Academic literature on the topic 'Face and Object Recognition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Face and Object Recognition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Face and Object Recognition"

1

Gathers, Ann D. "DEVELOPMENTAL FMRI STUDY: FACE AND OBJECT RECOGNITION." Lexington, Ky. : [University of Kentucky Libraries], 2005. http://lib.uky.edu/ETD/ukyanne2005d00276/etd.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Kentucky, 2005.<br>Title from document title page (viewed on November 4, 2005). Document formatted into pages; contains xi, 152 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 134-148).
APA, Harvard, Vancouver, ISO, and other styles
2

Nilsson, Linus. "Object Tracking and Face Recognition in Video Streams." Thesis, Umeå universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58076.

Full text
Abstract:
The goal with this project was to improve an existing face recognition system for video streams by using adaptive object tracking to track faces between frames. The knowledge of what faces occur and do not occur in subsequent frames was used to filter false faces and to better identify real ones. The recognition ability was tested by measuring how many faces were found and how many of them were correctly identified in two short video files. The tests also looked at the number of false face detections. The results were compared to a reference implementation that did not use object tracking. Two identification modes were tested: the default and strict modes. In the default mode, whichever person is most similar to a given image patch is accepted as the answer. In strict mode, the similarity also has to be above a certain threshold. The first video file had a fairly high image quality. It had only frontal faces, one at a time. The second video file had a slightly lower image quality. It had up to two faces at a time, in a larger variety of angles. The second video was therefore a more difficult case. The results show that the number of detected faces increased by 6-21% in the two video files, for both identification modes, compared to the reference implementation. In the meantime, the number of false detections remained low. In the first video file, there were fewer than 0.009 false detections per frame. In the second video file, there were fewer than 0.08 false detections per frame. The number of faces that were correctly identified increased by 8-22% in the two video files in default mode. In the first video file, there was also a large improvement in strict mode, as it went from recognising 13% to 85% of all faces. In the second video file, however,neither implementation managed to identify anyone in strict mode. The conclusion is that object tracking is a good tool for improving the accuracy of face recognition in video streams. Anyone implementing face recognition for video streams should consider using object tracking as a central component.
APA, Harvard, Vancouver, ISO, and other styles
3

Banarse, D. S. "A generic neural network architecture for deformation invariant object recognition." Thesis, Bangor University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Collin, Charles Alain. "Effects of spatial frequency overlap on face and object recognition." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36896.

Full text
Abstract:
There has recently been much interest in how limitations in spatial frequency range affect face and object perception. This work has mainly focussed on determining which bands of frequencies are most useful for visual recognition. However, a fundamental question not yet addressed is how spatial frequency overlap (i.e., the range of spatial frequencies shared by two images) affects complex image recognition. Aside from the basic theoretical interest this question holds, it also bears on research about effects of display format (e.g., line-drawings, Mooney faces, etc.) and studies examining the nature of mnemonic representations of faces and objects. Examining the effects of spatial frequency overlap on face and object recognition is the main goal of this thesis.<br>A second question that is examined concerns the effect of calibration of stimuli on recognition of spatially filtered images. Past studies using non-calibrated presentation methods have inadvertently introduced aberrant frequency content to their stimuli. The effect this has on recognition performance has not been examined, leading to doubts about the comparability of older and newer studies. Examining the impact of calibration on recognition is an ancillary goal of this dissertation.<br>Seven experiments examining the above questions are reported here. Results suggest that spatial frequency overlap had a strong effect on face recognition and a lesser effect on object recognition. Indeed, contrary to much previous research it was found that the band of frequencies occupied by a face image had little effect on recognition, but that small variations in overlap had significant effects. This suggests that the overlap factor is important in understanding various phenomena in visual recognition. Overlap effects likely contribute to the apparent superiority of certain spatial bands for different recognition tasks, and to the inferiority of line drawings in face recognition. Results concerning the mnemonic representation of faces and objects suggest that these are both encoded in a format that retains spatial frequency information, and do not support certain proposed fundamental differences in how these two stimulus classes are stored. Data on calibration generally shows non-calibration having little impact on visual recognition, suggesting moderate confidence in results of older studies.
APA, Harvard, Vancouver, ISO, and other styles
5

Higgs, David Robert. "Parts-based object detection using multiple views /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mian, Ajmal Saeed. "Representations and matching techniques for 3D free-form object and face recognition." University of Western Australia. School of Computer Science and Software Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0046.

