To see the other types of publications on this topic, follow the link: Fabry-Perot cavity devices.

Journal articles on the topic 'Fabry-Perot cavity devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 33 journal articles for your research on the topic 'Fabry-Perot cavity devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Cheng-Ping, and Che-Ting Chan. "Deep subwavelength Fabry-Perot resonances." EPJ Applied Metamaterials 1 (2014): 2. http://dx.doi.org/10.1051/epjam/2014003.

Full text
Abstract:
Confinement of light by subwavelength objects facilitates the realization of compact photonic devices and the enhancement of light-matter interactions. The Fabry-Perot (FP) cavity provides an efficient tool for confining light. However, the conventional FP cavity length is usually comparable to or larger than the light wavelength, making them inconvenient for many applications. By manipulating the reflection phase at the cavity boundaries, the FP cavity length could be made much smaller than the wavelength. In this review, we consider the subwavelength FP resonance in a plasmonic system composed of a slit grating backed with a ground plane, covering the spectral range from microwave to THz and infrared regime. For very narrow slit width and spacer thickness, a typical zero-order and deep subwavelength FP resonance in the metallic slits can be strongly induced. Moreover, due to the subwavelength FP resonance, greatly enhanced electromagnetic pressure can also be induced in the system. The sign and magnitude of the electromagnetic pressure are dominated by the field penetration effect in the metal as well as the field enhancement in the FP cavities. The effect promises a variety of potential applications, such as detecting tiny motions and driving the mechanical oscillations.
APA, Harvard, Vancouver, ISO, and other styles
2

Sikdar, Debabrata, and Alexei A. Kornyshev. "An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials." Nanophotonics 8, no. 12 (November 8, 2019): 2279–90. http://dx.doi.org/10.1515/nanoph-2019-0317.

Full text
Abstract:
AbstractMirror-on-mirror nanoplasmonic metamaterials, formed on the basis of voltage-controlled reversible self-assembly of sub-wavelength-sized metallic nanoparticles (NPs) on thin metallic film electrodes, are promising candidates for novel electro-tunable optical devices. Here, we present a new design of electro-tunable Fabry–Perot interferometers (FPIs) in which two parallel mirrors – each composed of a monolayer of NPs self-assembled on a thin metallic electrode – form an optical cavity, which is filled with an aqueous solution. The reflectivity of the cavity mirrors can be electrically adjusted, simultaneously or separately, via a small variation of the electrode potentials, which would alter the inter-NP separation in the monolayers. To investigate optical transmittance from the proposed FPI device, we develop a nine-layer-stack theoretical model, based on our effective medium theory and multi-layer Fresnel reflection scheme, which produces excellent match when verified against full-wave simulations. We show that strong plasmonic coupling among silver NPs forming a monolayer on a thin silver-film substrate makes reflectivity of each cavity mirror highly sensitive to the inter-NP separation. Such a design allows the continuous tuning of the multiple narrow and intense transmission peaks emerging from an FPI cavity via electro-tuning the inter-NP separation in situ – reaping the benefits from both inexpensive bottom-up fabrication and energy-efficient tuning.
APA, Harvard, Vancouver, ISO, and other styles
3

Casalino, M., G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto. "Microcavity Silicon Photodetectors at 1.55 μm." Advances in OptoElectronics 2011 (December 19, 2011): 1–10. http://dx.doi.org/10.1155/2011/965967.

Full text
Abstract:
The design, the realization, and the characterization of silicon resonant cavity enhanced (RCE) photodetectors, working at 1.55 μm, are reported. The photodetectors are constituted by a Fabry-Perot microcavity incorporating a Schottky diode. The working principle is based on the internal photoemission effect. We investigated two types of structures: top and back-illuminated. Concerning the top-illuminated photodetectors, a theoretical and numerical analysis has been provided and the device quantum efficiency has been calculated. Moreover, a comparison among three different photodetectors, having as Schottky metal: gold, silver, or copper, was proposed. Concerning the back-illuminated devices, two kinds of Cu/p-Si RCE photodetectors, having various bottom-mirror reflectivities, were realized and characterized. Device performances in terms of responsivity, free spectral range, and finesse were theoretically and experimentally calculated in order to prove an enhancement in efficiency due to the cavity effect. The back-illuminated device fabrication process is completely compatible with the standard silicon technology.
APA, Harvard, Vancouver, ISO, and other styles
4

SCHMIDT, OLIVER, PETER KIESEL, MICHAEL BASSLER, and NOBLE JOHNSON. "CHIP-SIZE WAVELENGTH DETECTORS." International Journal of High Speed Electronics and Systems 17, no. 04 (December 2007): 661–70. http://dx.doi.org/10.1142/s0129156407004862.

