lazer, entre outras. A maioriados algoritmos estado da arte baseiam-se apenas na aparência facial, especificamente, estesmétodos utilizam as caraterísticas estáticas da cara humana (e.g., a distância entre os olhos,a localização do nariz, a forma do nariz) para determinar com bastante eficácia a identidadede um sujeito. Contudo, é também discutido o facto de que os humanos fazem uso de outrotipo de informação facial para identificar outras pessoas, nomeadamente, o movimento facialidiossincrático de uma pessoa. Este conjunto de dados faciais é relevante devido a ser difícil de replicar ou de falsificar, enquanto que a aparência é facilmente alterada com ajuda deferramentas computacionais baratas e disponíveis a qualquer um.Por outro lado, câmaras de eventos são dispositivos neuromórficos, bastante recentes, quesão ótimos a codificar informação da dinâmica de uma cena. Estes sensores são inspiradospelo modo de funcionamento biológico do olho humano. Em vez de detetarem as várias intensidades de luz de uma cena, estes captam as variações dessas intensidades no cenário. Demodo que, e comparando com câmaras standard, estes mecanismos sensoriais têm elevadaresolução temporal, não sofrendo de imagem tremida, e são de baixo consumo, entre outrosbenefícios. Algumas das suas aplicações são Localização e Mapeamento Simultâneo (SLAM)em tempo real, deteção de anomalias e reconhecimento de ações/gestos.Tomando tudo isto em conta, o foco principal deste trabalho é de avaliar a aptidão da tecnologia fornecida pelas câmaras de eventos para completar tarefas mais complexas, nestecaso, reconhecimento de identidade facial, e o quão fácil será a sua integração num sistemano mundo real. Adicionalmente, é também disponibilizado o Dataset criado no âmbito destadissertação (NVSFD Dataset) de modo a possibilitar investigação futura sobre o tópico.
Facial recognition research has been around for longer than a half-century, as of today. Thisgreat interest in the field stems from its tremendous potential to enhance various industries,such as video surveillance, personal authentication, criminal investigation, and leisure. Moststateoftheart algorithms rely on facial appearance, particularly, these methods utilize the staticcharacteristics of the human face (e.g., the distance between both eyes, nose location, noseshape) to determine the subject’s identity extremely accurately. However, it is further argued thathumans also make use of another type of facial information to identify other people, namely, one’s idiosyncratic facial motion. This kind of facial data is relevant due to being hardly replicableor forged, whereas appearance can be easily distorted by cheap software available to anyone.On another note, eventcameras are quite recent neuromorphic devices that are remarkable at encoding dynamic information in a scene. These sensors are inspired by the biologicaloperation mode of the human eye. Rather than detecting the light intensity, they capture lightintensity variations in the setting. Thus, in comparison to standard cameras, this sensing mechanism has a high temporal resolution, therefore it does not suffer from motion blur, and haslow power consumption, among other benefits. A few of its early applications have been realtime Simultaneous Localization And Mapping (SLAM), anomaly detection, and action/gesturerecognition.Taking it all into account, the main purpose of this work is to evaluate the aptitude of the technology offered by eventcameras for completing a more complex task, that being facialidentity recognition, and how easily it could be integrated into real world systems. Additionally, itis also provided the Dataset created in the scope of this dissertation (NVSFD Dataset) in orderto facilitate future third-party investigation on the topic.
Cavalini, Diandre de Paula. "Image Sentiment Analysis of Social Media Data." Master's thesis, 2021. http://hdl.handle.net/10400.6/11847.
Full textMuitas vezes uma imagem vale mais que mil palavras, e esta é uma pequena afirmação que representa um dos maiores desafios da área de classificação do sentimento contido nas imagens. O principal tema desta dissertação é a realização da análise do sentimento contido em imagens das mídias sociais, principalmente do Twitter, de modo que possam ser identificadas as situações que representam riscos (identificação de situações negativas) ou as quais possam se tornar um (previsão de situações negativas). Apesar da diversidade de trabalhos feitos na área da análise de sentimento em imagens, ainda é uma tarefa desafiante. Diversos fatores contribuem para a dificuldade , tantos fatores mais globais como questões socioculturais, quanto questões do próprio âmbito de análise de sentimento em imagens, como a dificuldade em achar dados confiáveis e devidamente etiquetados para serem utilizados, quanto fatores enfrentados durante a classificação, como por exemplo, é normal associar imagens com cores mais escuras e pouco brilho à sentimentos negativos, afinal a maioria é assim, entretanto há casos que fogem dessa regra, e são esses casos que afetam a precisão dos modelos desenvolvidos. Porém, visando contornar esses problemas enfrentados na classificação, foi desenvolvido um modelo multitarefas, o qual irá considerar informações globais, áreas salientes nas imagens, expressões faciais de rostos contidos nas imagens e informação textual, de modo que cada componente se complemente durante a classificação. Durante os experimentos foi possível observar que o uso dos modelos propostos podem trazer vantagens para a classificação do sentimento em imagens e até mesmo contornar alguns problemas evidenciados nos trabalhos já existentes, como por exemplo a ironia do texto. Assim sendo, este trabalho tem como objetivo apresentar o estado da arte e o estudo realizado, de modo a possibilitar a apresentação e implementação do modelo multitarefas proposto e realização das experiências e discussão dos resultados obtidos, de forma a verificar a eficácia do método proposto. Por fim, as conclusões sobre o trabalho feito e trabalho futuro serão apresentados.
Triggiani, Maurizio. "Integration of machine learning techniques in chemometrics practices." Doctoral thesis, 2022. http://hdl.handle.net/11589/237998.
Full textBook chapters on the topic "FACIAL DATASET"
Hlaváč, Miroslav, Ivan Gruber, Miloš Železný, and Alexey Karpov. "Semi-automatic Facial Key-Point Dataset Creation." In Speech and Computer, 662–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66429-3_66.
Full textLi, Yuezun, Pu Sun, Honggang Qi, and Siwei Lyu. "Toward the Creation and Obstruction of DeepFakes." In Handbook of Digital Face Manipulation and Detection, 71–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_4.
Full textFeinland, Jacob, Jacob Barkovitch, Dokyu Lee, Alex Kaforey, and Umur Aybars Ciftci. "Poker Bluff Detection Dataset Based on Facial Analysis." In Image Analysis and Processing – ICIAP 2022, 400–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06433-3_34.
Full textJalal, Anand Singh, Dilip Kumar Sharma, and Bilal Sikander. "FFV: Facial Feature Vector Image Dataset with Facial Feature Analysis and Feature Ranking." In Smart Intelligent Computing and Applications, Volume 2, 393–401. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9705-0_38.
Full textZhu, Hao, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and Chen Change Loy. "CelebV-HQ: A Large-Scale Video Facial Attributes Dataset." In Lecture Notes in Computer Science, 650–67. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20071-7_38.
Full textWei, Sijie, Xiaojun Jing, Aoran Chen, Qianqian Chen, Junsheng Mu, and Bohan Li. "AffectRAF: A Dataset Designed Based on Facial Expression Recognition." In Lecture Notes in Electrical Engineering, 1044–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4775-9_135.
Full textMatias, Jhennifer Cristine, Tobias Rossi Müller, Felipe Zago Canal, Gustavo Gino Scotton, Antonio Reis de Sa Junior, Eliane Pozzebon, and Antonio Carlos Sobieranski. "MIGMA: The Facial Emotion Image Dataset for Human Expression Recognition." In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 153–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93420-0_15.
Full textSingh, Shivendra, and Shajulin Benedict. "Indian Semi-Acted Facial Expression (iSAFE) Dataset for Human Emotions Recognition." In Communications in Computer and Information Science, 150–62. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4828-4_13.
Full textKumar, Vikas, Shivansh Rao, and Li Yu. "Noisy Student Training Using Body Language Dataset Improves Facial Expression Recognition." In Computer Vision – ECCV 2020 Workshops, 756–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66415-2_53.
Full textTiwari, Shubham, Yash Sethia, Ashwani Tanwar, Ritesh Kumar, and Rudresh Dwivedi. "FRLL-Beautified: A Dataset of Fun Selfie Filters with Facial Attributes." In Communications in Computer and Information Science, 456–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39059-3_30.
Full textConference papers on the topic "FACIAL DATASET"
Haibin Yan, Marcelo H. Ang, and Aun Neow Poo. "Cross-dataset facial expression recognition." In IEEE International Conference on Robotics and Automation. IEEE, 2011. http://dx.doi.org/10.1109/icra.2011.5979705.
Full textGhafourian, Sarvenaz, Ramin Sharifi, and Amirali Baniasadi. "Facial Emotion Recognition in Imbalanced Datasets." In 9th International Conference on Artificial Intelligence and Applications (AIAPP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120920.
Full textHaag, Kathrin, and Hiroshi Shimodaira. "The University of Edinburgh Speaker Personality and MoCap Dataset." In FAA '15: Facial Analysis and Animation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2813852.2813860.
Full textTimoshenko, Denis, Konstantin Simonchik, Vitaly Shutov, Polina Zhelezneva, and Valery Grishkin. "Large Crowdcollected Facial Anti-Spoofing Dataset." In 2019 Computer Science and Information Technologies (CSIT). IEEE, 2019. http://dx.doi.org/10.1109/csitechnol.2019.8895208.
Full textPrincipi, Filippo, Stefano Berretti, Claudio Ferrari, Naima Otberdout, Mohamed Daoudi, and Alberto Del Bimbo. "The Florence 4D Facial Expression Dataset." In 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG). IEEE, 2023. http://dx.doi.org/10.1109/fg57933.2023.10042606.
Full textHuang, Jiajun, Xueyu Wang, Bo Du, Pei Du, and Chang Xu. "DeepFake MNIST+: A DeepFake Facial Animation Dataset." In 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. http://dx.doi.org/10.1109/iccvw54120.2021.00224.
Full textVarkarakis, Viktor, and Peter Corcoran. "Dataset Cleaning — A Cross Validation Methodology for Large Facial Datasets using Face Recognition." In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020. http://dx.doi.org/10.1109/qomex48832.2020.9123123.
Full textGalea, Nathan, and Dylan Seychell. "Facial Expression Recognition in the Wild: Dataset Configurations." In 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2022. http://dx.doi.org/10.1109/mipr54900.2022.00045.
Full textSomanath, Gowri, MV Rohith, and Chandra Kambhamettu. "VADANA: A dense dataset for facial image analysis." In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011. http://dx.doi.org/10.1109/iccvw.2011.6130517.
Full textYan, Yanfu, Ke Lu, Jian Xue, Pengcheng Gao, and Jiayi Lyu. "FEAFA: A Well-Annotated Dataset for Facial Expression Analysis and 3D Facial Animation." In 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2019. http://dx.doi.org/10.1109/icmew.2019.0-104.
Full textReports on the topic "FACIAL DATASET"
Kimura, Marcia L., Rebecca L. Erikson, and Nicholas J. Lombardo. Non-Cooperative Facial Recognition Video Dataset Collection Plan. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1126360.
Full textТарасова, Олена Юріївна, and Ірина Сергіївна Мінтій. Web application for facial wrinkle recognition. Кривий Ріг, КДПУ, 2022. http://dx.doi.org/10.31812/123456789/7012.
Full textMackie, S. J., C. M. Furlong, P. K. Pedersen, and O. H. Ardakani. Stratigraphy, facies heterogeneities, and structure in the Montney Formation of northeastern British Columbia: relation to H2S distribution. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329796.
Full textTennant, David. Business Surveys on the Impact of COVID-19 on Jamaican Firms. Inter-American Development Bank, May 2021. http://dx.doi.org/10.18235/0003251.
Full textMichalak, Julia, Josh Lawler, John Gross, and Caitlin Littlefield. A strategic analysis of climate vulnerability of national park resources and values. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287214.
Full textCorriveau, L., J. F. Montreuil, O. Blein, E. Potter, M. Ansari, J. Craven, R. Enkin, et al. Metasomatic iron and alkali calcic (MIAC) system frameworks: a TGI-6 task force to help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329093.
Full textProjectile fluid penetration and flammability of respirators and other head/facial personal protective equipment (FPFPPE) (dataset). U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, June 2019. http://dx.doi.org/10.26616/nioshrd-1010-2019-1.
Full text