Full text
Abstract:
[Truncated abstract] The aim of visual recognition is to identify objects in a scene and estimate their pose. Object recognition from 2D images is sensitive to illumination, pose, clutter and occlusions. Object recognition from range data on the other hand does not suffer from these limitations. An important paradigm of recognition is model-based whereby 3D models of objects are constructed offline and saved in a database, using a suitable representation. During online recognition, a similar representation of a scene is matched with the database for recognizing objects present in the scene . . . The tensor representation is extended to automatic and pose invariant 3D face recognition. As the face is a non-rigid object, expressions can significantly change its 3D shape. Therefore, the last part of this thesis investigates representations and matching techniques for automatic 3D face recognition which are robust to facial expressions. A number of novelties are proposed in this area along with their extensive experimental validation using the largest available 3D face database. These novelties include a region-based matching algorithm for 3D face recognition, a 2D and 3D multimodal hybrid face recognition algorithm, fully automatic 3D nose ridge detection, fully automatic normalization of 3D and 2D faces, a low cost rejection classifier based on a novel Spherical Face Representation, and finally, automatic segmentation of the expression insensitive regions of a face.
APA, Harvard, Vancouver, ISO, and other styles
7

Mian, Ajmal Saeed. "Representations and matching techniques for 3D free-form object and face recognition /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holub, Alex David Perona Pietro. "Discriminative vs. generative object recognition : objects, faces, and the web /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-05312007-204007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vilaplana, Besler Verónica. "Region-based face detection, segmentation and tracking. framework definition and application to other objects." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/33330.