Full text
Abstract:
Chip-size wavelength detectors are described that can resolve the spectrum of the incident light with high accuracy over a broad spectral range. The devices can be configured either as compact spectrometers or precise wavelength shift detectors. Applications that are anticipated to benefit from the spectrometers include reagentless optical identification of analytes in fluidic and aerosol samples. The wavelength shift detector is widely applicable as read-out instrument for optical sensors in which a stimulus (e.g., temperature, strain, PH-value, etc.) results in a wavelength shift of an optical output signal, examples include the interrogation system for Fiber Bragg Grating sensors, photonic crystal sensors, Fabry-Perot type sensors, and sensors in which an analyte influences a laser cavity and thereby its emission wavelength.
APA, Harvard, Vancouver, ISO, and other styles
5

Probert, P. J., and J. E. Carroll. "Lumped circuit model for prediction of linewidth in fabry perot and DFB lasers, including external cavity devices." IEE Proceedings J Optoelectronics 136, no. 1 (1989): 22. http://dx.doi.org/10.1049/ip-j.1989.0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xiaoyi, Jinbo Gao, Yanchao Wang, Xiaoyi Wang, Haigui Yang, Haixiang Hu, Jinsong Gao, Tarik Bourouina, and Tianhong Cui. "Simultaneous field enhancement and loss inhibition based on surface plasmon polariton mode hybridization." Nanophotonics 9, no. 9 (April 22, 2020): 2809–16. http://dx.doi.org/10.1515/nanoph-2020-0023.

Full text
Abstract:
AbstractIn common plasmonic configurations, energy loss and field enhancement are mutually restricted. In a vast majority of cases, high confinement goes together with high loss, which is a serious limitation for some applications. In an attempt of breaking this rule, which holds true for surface plasmon polariton (SPP) resonators, a multilayer trench grating microstructure with an asymmetric waveguide is considered. It supports both Fabry-Perot (FP) and cavity modes, whose hybridization exhibits unusual properties. The electric field enhancement was modulated by regulating the corresponding absorption and radiation quality factors. At the same time, energy loss was reduced, which is fundamentally ascribed to the mutual recycling of radiation energy between FP and cavity resonators. The maximum total quality factor and strongest field enhancement were both observed at the vicinity of quasi-static limit, thereby signifying that the structure exhibited simultaneous optimizations of field enhancement and loss inhibition, which is crucial to the design of high-quality SPP-based devices.
APA, Harvard, Vancouver, ISO, and other styles
7

Casalino, M., G. Coppola, M. Iodice, I. Rendina, and L. Sirleto. "Near-Infrared All-Silicon Photodetectors." International Journal of Photoenergy 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/139278.

Full text
Abstract:
We report the fabrication and characterization of all-silicon photodetectors at 1550 nm based on the internal photoemission effect. We investigated two types of structures: bulk and integrated devices. The former are constituted by a Fabry-Perot microcavity incorporating a Schottky diode, and their performance in terms of responsivity, free spectral range, and finesse was experimentally calculated in order to prove an enhancement in responsivity due to the cavity effect. Results show a responsivity peak of about 0.01 mA/W at 1550 nm with a reverse bias of 100 mV. The latter are constituted by a Schottky junction placed transversally to the optical field confined into the waveguide. Preliminary results show a responsivity of about 0.1 mA/W at 1550 nm with a reverse bias of 1 V and an efficient behaviour in both C and L bands. Finally, an estimation of bandwidth for GHz range is deduced for both devices. The technological steps utilized to fabricate the devices allow an efficiently monolithic integration with complementary metal-oxide semiconductor (CMOS) compatible structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Takahashi, Toshiaki, Yong-Joon Choi, Kazuaki Sawada, and Kazuhiro Takahashi. "A ppm Ethanol Sensor Based on Fabry–Perot Interferometric Surface Stress Transducer at Room Temperature." Sensors 20, no. 23 (November 30, 2020): 6868. http://dx.doi.org/10.3390/s20236868.

Full text
Abstract:
Disease screening by exhaled breath diagnosis is less burdensome for patients, and various devices have been developed as promising diagnostic methods. We developed a microelectromechanical system (MEMS) optical interferometric surface stress sensor to detect volatile ethanol gas at room temperature (26~27 °C) with high sensitivity. A sub-micron air gap in the optical interferometric sensor reduces interference orders, leading to increased spectral response associated with nanomechanical deflection caused by ethanol adsorption. The sub-micron cavity was embedded in a substrate using a transfer technique of parylene-C nanosheet. The sensor with a 0.4 µm gap shows a linear stable reaction, with small standard deviations, even at low ethanol gas concentrations of 5–110 ppm and a reversible reaction to the gas concentration change. Furthermore, the possibility of detecting sub-ppm ethanol concentration by optimizing the diameter and thickness of the deformable membrane is suggested. Compared with conventional MEMS surface stress gas sensors, the proposed optical interferometric sensor demonstrated high-sensitivity gas detection with exceeding the detection limit by two orders of magnitude while reducing the sensing area.
APA, Harvard, Vancouver, ISO, and other styles
9

Salvatori, Stefano, Gennaro Salvatore Ponticelli, Sara Pettinato, Silvio Genna, and Stefano Guarino. "High-Pressure Sensors Based on Laser-Manufactured Sintered Silicon Carbide." Applied Sciences 10, no. 20 (October 13, 2020): 7095. http://dx.doi.org/10.3390/app10207095.

Full text
Abstract:
In this work Sintered Silicon Carbide (S-SiC) samples have been used to fabricate fiber-optic-coupled pressure sensors. The sensor structure reproduces a low-finesse Fabry–Perot (FP) interferometer. Laser manufacturing of cylindrical S-SiC samples was performed to define the thin membrane geometry of sensors. FP cavity is defined by the end-face of a single mode fiber and the S-SiC diaphragm surface. Hence, pressure is evaluated by measuring the cavity depth by a dedicated optoelectronic system coupled to the single mode fiber. Exploiting the excellent properties of S-SiC, in terms of high hardness, low thermal expansion, and high thermal conductivity, realized devices have been characterized up to 20 MPa. Experimental results demonstrate that produced sensors exhibit a non-linearity around ±0.6%F.S. and a high input dynamics. The all-optic sensing system proposed in this work would represent a good alternative to conventional solutions based on piezoelectric effects, overcoming the drawback related to electromagnetic interference on the acquired signals. In addition, the mechanical characteristics of S-SiC allow the use of the sensor in both automotive and aerospace hostile environments as pressure monitors in combustion engines.
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Wenfeng, Jianxun Liu, Jinrong Liu, Gao Wang, Guanjun Wang, and Mengxing Huang. "A Single-Ended Ultra-Thin Spherical Microbubble Based on the Improved Critical-State Pressure-Assisted Arc Discharge Method." Coatings 9, no. 2 (February 22, 2019): 144. http://dx.doi.org/10.3390/coatings9020144.

Full text
Abstract:
Hollow core microbubble structures are good candidates for the construction of high performance whispering gallery microresonator and Fabry-Perot (FP) interference devices. In the previous reports, most of interest was just focused on the dual-ended microbubble, but not single-ended microbubble, which could be used for tip sensing or other special areas. The thickness, symmetry and uniformity of the single-ended microbubble in previous reports were far from idealization. Thus, a new ultra-thin single-ended spherical microbubble based on the improved critical-state pressure-assisted arc discharge method was proposed and fabricated firstly in this paper, which was fabricated simply by using a commercial fusion splicer. The improvement to former paper was using weak discharge and releasing pressure gradually during the discharging process. Thus, the negative influence of gravity towards bubble deformation was decreased, and the fabricated microbubble structure had a thin, smooth and uniform surface. By changing the arc discharge parameters and the fiber position, the wall thicknesses of the fabricated microbubble could reach the level of 2 μm or less. The fiber Fabry-Perot (FP) interference technique was also used to analyze the deformation characteristic of microbubble under difference filling pressures. Finding the ends of the microbubbles had a trend of elongation with axial compression when the filling pressure was increasing. Its sensitivity to the inner pressure of microbubble samples was about ~556 nm/MPa, the bubble wall thickness was only of about 2 μm. Besides, a high whispering gallery mode (WGM) quality factor that up to 107 was realized by using this microbubble-based resonator. To explain the upper phenomenon, the microbubble was modeled and simulated with the ANSYS software. Results of this study could be useful for developing new single-ended whispering gallery mode micro-cavity structure, pressure sensors, etc.
APA, Harvard, Vancouver, ISO, and other styles
11

Maciak, Erwin. "Low-Coherence Interferometric Fiber Optic Sensor for Humidity Monitoring Based on Nafion® Thin Film." Sensors 19, no. 3 (February 2, 2019): 629. http://dx.doi.org/10.3390/s19030629.

Full text
Abstract:
The main aim of this work was the design and development simple fiber optic Fabry-Perot interferometer (FPI) sensor devices for relative humidity (RH) sensing with emphasis on high sensitivity and good stability. The RH fiber FPI sensor is fabricated by coating the end of a cleaved standard multi-mode (MM) fiber with hydrophilic Nafion® sensing film. The Nafion® thin film acts as an active resonance cavity of the low-coherence interferometric sensing structure. The fringe pattern, which is caused by interfering light beam in the Nafion® thin film will shift as the RH changes because the water molecules will swell the Nafion® film and thus change optical pathlength of the sensing structure. The operating principle of a FPI sensor based on the adsorption and desorption of water vapour in the Nafion® and the limitations of this sensor type are discussed in this work. The fiber optic hygrometer was tested in the visible (400–900 nm) region of spectra for measurement of relative humidity (RH) in the range of 5.5–80% at room temperature (RT) in air. The fiber optic humidity sensor has a very short response time (t90 = 5–80 s) and a fast regeneration time (t10 = 5–12 s) as good as commercial sensors.
APA, Harvard, Vancouver, ISO, and other styles
12

Azzam, Shaimaa I., and Alexander V. Kildishev. "Time-domain dynamics of reverse saturable absorbers with application to plasmon-enhanced optical limiters." Nanophotonics 8, no. 1 (November 23, 2018): 145–51. http://dx.doi.org/10.1515/nanoph-2018-0139.

Full text
Abstract:
AbstractAn advanced full-wave time-domain numerical model for reverse saturable absorption (RSA) is presented and verified. Rate equations describing atomic relaxations and excitation dynamics are coupled to the Maxwell equations by using a Lorentzian oscillator, which models the kinetics-dependent light–matter interactions. The presented novel technique provides a versatile multiphysics framework for designing complex structures and integrating diverse material models that were not previously possible. The multiphysics framework allows capturing the behavior of the RSA materials embedded in artificial photonic nanostructures that cannot be analyzed with established techniques such as the Beer–Lambert law. To showcase the importance of the full-wave RSA analysis coupled to carrier kinetics, we analyze two plasmon-enhanced optical limiters: a metal grating and a Fabry–Perot cavity-like structure where we decrease the unenhanced limiter threshold by a factor of 3 and 13, respectively. This is a promising approach for developing RSA devices operating at reduced illumination levels and thereby significantly expanding their area of applicability to areas such as protective eyewear and automatically dimmed windows. By exploring the dynamic behavior of a given RSA system, this framework will provide critical insights into the design of transformative photonic devices and their complementary optical characterization, and serve as an invaluable utility for guiding the development of synthetic absorbing materials. We believe that our multiphysics models are crucial enabling tools that lay a necessary foundation for the numerical machinery required for the realization and optimization of optical limiting and all-optical switching systems.
APA, Harvard, Vancouver, ISO, and other styles
13

Gomes, André D., Martin Becker, Jan Dellith, Mohammad I. Zibaii, Hamid Latifi, Manfred Rothhardt, Hartmut Bartelt, and Orlando Frazão. "Multimode Fabry–Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing." Sensors 19, no. 3 (January 22, 2019): 453. http://dx.doi.org/10.3390/s19030453.

Full text
Abstract:
New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of -654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.
APA, Harvard, Vancouver, ISO, and other styles
14

Banyal, R. K., and A. Reiners. "A Dual Cavity Fabry–Perot Device for High Precision Doppler Measurements in Astronomy." Journal of Astronomical Instrumentation 06, no. 01 (March 2017): 1750001. http://dx.doi.org/10.1142/s2251171717500015.

Full text
Abstract:
We propose a dual cavity Fabry–Perot interferometer as a wavelength calibrator and a stability tracking device for astronomical spectrograph. The FPI consists of two adjoining cavities engraved on a low expansion monoblock spacer. A low-finesse astro-cavity is intended for generating a uniform grid of reference lines to calibrate the spectrograph and a high-finesse lock-cavity is meant for tracking the stability of the reference lines using optical frequency standards. The differential length changes in two cavities due to temperature and vibration perturbations are quantitatively analyzed using finite element method. An optimized mounting geometry with fractional length changes [Formula: see text] is suggested. We also identify conditions necessary to suppress relative length variations between two cavities well below [Formula: see text], thus facilitating accurate dimension tracking and generation of stable reference spectra for Doppler measurement at [Formula: see text] level.
APA, Harvard, Vancouver, ISO, and other styles
15

Rodrigues-Machado, Fernanda C., Pauline Pestre, Liam Scanlon, Shirin A. Enger, Jack C. Sankey, and Lilian I. Childress. "Cavity-enhanced detection of transient absorption signals." EPJ Web of Conferences 238 (2020): 12003. http://dx.doi.org/10.1051/epjconf/202023812003.

Full text
Abstract:
We present a simple, high-duty-cycle, cavity-enhanced optical absorption measurement technique based on delay-limited Pound-Drever-Hall (PDH) sideband locking. The chosen circuit naturally provides realtime readout of the amplitude quadrature of the PDH error signal, which can be mapped onto the cavity’s internal loss rate while using the phase quadrature to lock sideband frequency to the cavity mode. Our proofof-concept device comprises a 5-cm-long Fabry-Perot cavity with a 450 kHz bandwidth (finesse 6800, 350 ns power ringdown), and a feedback bandwidth of several MHz, limited primarily by the group delay of our electronics. This technique could readily be applied to other optical resonators such as fiber cavities, with potential applications in radiation dosimetry.
APA, Harvard, Vancouver, ISO, and other styles
16

Khidhir, Ali Hassan. "Optimum diameter for laser beam and effect of temperature rise on the optical bistability hysteresis loops." Iraqi Journal of Physics (IJP) 18, no. 45 (May 30, 2020): 32–39. http://dx.doi.org/10.30723/ijp.v18i45.520.

Full text
Abstract:
In this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Zhe, Hua Juan Qi, Yong Chuan Xiao, and Feng Li Gao. "Thermo-Optic Tunable Optical Filter Based on Fabry-Perot Microcavities in SOI." Advanced Engineering Forum 6-7 (September 2012): 194–99. http://dx.doi.org/10.4028/www.scientific.net/aef.6-7.194.

Full text
Abstract:
An integrated TOF (Tunable Optical Filter) based on thermo-optic effect in Silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs and separated by a variable refractive index Si F-P cavity. The output characteristics are calculated and simulated based on Transfer Matrix Method (TMM). Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity.As the cavity Si is heated,the refractive index of the cavity increases.When the temperature of cavity Si changes within100°C,the central wavelength gets a continuous 8nm shift from 1550nm to 1558nm, which is right located in the WDM (Wavelength division multiplexing) networks operating at C-band. Moreover, by calculating, the tuning sensitivity is about 0.08nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.
APA, Harvard, Vancouver, ISO, and other styles
18

Nepomuceno, Ana Catarina, Tiago Paixão, Nélia Alberto, Paulo Sérgio de Brito André, Paulo Antunes, and M. Fátima Domingues. "Optical Fiber Fabry–Perot Interferometer Based Spirometer: Design and Performance Evaluation." Photonics 8, no. 8 (August 15, 2021): 336. http://dx.doi.org/10.3390/photonics8080336.

Full text
Abstract:
Spirometry enables the diagnosis and monitoring of multiple respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this paper, we present an optical fiber-based device to evaluate the pulmonary capacity of individuals through spirometry. The proposed system consists of an optical fiber containing an intrinsic Fabry–Perot interferometer (FPI) micro-cavity attached to a 3D printed structure that converts the air flow into strain variations to the optical fiber, modulating the FPI spectral response. Besides providing the value of the flow, its direction is also determined, which enables a differentiation between inhale and exhale cycles of breathing. A simulation study was conducted to predict the system behavior with the air flow. The preliminary tests, performed with the FPI-based spirometer led to average values of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) parameters of 4.40 L and 6.46 L, respectively, with an FEV1/FVC index (used as an airway function index) of 68.5%. An average value of 5.35 L/s was found for the peak expiratory flow (PEF). A comparison between the spirometry tests using the presented FPI system and a commercial electronic device showed that the proposed system is suitable to act as a reliable spirometer.
APA, Harvard, Vancouver, ISO, and other styles
19

Lai, Guo Zhong, Xi Yao Chen, Yu Fei Wang, and Hong Lin. "Photonic Crystal Fabry-Perot Self-Collimation Interferometer by Liquid Crystal Infiltration." Key Engineering Materials 428-429 (January 2010): 573–78. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.573.

Full text
Abstract:
A Fabry-Perot self-collimation interferometer (FPSI) constructed in a two-dimensional photonic crystal (2D PhC) by liquid crystal infiltration has been proposed and demonstrated theoretically. The resonant cavity of FPSI is infiltrated with a nematic liquid crystal (LC) 5CB with ordinary and extraordinary refractive indices 1.522 and 1.706, respectively. The transmission spectrum of the FPSI has been investigated with the 2D finite-difference time-domain method. Calculation results show that resonant transmission peaks have nearly equal frequency spacing 0.0090c/a. When the effective refractive index neff of the liquid crystal is increased from 1.522 to 1.706, the peaks shift to the lower frequencies over 0.0071c/a while the peak spacing is almost kept unchanged. Thus this FPSI by LC infiltration can work as a tunable attenuator or an optical switch. For the central operating wavelength around 1.55m, its dimensions are only about tens of microns. Thus this device may be applied to photonic integrated circuits.
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Zhonglun, Mingce Chen, Zhaowei Xin, Wanwan Dai, Xinjie Han, Xinyu Zhang, Haiwei Wang, and Changsheng Xie. "Research on a Dual-Mode Infrared Liquid-Crystal Device for Simultaneous Electrically Adjusted Filtering and Zooming." Micromachines 10, no. 2 (February 19, 2019): 137. http://dx.doi.org/10.3390/mi10020137.

Full text
Abstract:
A new dual-mode liquid-crystal (LC) micro-device constructed by incorporating a Fabry–Perot (FP) cavity and an arrayed LC micro-lens for performing simultaneous electrically adjusted filtering and zooming in infrared wavelength range is presented in this paper. The main micro-structure is a micro-cavity consisting of two parallel zinc selenide (ZnSe) substrates that are pre-coated with ~20-nm aluminum (Al) layers which served as their high-reflection films and electrodes. In particular, the top electrode of the device is patterned by 44 × 38 circular micro-holes of 120 μm diameter, which also means a 44 × 38 micro-lens array. The micro-cavity with a typical depth of ~12 μm is fully filled by LC materials. The experimental results show that the spectral component with needed frequency or wavelength can be selected effectively from incident micro-beams, and both the transmission spectrum and the point spread function can be adjusted simultaneously by simply varying the root-mean-square value of the signal voltage applied, so as to demonstrate a closely correlated feature of filtering and zooming. In addition, the maximum transmittance is already up to ~20% according the peak-to-valley value of the spectral transmittance curves, which exhibits nearly twice the increment compared with that of the ordinary LC-FP filtering without micro-lenses.
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Tingting, Xiu He, Zengling Ran, Zhendong Xie, Yunjiang Rao, Xueguang Qiao, Zhengxi He, and Peng He. "Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature." Materials 11, no. 10 (October 1, 2018): 1867. http://dx.doi.org/10.3390/ma11101867.

Full text
Abstract:
Accurate measurement of strain is one of the most important issues for high temperature environments. We present a highly integrated all-fiber sensor to achieve precise measurements of strain/high-pressure, which consists of a fiber Bragg grating (FBG) inscribed by an 800 nm femtosecond laser cascaded with a micro extrinsic Fabry–Perot (FP) cavity fabricated by the 157 nm laser micromachining technique. FBG is sensitive to temperature, but insensitive to strain/pressure, whereas the FP is sensitive to strain/pressure, but has a small dependence on temperature. Therefore, such a cascaded sensor could be used for dual-parameter measurement and can work well at high temperatures. Experimental results indicate that this device exhibits a good strain characteristic at high temperatures and excellent high-pressure performance at room temperature. Due to its highly sensitive wavelength response, the proposed sensor will have remarkable potential applications in dual parameter sensing in harsh environments.
APA, Harvard, Vancouver, ISO, and other styles
22

Ruan, Chunkao, Yongyi Chen, Li Qin, Peng Jia, Yugang Zeng, Yue Song, Yuxin Lei, Zhijun Zhang, Nan Zhang, and Zaijin Li. "Purely Gain-Coupled Distributed-Feedback Bragg Semiconductor Laser Diode Emitting at 770 nm." Applied Sciences 11, no. 4 (February 8, 2021): 1531. http://dx.doi.org/10.3390/app11041531.

Full text
Abstract:
The transition lines of Mg, K, Fe, Ni, and other atoms lie near 770 nm, therefore, this spectral region is important for helioseismology, solar atmospheric studies, the pumping of atomic clocks, and laser gyroscopes. However, there is little research on distributed-feedback (DFB) semiconductor lasing at 770 nm. In addition, the traditional DFB semiconductor laser requires secondary epitaxy or precision grating preparation technologies. In this study, we demonstrate an easily manufactured, gain-coupled DFB semiconductor laser emitting at 770 nm. Only micrometer scale periodic current injection windows were used, instead of nanoscale grating fabrication or secondary epitaxy. The periodically injected current assures the device maintains single longitudinal mode working in the unetched Fabry–Perot cavity under gain coupled mechanism. The maximum continuous-wave output power reached was 116.3 mW at 20 °C, the maximum side-mode-suppression ratio (SMSR) was 33.25 dB, and the 3 dB linewidth was 1.78 pm.
APA, Harvard, Vancouver, ISO, and other styles
23

Jiang, Xiaofeng, Chun Lin, Yuanqing Huang, Kan Luo, Jianhuan Zhang, Qingshan Jiang, and Chentao Zhang. "Hybrid Fiber Optic Sensor, Based on the Fabry–Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure." Sensors 19, no. 5 (March 4, 2019): 1097. http://dx.doi.org/10.3390/s19051097.

Full text
Abstract:
Herein we design a fiber sensor able to simultaneously measure the temperature and the pressure under harsh conditions, such as strong electromagnetic interference and high pressure. It is built on the basis of the fiber-optic Fabry–Perot (F–P) interference and the temperature sensitive mechanism of fluorescent materials. Both halogen lamps and light-emitting diodes (LED) are employed as the excitation light source. The reflected light from the sensor contains the low coherent information of interference cavity and the fluorescent lifetime. This information is independent due to the separate optical path and the different demodulation device. It delivers the messages of pressure and temperature, respectively. It is demonstrated that the sensor achieved pressure measurement at the range of 120–400 KPa at room temperature with a sensitivity of 1.5 nm/KPa. Moreover, the linearity of pressure against the cavity length variation was over 99.9%. In the meantime, a temperature measurement in the range of 25–80 °C, with a sensitivity of 0.0048 ms/°C, was obtained. These experimental results evince that this kind of sensor has a simple configuration, low-cost, and easy fabrication. As such, it can be particularly applied to many fields.
APA, Harvard, Vancouver, ISO, and other styles
24

Gang, Tingting, Manli Hu, Xiaohong Bai, and Qiangzhou Rong. "Sensitivity-Improved Ultrasonic Sensor for 3D Imaging of Seismic Physical Model Using a Compact Microcavity." Sensors 18, no. 7 (July 17, 2018): 2315. http://dx.doi.org/10.3390/s18072315.

Full text
Abstract:
A sensitivity-improved ultrasonic sensor is proposed and demonstrated experimentally in this present study. The device is comprised only a fiber-optic microcavity that is formed by discharging a short section of hollow core fiber (HCF). The key to ensuring the success of the sensor relies on the preprocessing of hydrogen loading for HCF. When discharging the HCF, the hydrogen is heated up during the formation of the air bubble, which enlarges the bubble diameter, smoothens its surfaces simultaneously and decreases Young’s modulus of the material of the bubble. Ultimately, this results in the probe being highly sensitive to ultrasound with a SNR of 69.28 dB. Once the compact air cavity is formed between the end face of the leading-in fiber and the top wall of the bubble, a well-defined interference spectrum is achieved based on the Fabry–Perot interference. By using spectral side-band filtering technology, we detect the ultrasonic waves reflected by the seismic physical model (SMF) and then reconstruct its three-dimensional image.
APA, Harvard, Vancouver, ISO, and other styles
25

LUO, XIANGANG, YUEGUANG LV, CHUNLEI DU, JUNXIAN MA, HAO WANG, HAIYING LI, GAIRONG YANG, and HANMIN YAO. "SPATIAL DISTRIBUTION OF SURFACE PLASMON POLARITON FROM METALLIC NANOSTRUCTURES." Modern Physics Letters B 19, no. 12 (May 30, 2005): 599–606. http://dx.doi.org/10.1142/s0217984905008578.

Full text
Abstract:
The spatial distribution of the interference of surface plasmon polariton (SPP) on metallic nanostructures has been studied. The results show that the transmission of electromagnetic radiation is remarkably enhanced for frequencies close to the surface plasmon band and the interference of SPP can redistribute the illumination light into subwavelength-scale spatial distribution with high intensity, which beats the Rayleigh diffraction limit. For an appropriate thickness, the transmission of an unperforated structure can be larger than that of holes or slits systems with the same periodicity and thickness when the coupled surface plasmon wave mode is excited. With the help of the interference of the horizontal plasmon excited by Bragg resonance due to the periodicity in the horizontal direction, the vertical plasmons, excited in z direction via Fabry–Perot cavity resonance in different grooves, are correlated, so the transmission is increased via the tunneling process. The properties of transparency for light but impenetrability for gas and liquid will be of importance for device applications. The information on near-field distribution from perforated metallic structures is important for understanding the underlying physics, as well as for optimizing photonic crystals for possible applications.
APA, Harvard, Vancouver, ISO, and other styles
26

Gao, Huixuan, Wei Peng, Shuwen Chu, Wenli Cui, Zhi Liu, Li Yu, and Zhenguo Jing. "Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared." Nanomaterials 8, no. 12 (December 12, 2018): 1038. http://dx.doi.org/10.3390/nano8121038.

Full text
Abstract:
The spectral range of solar radiation observed on the earth is approximately 295 to 2500 nm. How to widen the absorption band of the plasmonic absorber in this range has become a hot issue in recent years. In this paper, we propose a highly applicable refractory perfect absorber with an elliptical titanium nanodisk array based on a silica–titanium–silica–titanium four-layer structure. Through theoretical design and numerical demonstration, the interaction of surface plasmon resonance with the Fabry–Perot cavity resonance results in high absorption characteristics. Our investigations illustrate that it can achieve ultra-broadband absorption above 90% from a visible 550-nm wavelength to a near-infrared 2200-nm wavelength continuously. In particular, a continuous 712-nm broadband perfect absorption of up to 99% is achieved from wavelengths from 1013 to 1725 nm. The air mass 1.5 solar simulation from a finite-difference time domain demonstrates that this absorber can provide an average absorption rate of 93.26% from wavelengths of 295 to 2500 nm, which can absorb solar radiation efficiently on the earth. Because of the high melting point of Ti material and the symmetrical structure of this device, this perfect absorber has excellent thermal stability, polarization independence, and large incident-angle insensitivity. Hence, it can be used for solar cells, thermal emitters, and infrared detection with further investigation.
APA, Harvard, Vancouver, ISO, and other styles
27

Yang, Wu, Chonglei Zhang, Jiaqi Zeng, and Wei Song. "Ultrasonic signal detection based on Fabry–Perot cavity sensor." Visual Computing for Industry, Biomedicine, and Art 4, no. 1 (April 8, 2021). http://dx.doi.org/10.1186/s42492-021-00074-0.

Full text
Abstract:
AbstractAcoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals. The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine. In this study, the outer diameter of the core cladding was 250 μm, the diameter of the core was 9 μm, and the microcavity sensing unit was only 30 μm. It could measure ultrasonic signals with high precision. The characteristics of the proposed ultrasonic sensor were investigated, and its feasibility was proven through experiments. Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection. The sensor is applicable to the field of biomedical information technology, including medical diagnosis, photoacoustic endoscopy, and photoacoustic imaging.
APA, Harvard, Vancouver, ISO, and other styles
28

Abedini Dereshgi, Sina, Thomas G. Folland, Akshay A. Murthy, Xianglian Song, Ibrahim Tanriover, Vinayak P. Dravid, Joshua D. Caldwell, and Koray Aydin. "Lithography-free IR polarization converters via orthogonal in-plane phonons in α-MoO3 flakes." Nature Communications 11, no. 1 (November 13, 2020). http://dx.doi.org/10.1038/s41467-020-19499-x.

Full text
Abstract:
AbstractExploiting polaritons in natural vdW materials has been successful in achieving extreme light confinement and low-loss optical devices and enabling simplified device integration. Recently, α-MoO3 has been reported as a semiconducting biaxial vdW material capable of sustaining naturally orthogonal in-plane phonon polariton modes in IR. In this study, we investigate the polarization-dependent optical characteristics of cavities formed using α-MoO3 to extend the degrees of freedom in the design of IR photonic components exploiting the in-plane anisotropy of this material. Polarization-dependent absorption over 80% in a multilayer Fabry-Perot structure with α-MoO3 is reported without the need for nanoscale fabrication on the α-MoO3. We observe coupling between the α-MoO3 optical phonons and the Fabry-Perot cavity resonances. Using cross-polarized reflectance spectroscopy we show that the strong birefringence results in 15% of the total power converted into the orthogonal polarization with respect to incident wave. These findings can open new avenues in the quest for polarization filters and low-loss, integrated planar IR photonics and in dictating polarization control.
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Ying, Jinggang Cao, Yangmei Xu, Xinbei Gao, and Jinchao Xie. "Study on Fano resonance sensing characteristics of double-baffle MDM waveguide coupled disk cavity with absorption material." Modern Physics Letters B, November 5, 2020, 2150065. http://dx.doi.org/10.1142/s0217984921500652.

Full text
Abstract:
A metal-dielectric-metal (MDM) waveguide coupled disk cavity structure with bimetallic baffle is proposed, which bases on the transmission characteristics of surface plasmon polaritons (SPPs) in subwavelength structure, and the absorption material InGaAsP is filled in the Fabry–Perot (F-P) cavity and disk cavity. The Fano resonance is an asymmetric spectral line formed by the destructive interference between the wide continuous state generated by the F-P resonator and the narrow discrete state interference generated by the disk cavity. Based on the coupled mode theory, the formation mechanism of the Fano resonance of the structure is qualitatively analyzed. The structure was simulated by finite element method to quantitatively analyze the influence of structural parameters and absorption material InGaAsP on the refractive index sensing characteristics. The proposed sensor yields sensitivity higher than 1360 nm/refractive index unit (RIU) and a figure of merit of [Formula: see text] by optimizing the geometry parameters and filling the absorption material InGaAsP. This structure has potential applications for high integration of nanosensors, slow-light devices, and nano-optical switches.
APA, Harvard, Vancouver, ISO, and other styles
30

Castagna, Maria E., Salvatore Coffa, Mariantonietta Monaco, Anna Muscara', Liliana Caristia, Simona Lorenti, and Alberto Messina. "High Efficiency Light Emission Devices in Silicon." MRS Proceedings 770 (2003). http://dx.doi.org/10.1557/proc-770-i2.1.

Full text
Abstract:
AbstractWe report on the fabrication and performances of the most efficient Si-based light sources. The devices consist of MOS structures with erbium (Er) implanted in the thin gate oxide. The devices exhibit strong 1.54 μm electroluminescence at 300K with a 10% external quantum efficiency, comparable to that of standard light emitting diodes using III-V semiconductors. Emission at different wavelenghts has been achieved incorporating different rare earths (Ce, Tb, Yb, Pr) in the gate dielectric. The external quantum efficiency depends on the rare earth ions incorporated and ranges from 10% (for an Tb doped MOS) to 0.1% (for an Yb doped MOS). RE excitation is caused by hot electrons impact and oxide wearout limits the reliability of the devices. Much more stable light emitting MOS devices have been fabricated using Er-doped SRO (Silicon Rich Oxide) films as gate dielectric. These devices show a high stability, with an external quantum efficiency reduced to 0.2%. In these devices Er pumping occurs part by hot electrons and part by energy transfer from the Si nanostructures to the rare earth ions, depending by Si excess in the film. Si/SiO2 Fabry-Perot microcavities have been fabricated to enhance the external quantum emission along the cavity axis and the spectral purity of emission from the films that are used as active media to realize a Si based RCLED (resonant cavity light emitting diode). These structures are realized by chemical vapour deposition on a silicon substrate. The microcavities are tuned at different wavelengths: 540nm, 980nm and 1540nm (characteristic emission wavelengths respectively for Tb, Yb and Er). The reflectivity of the microcavities is of 97% and the quality factor ranges from 60 (for the cavity tuned at 980nm) to 95 (for the cavities tuned at 540nm and 1540nm).
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Soo-Jung, Pil-Hoon Jung, Wonjoong Kim, Heon Lee, and Sung-Hoon Hong. "Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber." Scientific Reports 9, no. 1 (October 16, 2019). http://dx.doi.org/10.1038/s41598-019-49906-3.

Full text
Abstract:
Abstract The colour printing technology based on interactions between geometric structures and light has various advantages over the pigment-based colour technology in terms of nontoxicity and ultrasmall pixel size. The asymmetric Fabry–Perot (F–P) cavity absorber is the simplest light-interacting structure, which can easily represent and control the colour by the thickness of the dielectric layer. However, for practical applications, an advanced manufacturing technique for the simultaneous generation of multiple reflective colours is required. In this study, we demonstrate F–P cavity absorbers with micropixels by overcoming the difficulties of multi-level pattern fabrication using a nanoimprinting approach. Our asymmetric F–P cavity absorber exhibited a high absorption (approximately 99%) in a wide visible light range upon the incorporation of lossy metallic materials, yielding vivid colours. A high-resolution image of eight different reflective colours was obtained by a one-step process. This demonstrates the potential of this technology for device applications such as high-resolution colour displays and colour patterns used for security functions.
APA, Harvard, Vancouver, ISO, and other styles
32

Sriram, T. S., B. Strauss, S. Pappas, A. Baliga, A. Jean, T. Parodos, D. Dietz, et al. "Performance and Reliability of a MEMS-based tunable optical filter operating in the 1565 nm-1525 nm wavelength range." MRS Proceedings 722 (2002). http://dx.doi.org/10.1557/proc-722-k6.3.

Full text
Abstract:
AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.
APA, Harvard, Vancouver, ISO, and other styles
33

Druy, Mark A., Guang S. He, Martin K. Casstevens, and Ryszard Burzynski. "Demonstration of Dispersive Optical Bistability With a Third Order Nonlinear Optically Active Polymer." MRS Proceedings 328 (1993). http://dx.doi.org/10.1557/proc-328-649.

Full text
Abstract:
ABSTRACTDispersive optical bistability in a Fabry-Perot (F-P) cavity with a third order nonlinear optical polymer was demonstrated. This effort involved the development of several nonlinear optical polyimides and an evaluation of their linear optical and nonlinear optical properties. These Materials were processed into waveguiding films having good homogeniety and optical properties. Several of these films were shown to have desirable third order nonlinearities, while exhibiting good mechanical and environmental stability. Characterization of these materials involved the measurement of their absorption profiles, film thicknesses, optical waveguide propagation constants and nonlinear optical susceptibilities. Based on the measured results, a specific polyimide was chosen and used to demonstrate an all-optical instrinsic bistable device operating at a wavelength of 1.06 μ. Using ∼ 100 ps input pulse widths at 1.06 μ, dispersive optical bistability originating from the induced refractive index change, δn, due to an electronic nonlinearity of the polyimide was observed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography