Academic literature on the topic 'Face detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Face detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Face detection"
Hajiarbabi, Mohammadreza, and Arvin Agah. "Techniques for Skin, Face, Eye and Lip Detection using Skin Segmentation in Color Images." International Journal of Computer Vision and Image Processing 5, no. 2 (July 2015): 35–57. http://dx.doi.org/10.4018/ijcvip.2015070103.
Full textWakchaure, Shraddha, Avanti Tambe, Pratik Gadhave, Shubham Sandanshiv, and Mrs Archana Kadam. "Smart Exam Proctoring System." International Journal for Research in Applied Science and Engineering Technology 11, no. 4 (April 30, 2023): 4507–10. http://dx.doi.org/10.22214/ijraset.2023.51358.
Full textNam, Amir Nobahar Sadeghi. "Face Detection." Volume 5 - 2020, Issue 9 - September 5, no. 9 (September 29, 2020): 688–92. http://dx.doi.org/10.38124/ijisrt20sep391.
Full textLewis, Michael B., and Andrew J. Edmonds. "Face Detection: Mapping Human Performance." Perception 32, no. 8 (August 2003): 903–20. http://dx.doi.org/10.1068/p5007.
Full textHsieh, Chen-Chiung, and Jun-An Lai. "Face Mole Detection, Classification and Application." Journal of Computers 10, no. 1 (2015): 12–23. http://dx.doi.org/10.17706/jcp.10.1.12-23.
Full textHire, Ms A. N., and Prof Dr M. P. Satone. "A Review on Face Detection Techniques." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 1470–76. http://dx.doi.org/10.31142/ijtsrd14107.
Full textS.V, Viraktamath, Mukund Katti, Aditya Khatawkar, and Pavan Kulkarni. "Face Detection and Tracking using OpenCV." SIJ Transactions on Computer Networks & Communication Engineering 04, no. 03 (June 2, 2016): 01–06. http://dx.doi.org/10.9756/sijcnce/v4i3/0103540102.
Full textHayashi, Shinji, and Osamu Hasegawa. "Robust Face Detection for Low-Resolution Images." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 1 (January 20, 2006): 93–101. http://dx.doi.org/10.20965/jaciii.2006.p0093.
Full textHashim, Siti, and Paul Mccullagh. "Face detection by using Haar Cascade Classifier." Wasit Journal of Computer and Mathematics Science 2, no. 1 (March 31, 2023): 1–8. http://dx.doi.org/10.31185/wjcm.109.
Full textPatil, Vaibhavi, Sakshi Patil, Krishna Ganjegi, and Pallavi Chandratre. "Face and Eye Detection for Interpreting Malpractices in Examination Hall." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 1119–23. http://dx.doi.org/10.22214/ijraset.2022.41456.
Full textDissertations / Theses on the topic "Face detection"
Espinosa-Romero, Arturo. "Situated face detection." Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/6667.
Full textMäkelä, J. (Jussi). "GPU accelerated face detection." Master's thesis, University of Oulu, 2013. http://urn.fi/URN:NBN:fi:oulu-201303181103.
Full textGrafiikkaprosessorit kykenevät massiiviseen rinnakkaislaskentaan ja niiden käyttö yleiseen laskentaan on kasvava kiinnostuksen aihe. Eräs alue missä kiihdytyksen käytöstä on kiinnostuttu on laskennallisesti raskaat konenäköalgoritmit kuten kasvojen ilmaisu ja tunnistus. Kasvojen ilmaisua käytetään useissa sovelluksissa, kuten kameroiden automaattitarkennuksessa, kasvojen ja tunteiden tunnistuksessa sekä kulun valvonnassa. Tässä työssä kasvojen ilmaisualgoritmia kiihdytettiin grafiikkasuorittimella käyttäen OpenCL-rajapintaa. Työn tavoite oli parantunut suorituskyky kuitenkin niin että implementaatiot pysyivät toiminnallisesti samanlaisina. OpenCL-versio perustui optimoituun verrokki-implementaatioon. Algoritmin eri vaiheiden kiihdytyksen mahdollisuuksia ja haasteita on tutkittu. Kiihdytetty- ja verrokki-implementaatio kuvaillaan ja niiden välistä suorituskykyeroa vertaillaan. Suorituskykyä arvioitiin ajoaikojen perusteella. Testeissä käytettiin kolmea kuvasarjaa joissa jokaisessa oli neljä eri kokoista kuvaa sekä kolmea lisäkuvaa jotka kuvastivat erikoistapauksia. Testit ajettiin kahdella erilailla varustellulla tietokoneella. Tuloksista voidaan nähdä että kasvojen ilmaisu soveltuu hyvin GPU kiihdytykseen, sillä algoritmin pystyy rinnakkaistamaan ja siinä pystyy käyttämään tehokasta tekstuurinkäsittelylaitteistoa. OpenCL-ympäristön alustaminen aiheuttaa viivettä joka vähentää jonkin verran suorituskykyetua. Testeissä todettiin kiihdytetyn implementaation antavan saman suuruisen tai jopa pienemmän suorituskyvyn kuin verrokki-implementaatio sellaisissa tapauksissa, joissa laskentaa oli vähän johtuen joko pienestä tai helposti käsiteltävästä kuvasta. Toisaalta kiihdytetyn implementaation suorituskyky oli hyvä verrattuna verrokki-implementaatioon kun käytettiin suuria ja monimutkaisia kuvia. Tulevaisuudessa OpenCL-ympäristön alustamisen aiheuttamat viivettä tulisi saada vähennettyä. Tämä työ on kiinnostava myös tulevaisuudessa kun OpenCL-kiihdytys tulee mahdolliseksi matkapuhelimissa
Costa, Rui Jorge Duarte. "Face detection and recognision." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21683.
Full textUltimamente, as redes de telecomunicações móveis estão a exigir cada vez maiores taxas de transferência de informação. Com este aumento, embora sejam usados códigos poderosos, também aumenta a largura de banda dos sinais a transmitir, bem como a sua frequência. A maior frequência de operação, bem como a procura por sistemas mais eficientes, tem exigido progressos no que toca aos transístores utilizados nos amplificadores de potência de radio frequência (RF), uma vez que estes são componentes dominantes no rendimento de uma estação base de telecomunicações. Com esta evolução, surgem novas tecnologias de transístores, como os GaN HEMT (do inglês, Gallium Nitride High Electron Mobility Transistor). Para conseguir prever e corrigir certos efeitos dispersivos que afetam estas novas tecnologias e para obter o amplificador mais eficiente para cada transístor usado, os projetistas de amplificadores necessitam cada vez mais de um modelo que reproduza fielmente o comportamento do dispositivo. Durante este trabalho foi desenvolvido um sistema capaz de efetuar medidas pulsadas e de elevada exatidão a transístores, para que estes não sejam afetados, durante as medidas, por fenómenos de sobreaquecimento ou outro tipo de fenómenos dispersivos mais complexos presentes em algumas tecnologias. Desta forma, será possível caracterizar estes transístores para um estado pré determinado não só de temperatura, mas de todos os fenómenos presentes. Ao longo do trabalho vai ser demostrado o projeto e a construção deste sistema, incluindo a parte de potência que será o principal foco do trabalho. Foi assim possível efetuar medidas pulsadas DC-IV e de parâmetros S (do inglês, Scattering) pulsados para vários pontos de polarização. Estas últimas foram conseguidas á custa da realização de um kit de calibração TRL. O interface gráfico com o sistema foi feito em Matlab, o que torna o sistema mais fácil de operar. Com as medidas resultantes pôde ser obtida uma primeira análise acerca da eficiência, ganho e potência máxima entregue pelo dispositivo. Mais tarde, com as mesmas medidas pôde ser obtido um modelo não linear completo do dispositivo, facilitando assim o projeto de amplificadores.
Lately, the wireless networks should feature higher data rates than ever. With this rise, although very powerful codification schemes are used, the bandwidth of the transmitted signals is rising, as well as the frequency. Not only caused by this rise in frequency, but also by the growing need for more efficient systems, major advances have been made in terms of Radio Frequency (RF) Transistors that are used in Power Amplifiers (PAs), which are dominant components in terms of the total efficiency of base stations (BSS). With this evolution, new technologies of transistors are being developed, such as the Gallium Nitride High Electron Mobility Transistor (GaN HEMT). In order to predict and correct some dispersive effects that affect these new technologies and obtain the best possible amplifier for each different transistor, the designers are relying more than ever in the models of the devices. During this work, one system capable of performing very precise pulsed measurements on RF transistors was developed, so that they are not affected, during the measurements, by self-heating or other dispersive phenomena that are present in some technologies. Using these measurements it was possible to characterize these transistors for a pre-determined state of the temperature and all the other phenomena. In this document, the design and assembly of the complete system will be analysed, with special attention to the higher power component. It will be possible to measure pulsed Direct Current Current-Voltage (DC-IV) behaviour and pulsed Scattering (S) parameters of the device for many different bias points. These latter ones were possible due to the development of one TRL calibration kit. The interface with the system is made using a graphical interface designed in Matlab, which makes it easier to use. With the resulting measurements, as a first step analysis, the maximum efficiency, gain and maximum delivered power of the device can be estimated. Later, with the same measurements, the complete non-linear model of the device can be obtained, allowing the designers to produce state-of-art RF PAs.
Pavani, Sri-Kaushik. "Methods for face detection and adaptive face recognition." Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7567.
Full textL'objectiu d'aquesta tesi és sobre biometria facial, específicament en els problemes de detecció de rostres i reconeixement facial. Malgrat la intensa recerca durant els últims 20 anys, la tecnologia no és infalible, de manera que no veiem l'ús dels sistemes de reconeixement de rostres en sectors crítics com la banca. En aquesta tesi, ens centrem en tres sub-problemes en aquestes dues àrees de recerca. En primer lloc, es proposa mètodes per millorar l'equilibri entre la precisió i la velocitat del detector de cares d'última generació. En segon lloc, considerem un problema que sovint s'ignora en la literatura: disminuir el temps de formació dels detectors. Es proposen dues tècniques per a aquest fi. En tercer lloc, es presenta un estudi detallat a gran escala sobre l'auto-actualització dels sistemes de reconeixement facial en un intent de respondre si el canvi constant de l'aparença facial es pot aprendre de forma automàtica.
Westerlund, Tomas. "Fast Face Finding." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2068.
Full textFace detection is a classical application of object detection. There are many practical applications in which face detection is the first step; face recognition, video surveillance, image database management, video coding.
This report presents the results of an implementation of the AdaBoost algorithm to train a Strong Classifier to be used for face detection. The AdaBoost algorithm is fast and shows a low false detection rate, two characteristics which are important for face detection algorithms.
The application is an implementation of the AdaBoost algorithm with several command-line executables that support testing of the algorithm. The training and detection algorithms are separated from the rest of the application by a well defined interface to allow reuse as a software library.
The source code is documented using the JavaDoc-standard, and CppDoc is then used to produce detailed information on classes and relationships in html format.
The implemented algorithm is found to produce relatively high detection rate and low false alarm rate, considering the badly suited training data used.
Day, Adam C. "Designing a face detection CAPTCHA." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11036.
Full textTitle from document title page. Document formatted into pages; contains viii, 80 p. : ill. Includes abstract. Includes bibliographical references (p. 78-80).
Lang, Andreas. "Face Detection using Swarm Intelligence." Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-64415.
Full textMcCarroll, Niall. "BioFace : bio-inspired face detection." Thesis, Ulster University, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.722684.
Full textMahmood, Muhammad Tariq. "Face Detection by Image Discriminating." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4352.
Full textSIPL, Mechatronics, GIST 1 Oryong-Dong, Buk-Gu, Gwangju, 500-712 South Korea tel. 0082-62-970-2997
Lang, Andreas. "Face Detection using Swarm Intelligence." Technische Universität Chemnitz, 2010. https://monarch.qucosa.de/id/qucosa%3A19439.
Full textBooks on the topic "Face detection"
Zhang, Cha. Boosting-Based Face Detection and Adaptation. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-01809-1.
Full textWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. Multi-Modal Face Presentation Attack Detection. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01824-4.
Full text1965-, Zhang Zhengyou, ed. Boosting-based face detection and adaptation. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2010.
Find full textWan, Jun, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li. Advances in Face Presentation Attack Detection. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32906-7.
Full textRathgeb, Christian, Ruben Tolosana, Ruben Vera-Rodriguez, and Christoph Busch, eds. Handbook of Digital Face Manipulation and Detection. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7.
Full textKawulok, Michal, M. Emre Celebi, and Bogdan Smolka, eds. Advances in Face Detection and Facial Image Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25958-1.
Full textYang, Ming-Hsuan, and Narendra Ahuja. Face Detection and Gesture Recognition for Human-Computer Interaction. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1423-7.
Full textMcCready, Robert. Real-time face detection on a configurable hardware platform. Ottawa: National Library of Canada, 2000.
Find full text1950-, Ahuja Narendra, ed. Face detection and gesture recognition for human-computer interaction. Boston: Kluwer Academic, 2001.
Find full textYang, Ming-Hsuan. Face Detection and Gesture Recognition for Human-Computer Interaction. Boston, MA: Springer US, 2001.
Find full textBook chapters on the topic "Face detection"
Loy, Chen Change. "Face Detection." In Computer Vision, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_798-1.
Full textLi, Stan Z., and Jianxin Wu. "Face Detection." In Handbook of Face Recognition, 277–303. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-932-1_11.
Full textGopalan, Raghuraman, William R. Schwartz, Rama Chellappa, and Ankur Srivastava. "Face Detection." In Visual Analysis of Humans, 71–90. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-997-0_5.
Full textYang, Ming-Hsuan. "Face Detection." In Encyclopedia of Biometrics, 303–8. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73003-5_87.
Full textLoy, Chen Change. "Face Detection." In Computer Vision, 429–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_798.
Full textYang, Ming-Hsuan. "Face Detection." In Encyclopedia of Biometrics, 447–52. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7488-4_87.
Full textColmenarez, Antonio J., and Thomas S. Huang. "Face Detection and Recognition." In Face Recognition, 174–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72201-1_9.
Full textMachado, Penousal, João Correia, and Juan Romero. "Improving Face Detection." In Lecture Notes in Computer Science, 73–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29139-5_7.
Full textZorin, Arsenii, and Nikolay Abramov. "Disguised Face Detection." In Lecture Notes in Electrical Engineering, 509–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1465-4_50.
Full textAmit, Yali, Donald Geman, and Bruno Jedynak. "Efficient Focusing and Face Detection." In Face Recognition, 157–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72201-1_8.
Full textConference papers on the topic "Face detection"
Wang, Yongwang, and Lian Pan. "YOLOV5s-Face face detection algorithm." In 2022 China Automation Congress (CAC). IEEE, 2022. http://dx.doi.org/10.1109/cac57257.2022.10054674.
Full textAlashbi, Abdulaziz Ali Saleh, Mohd Shahrizal Sunar, and Zieb Alqahtani. "Context-Aware Face Detection for Occluded Faces." In 2020 6th International Conference on Interactive Digital Media (ICIDM). IEEE, 2020. http://dx.doi.org/10.1109/icidm51048.2020.9339647.
Full textEdmunds, Taiamiti, and Alice Caplier. "Fake face detection based on radiometric distortions." In 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2016. http://dx.doi.org/10.1109/ipta.2016.7820995.
Full textWang, Chengrui, and Weihong Deng. "Representative Forgery Mining for Fake Face Detection." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021. http://dx.doi.org/10.1109/cvpr46437.2021.01468.
Full textZheng, Yufeng. "Face detection and eyeglasses detection for thermal face recognition." In IS&T/SPIE Electronic Imaging, edited by Philip R. Bingham and Edmund Y. Lam. SPIE, 2012. http://dx.doi.org/10.1117/12.907123.
Full textYang, Shuo, Ping Luo, Chen Change Loy, and Xiaoou Tang. "WIDER FACE: A Face Detection Benchmark." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.596.
Full textShao, Xiaohu, Junliang Xing, Jiangjing Lv, Chunlin Xiao, Pengcheng Liu, Youji Feng, and Cheng Cheng. "Unconstrained Face Alignment Without Face Detection." In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.258.
Full textTalele, K. T., and Sunil Kadam. "Face detection and geometric face normalization." In TENCON 2009 - 2009 IEEE Region 10 Conference. IEEE, 2009. http://dx.doi.org/10.1109/tencon.2009.5395980.
Full textDas, Akanksha, Ravi Kant Kumar, and Dakshina Ranjan Kisku. "Heterogeneous Face Detection." In ICC '16: International Conference on Internet of things and Cloud Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2896387.2896417.
Full textMukai, Nobuhiko, Yulong Zhang, and Youngha Chang. "Pet Face Detection." In 2018 Nicograph International (NicoInt). IEEE, 2018. http://dx.doi.org/10.1109/nicoint.2018.00018.
Full textReports on the topic "Face detection"
Heisele, Bernd, Tomaso poggio, and Massimilinao Pontil. Face Detection in Still Gray Images. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada459705.
Full textRowley, Henry A., Shumeet Baluja, and Takeo Kanade. Rotation Invariant Neural Network-Based Face Detection. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada341629.
Full textSung, Kah K., and Tomaso Poggio. Example Based Learning for View-Based Human Face Detection. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada295738.
Full textScassellati, Brian. Eye Finding via Face Detection for a Foveated, Active Vision System. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada455661.
Full textТарасова, Олена Юріївна, and Ірина Сергіївна Мінтій. Web application for facial wrinkle recognition. Кривий Ріг, КДПУ, 2022. http://dx.doi.org/10.31812/123456789/7012.
Full textPolakowski, Michał, and Emma Quinn. Responses to irregularly staying migrants in Ireland. ESRI, May 2022. http://dx.doi.org/10.26504/rs140.
Full textWachs, Brandon. Satellite Image Deep Fake Creation and Detection. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812627.
Full textTorralba, Antonio, and Pawan Sinha. Detecting Faces in Impoverished Images. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada636815.
Full textIseley, D. T., and D. H. Cowling. L51697 Obstacle Detection to Facilitate Horizontal Directional Drilling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1994. http://dx.doi.org/10.55274/r0010134.
Full textJohra, Hicham, Martin Veit, Mathias Østergaard Poulsen, Albert Daugbjerg Christensen, Rikke Gade, Thomas B. Moeslund, and Rasmus Lund Jensen. Training and testing labelled image and video datasets of human faces for different indoor visual comfort and glare visual discomfort situations. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau542153983.
Full text