Full text
Abstract:
One of the central problems in computer vision is the automatic recognition of object classes. In particular, the detection of the class of human faces is a problem that generates special interest due to the large number of applications that require face detection as a first step. In this thesis we approach the problem of face detection as a joint detection and segmentation problem, in order to precisely localize faces with pixel accurate masks. Even though this is our primary goal, in finding a solution we have tried to create a general framework as independent as possible of the type of object being searched. For that purpose, the technique relies on a hierarchical region-based image model, the Binary Partition Tree, where objects are obtained by the union of regions in an image partition. In this work, this model is optimized for the face detection and segmentation tasks. Different merging and stopping criteria are proposed and compared through a large set of experiments. In the proposed system the intra-class variability of faces is managed within a learning framework. The face class is characterized using a set of descriptors measured on the tree nodes, and a set of one-class classifiers. The system is formed by two strong classifiers. First, a cascade of binary classifiers simplifies the search space, and afterwards, an ensemble of more complex classifiers performs the final classification of the tree nodes. The system is extensively tested on different face data sets, producing accurate segmentations and proving to be quite robust to variations in scale, position, orientation, lighting conditions and background complexity. We show that the technique proposed for faces can be easily adapted to detect other object classes. Since the construction of the image model does not depend on any object class, different objects can be detected and segmented using the appropriate object model on the same image model. New object models can be easily built by selecting and training a suitable set of descriptors and classifiers. Finally, a tracking mechanism is proposed. It combines the efficiency of the mean-shift algorithm with the use of regions to track and segment faces through a video sequence, where both the face and the camera may move. The method is extended to deal with other deformable objects, using a region-based graph-cut method for the final object segmentation at each frame. Experiments show that both mean-shift based trackers produce accurate segmentations even in difficult scenarios such as those with similar object and background colors and fast camera and object movements. Lloc i<br>Un dels problemes més importants en l'àrea de visió artificial és el reconeixement automàtic de classes d'objectes. En particular, la detecció de la classe de cares humanes és un problema que genera especial interès degut al gran nombre d'aplicacions que requereixen com a primer pas detectar les cares a l'escena. A aquesta tesis s'analitza el problema de detecció de cares com un problema conjunt de detecció i segmentació, per tal de localitzar de manera precisa les cares a l'escena amb màscares que arribin a precisions d'un píxel. Malgrat l'objectiu principal de la tesi és aquest, en el procés de trobar una solució s'ha intentat crear un marc de treball general i tan independent com fos possible del tipus d'objecte que s'està buscant. Amb aquest propòsit, la tècnica proposada fa ús d'un model jeràrquic d'imatge basat en regions, l'arbre binari de particions (BPT: Binary Partition Tree), en el qual els objectes s'obtenen com a unió de regions que provenen d'una partició de la imatge. En aquest treball, s'ha optimitzat el model per a les tasques de detecció i segmentació de cares. Per això, es proposen diferents criteris de fusió i de parada, els quals es comparen en un conjunt ampli d'experiments. En el sistema proposat, la variabilitat dins de la classe cara s'estudia dins d'un marc de treball d'aprenentatge automàtic. La classe cara es caracteritza fent servir un conjunt de descriptors, que es mesuren en els nodes de l'arbre, així com un conjunt de classificadors d'una única classe. El sistema està format per dos classificadors forts. Primer s'utilitza una cascada de classificadors binaris que realitzen una simplificació de l'espai de cerca i, posteriorment, s'aplica un conjunt de classificadors més complexes que produeixen la classificació final dels nodes de l'arbre. El sistema es testeja de manera exhaustiva sobre diferents bases de dades de cares, sobre les quals s'obtenen segmentacions precises provant així la robustesa del sistema en front a variacions d'escala, posició, orientació, condicions d'il·luminació i complexitat del fons de l'escena. A aquesta tesi es mostra també que la tècnica proposada per cares pot ser fàcilment adaptable a la detecció i segmentació d'altres classes d'objectes. Donat que la construcció del model d'imatge no depèn de la classe d'objecte que es pretén buscar, es pot detectar i segmentar diferents classes d'objectes fent servir, sobre el mateix model d'imatge, el model d'objecte apropiat. Nous models d'objecte poden ser fàcilment construïts mitjançant la selecció i l'entrenament d'un conjunt adient de descriptors i classificadors. Finalment, es proposa un mecanisme de seguiment. Aquest mecanisme combina l'eficiència de l'algorisme mean-shift amb l'ús de regions per fer el seguiment i segmentar les cares al llarg d'una seqüència de vídeo a la qual tant la càmera com la cara es poden moure. Aquest mètode s'estén al cas de seguiment d'altres objectes deformables, utilitzant una versió basada en regions de la tècnica de graph-cut per obtenir la segmentació final de l'objecte a cada imatge. Els experiments realitzats mostren que les dues versions del sistema de seguiment basat en l'algorisme mean-shift produeixen segmentacions acurades, fins i tot en entorns complicats com ara quan l'objecte i el fons de l'escena presenten colors similars o quan es produeix un moviment ràpid, ja sigui de la càmera o de l'objecte.
APA, Harvard, Vancouver, ISO, and other styles
10

Gunn, Steve R. "Dual active contour models for image feature extraction." Thesis, University of Southampton, 1996. https://eprints.soton.ac.uk/250089/.

Full text
Abstract:
Active contours are now a very popular technique for shape extraction, achieved by minimising a suitably formulated energy functional. Conventional active contour formulations suffer difficulty in appropriate choice of an initial contour and values of parameters. Recent approaches have aimed to resolve these problems, but can compromise other performance aspects. To relieve the problem in initialisation, an evolutionary dual active contour has been developed, which is combined with a local shape model to improve the parameterisation. One contour expands from inside the target feature, the other contracts from the outside. The two contours are inter-linked to provide a balanced technique with an ability to reject weak’local energy minima. Additionally a dual active contour configuration using dynamic programming has been developed to locate a global energy minimum and complements recent approaches via simulated annealing and genetic algorithms. These differ from conventional evolutionary approaches, where energy minimisation may not converge to extract the target shape, in contrast with the guaranteed convergence of a global approach. The new techniques are demonstrated to extract successfully target shapes in synthetic and real images, with superior performance to previous approaches. The new technique employing dynamic programming is deployed to extract the inner face boundary, along with a conventional normal-driven contour to extract the outer face boundary. Application to a database of 75 subjects showed that the outer contour was extracted successfully for 96% of the subjects and the inner contour was successful for 82%. This application highlights the advantages new dual active contour approaches for automatic shape extraction can confer.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography