Journal articles on the topic 'Fabrication of polymeric scaffolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fabrication of polymeric scaffolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Abdelaziz, Ahmed G., Hassan Nageh, Sara M. Abdo, Mohga S. Abdalla, Asmaa A. Amer, Abdalla Abdal-hay, and Ahmed Barhoum. "A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges." Bioengineering 10, no. 2 (February 3, 2023): 204. http://dx.doi.org/10.3390/bioengineering10020204.
Full textKotrotsos, Athanasios, Prokopis Yiallouros, and Vassilis Kostopoulos. "Fabrication and Characterization of Polylactic Acid Electrospun Scaffolds Modified with Multi-Walled Carbon Nanotubes and Hydroxyapatite Nanoparticles." Biomimetics 5, no. 3 (September 2, 2020): 43. http://dx.doi.org/10.3390/biomimetics5030043.
Full textDhandayuthapani, Brahatheeswaran, Yasuhiko Yoshida, Toru Maekawa, and D. Sakthi Kumar. "Polymeric Scaffolds in Tissue Engineering Application: A Review." International Journal of Polymer Science 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/290602.
Full textTan, K. H., C. K. Chua, K. F. Leong, M. W. Naing, and C. M. Cheah. "Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 219, no. 3 (March 1, 2005): 183–94. http://dx.doi.org/10.1243/095441105x9345.
Full textWang, Pei-Jiang, Nicola Ferralis, Claire Conway, Jeffrey C. Grossman, and Elazer R. Edelman. "Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds." Proceedings of the National Academy of Sciences 115, no. 11 (February 26, 2018): 2640–45. http://dx.doi.org/10.1073/pnas.1716420115.
Full textIto, Masashi, and Masami Okamoto. "Structure and properties of 3D resorbable scaffolds based on poly(L-lactide) via salt-leaching combined with phase separation." International Journal of Hydrology 7, no. 2 (May 10, 2023): 73–76. http://dx.doi.org/10.15406/ijh.2023.07.00341.
Full textBikuna-Izagirre, Maria, Javier Aldazabal, and Jacobo Paredes. "Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols." Polymers 14, no. 7 (March 24, 2022): 1311. http://dx.doi.org/10.3390/polym14071311.
Full textScaffaro, Roberto, Francesco Lopresti, Andrea Maio, Fiorenza Sutera, and Luigi Botta. "Development of Polymeric Functionally Graded Scaffolds: A Brief Review." Journal of Applied Biomaterials & Functional Materials 15, no. 2 (December 16, 2016): 107–21. http://dx.doi.org/10.5301/jabfm.5000332.
Full textRatheesh, Greeshma, Jayarama Reddy Venugopal, Amutha Chinappan, Hariharan Ezhilarasu, Asif Sadiq, and Seeram Ramakrishna. "3D Fabrication of Polymeric Scaffolds for Regenerative Therapy." ACS Biomaterials Science & Engineering 3, no. 7 (January 5, 2017): 1175–94. http://dx.doi.org/10.1021/acsbiomaterials.6b00370.
Full textLi, Jia Shen, Yi Li, Lin Li, Arthur F. T. Mak, Frank Ko, and Ling Qin. "Fabrication of Poly(L-Latic Acid) Scaffolds with Wool Keratin for Osteoblast Cultivation." Advanced Materials Research 47-50 (June 2008): 845–48. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.845.
Full textLiu, Tianqi, Bo Yang, Wenqing Tian, Xianglin Zhang, and Bin Wu. "Cryogenic Coaxial Printing for 3D Shell/Core Tissue Engineering Scaffold with Polymeric Shell and Drug-Loaded Core." Polymers 14, no. 9 (April 22, 2022): 1722. http://dx.doi.org/10.3390/polym14091722.
Full textLari, Alireza, Naznin Sultana, and Chin Fhong Soon. "Biocomposites conductive scaffold based on PEDOT:PSS/nHA/chitosan/PCL: Fabrication and characterization." Malaysian Journal of Fundamental and Applied Sciences 15, no. 2 (April 16, 2019): 146–49. http://dx.doi.org/10.11113/mjfas.v15n2.1201.
Full textMinh, Ho Hieu, Nguyen Thi Hiep, Nguyen Dai Hai, and Vo Van Toi. "Fabrication of Polycaprolactone/Polyurethane Loading Conjugated Linoleic Acid and Its Antiplatelet Adhesion." International Journal of Biomaterials 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/5690625.
Full textBazgir, Morteza, Wei Zhang, Ximu Zhang, Jacobo Elies, Morvarid Saeinasab, Phil Coates, Mansour Youseffi, and Farshid Sefat. "Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering." Materials 14, no. 21 (October 22, 2021): 6295. http://dx.doi.org/10.3390/ma14216295.
Full textAguado, María, Laura Saldaña, Eduardo Pérez del Río, Judith Guasch, Marc Parera, Alba Córdoba, Joaquín Seras-Franzoso, et al. "Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering." Polymers 13, no. 20 (October 9, 2021): 3453. http://dx.doi.org/10.3390/polym13203453.
Full textKhan, Ferdous, Masaru Tanaka, and Sheikh Rafi Ahmad. "Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices." Journal of Materials Chemistry B 3, no. 42 (2015): 8224–49. http://dx.doi.org/10.1039/c5tb01370d.
Full textZhang, Junchuan, Hong Zhang, Linbo Wu, and Jiandong Ding. "Fabrication of three dimensional polymeric scaffolds with spherical pores." Journal of Materials Science 41, no. 6 (February 17, 2006): 1725–31. http://dx.doi.org/10.1007/s10853-006-2873-7.
Full textChung, Ren-Jei, Ming-Fa Hsieh, Li-Hsiang Perng, Yih-Lin Cheng, and Tuan-Jung Hsu. "MESHED SCAFFOLDS MADE OF α, α′ -BIS(2-HYDROXYETHYL METHACRYLATE) POLY(ETHYLENE GLYCOL) THROUGH 3D STEREOLITHOGRAPHY." Biomedical Engineering: Applications, Basis and Communications 25, no. 05 (October 2013): 1340002. http://dx.doi.org/10.4015/s1016237213400024.
Full textAslam Khan, Muhammad Umar, Hassan Mehboob, Saiful Izwan Abd Razak, Mohd Yazid Yahya, Abdul Halim Mohd Yusof, Muhammad Hanif Ramlee, T. Joseph Sahaya Anand, Rozita Hassan, Athar Aziz, and Rashid Amin. "Development of Polymeric Nanocomposite (Xyloglucan-co-Methacrylic Acid/Hydroxyapatite/SiO2) Scaffold for Bone Tissue Engineering Applications—In-Vitro Antibacterial, Cytotoxicity and Cell Culture Evaluation." Polymers 12, no. 6 (May 29, 2020): 1238. http://dx.doi.org/10.3390/polym12061238.
Full textWibowo, Arie, Cian Vyas, Glen Cooper, Fitriyatul Qulub, Rochim Suratman, Andi Isra Mahyuddin, Tatacipta Dirgantara, and Paulo Bartolo. "3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering." Materials 13, no. 3 (January 22, 2020): 512. http://dx.doi.org/10.3390/ma13030512.
Full textMorouço, Pedro, Sara Biscaia, Tânia Viana, Margarida Franco, Cândida Malça, Artur Mateus, Carla Moura, Frederico C. Ferreira, Geoffrey Mitchell, and Nuno M. Alves. "Fabrication of Poly(ε-caprolactone) Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles." BioMed Research International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/1596157.
Full textJordan, Alex M., Vidya Viswanath, Si-Eun Kim, Jonathan K. Pokorski, and LaShanda T. J. Korley. "Processing and surface modification of polymer nanofibers for biological scaffolds: a review." Journal of Materials Chemistry B 4, no. 36 (2016): 5958–74. http://dx.doi.org/10.1039/c6tb01303a.
Full textYang, Jiong, Hexin Yue, Wajira Mirihanage, and Paulo Bartolo. "Multi-Stage Thermal Modelling of Extrusion-Based Polymer Additive Manufacturing." Polymers 15, no. 4 (February 8, 2023): 838. http://dx.doi.org/10.3390/polym15040838.
Full textPecorini, Gianni, Simona Braccini, Gianluca Parrini, Federica Chiellini, and Dario Puppi. "Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration." International Journal of Molecular Sciences 23, no. 7 (March 31, 2022): 3895. http://dx.doi.org/10.3390/ijms23073895.
Full textCapes, J. S., H. Y. Ando, and R. E. Cameron. "Fabrication of polymeric scaffolds with a controlled distribution of pores." Journal of Materials Science: Materials in Medicine 16, no. 12 (December 2005): 1069–75. http://dx.doi.org/10.1007/s10856-005-4708-5.
Full textBoffito, Monica, Susanna Sartori, and Gianluca Ciardelli. "Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies." Polymer International 63, no. 1 (September 15, 2013): 2–11. http://dx.doi.org/10.1002/pi.4608.
Full textMohammadzadehmoghadam, Soheila, Catherine F. LeGrand, Chee-Wai Wong, Beverley F. Kinnear, Yu Dong, and Deirdre R. Coombe. "Fabrication and Evaluation of Electrospun Silk Fibroin/Halloysite Nanotube Biomaterials for Soft Tissue Regeneration." Polymers 14, no. 15 (July 25, 2022): 3004. http://dx.doi.org/10.3390/polym14153004.
Full textDemina, Tatiana S., Evgeniy N. Bolbasov, Maria A. Peshkova, Yuri M. Efremov, Polina Y. Bikmulina, Aisylu V. Birdibekova, Tatiana N. Popyrina, et al. "Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering." Polymers 14, no. 23 (December 1, 2022): 5254. http://dx.doi.org/10.3390/polym14235254.
Full textSahi, Ajay Kumar, Neelima Varshney, Suruchi Poddar, Shravanya Gundu, and Sanjeev Kumar Mahto. "Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering." Cells Tissues Organs 210, no. 3 (2021): 173–94. http://dx.doi.org/10.1159/000515946.
Full textKandi, Rudranarayan, Pulak Mohan Pandey, Misba Majood, and Sujata Mohanty. "Fabrication and characterization of customized tubular scaffolds for tracheal tissue engineering by using solvent based 3D printing on predefined template." Rapid Prototyping Journal 27, no. 2 (February 1, 2021): 421–28. http://dx.doi.org/10.1108/rpj-08-2020-0186.
Full textChung, Johnson H. Y., Sepidar Sayyar, and Gordon G. Wallace. "Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting." Polymers 14, no. 2 (January 13, 2022): 319. http://dx.doi.org/10.3390/polym14020319.
Full textDomingos, Marco, Dinuccio Dinucci, Stefania Cometa, Michele Alderighi, Paulo Jorge Bártolo, and Federica Chiellini. "Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications." International Journal of Biomaterials 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/239643.
Full textÁlvarez-Suarez, Alan Saúl, Eduardo Alberto López-Maldonado, Olivia A. Graeve, Fabián Martinez-Pallares, Luis Enrique Gómez-Pineda, Mercedes Teresita Oropeza-Guzmán, Ana Leticia Iglesias, Theodore Ng, Eduardo Serena-Gómez, and Luis Jesús Villarreal-Gómez. "Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering." Journal of Polymer Engineering 37, no. 9 (November 27, 2017): 943–51. http://dx.doi.org/10.1515/polyeng-2016-0423.
Full textRojas-Rojas, Laura, María Laura Espinoza-Álvarez, Silvia Castro-Piedra, Andrea Ulloa-Fernández, Walter Vargas-Segura, and Teodolito Guillén-Girón. "Muscle-like Scaffolds for Biomechanical Stimulation in a Custom-Built Bioreactor." Polymers 14, no. 24 (December 11, 2022): 5427. http://dx.doi.org/10.3390/polym14245427.
Full textContreras-Cáceres, Rafael, Laura Cabeza, Gloria Perazzoli, Amelia Díaz, Juan Manuel López-Romero, Consolación Melguizo, and Jose Prados. "Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy." Nanomaterials 9, no. 4 (April 24, 2019): 656. http://dx.doi.org/10.3390/nano9040656.
Full textKamboj, Nikhil, Antonia Ressler, and Irina Hussainova. "Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review." Materials 14, no. 18 (September 16, 2021): 5338. http://dx.doi.org/10.3390/ma14185338.
Full textHamedani, Yasaman, Samik Chakraborty, Akash Sabarwal, Soumitro Pal, Sankha Bhowmick, and Murugabaskar Balan. "Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells." PLOS ONE 15, no. 12 (December 17, 2020): e0243837. http://dx.doi.org/10.1371/journal.pone.0243837.
Full textXu, Shanglong, Yue Yang, Xibin Wang, and Chaofeng Wang. "Branched Channel Scaffolds Fabricated by SFF for Direct Cell Growth Observations." Journal of Bioactive and Compatible Polymers 24, no. 1_suppl (May 2009): 63–74. http://dx.doi.org/10.1177/0883911509103602.
Full textSalehi, Majid, and Sahar Molzemi. "Fabrication and Mechanical Properties of Chitosan/FHA Scaffolds." Advances in Polymer Technology 2023 (July 4, 2023): 1–6. http://dx.doi.org/10.1155/2023/2758621.
Full textAwasthi, Ankit, Monica Gulati, Bimlesh Kumar, Jaskiran Kaur, Sukriti Vishwas, Rubiya Khursheed, Omji Porwal, et al. "Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds." BioMed Research International 2022 (July 4, 2022): 1–43. http://dx.doi.org/10.1155/2022/1659338.
Full textOstrowska, B., J. Jaroszewicz, E. Zaczynska, W. Tomaszewski, W. Swieszkowski, and K. J. Kurzydlowsk. "Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 3 (September 1, 2014): 551–56. http://dx.doi.org/10.2478/bpasts-2014-0059.
Full textTrifanova, Ekaterina M., Maria A. Khvorostina, Aleksandra O. Mariyanats, Anastasia V. Sochilina, Maria E. Nikolaeva, Evgeny V. Khaydukov, Roman A. Akasov, and Vladimir K. Popov. "Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering." Molecules 27, no. 19 (October 3, 2022): 6547. http://dx.doi.org/10.3390/molecules27196547.
Full textGonzález-Henríquez, Carmen M., Fernando E. Rodríguez-Umanzor, Nicolas F. Acuña-Ruiz, Gloria E. Vera-Rojas, Claudio Terraza-Inostroza, Nicolas A. Cohn-Inostroza, Andrés Utrera, Mauricio A. Sarabia-Vallejos, and Juan Rodríguez-Hernández. "Fabrication and Testing of Multi-Hierarchical Porous Scaffolds Designed for Bone Regeneration via Additive Manufacturing Processes." Polymers 14, no. 19 (September 27, 2022): 4041. http://dx.doi.org/10.3390/polym14194041.
Full textAhmad Hariza, Ahmad Mus’ab, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata, and Yosuke Hiraoka. "The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute." Polymers 15, no. 3 (February 3, 2023): 779. http://dx.doi.org/10.3390/polym15030779.
Full textWang, Z., W. J. Lee, B. T. H. Koh, M. Hong, W. Wang, P. N. Lim, J. Feng, L. S. Park, M. Kim, and E. S. Thian. "Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation." Science Advances 4, no. 10 (October 2018): eaat4537. http://dx.doi.org/10.1126/sciadv.aat4537.
Full textBaskapan, Büsra, and Anthony Callanan. "Electrospinning Fabrication Methods to Incorporate Laminin in Polycaprolactone for Kidney Tissue Engineering." Tissue Engineering and Regenerative Medicine 19, no. 1 (October 29, 2021): 73–82. http://dx.doi.org/10.1007/s13770-021-00398-1.
Full textSalerno, Aurelio, Giuseppe Cesarelli, Parisa Pedram, and Paolo Antonio Netti. "Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs." Journal of Clinical Medicine 8, no. 11 (November 1, 2019): 1816. http://dx.doi.org/10.3390/jcm8111816.
Full textArifin, Nurulhuda, Izman Sudin, Nor Hasrul Akhmal Ngadiman, and Mohamad Shaiful Ashrul Ishak. "A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds." Polymers 14, no. 10 (May 23, 2022): 2119. http://dx.doi.org/10.3390/polym14102119.
Full textÖzcan, Mutlu, Dachamir Hotza, Márcio Celso Fredel, Ariadne Cruz, and Claudia Angela Maziero Volpato. "Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry." Journal of Composites Science 5, no. 3 (March 11, 2021): 78. http://dx.doi.org/10.3390/jcs5030078.
Full textGhosh, Sougata, and Thomas Jay Webster. "Metallic Nanoscaffolds as Osteogenic Promoters: Advances, Challenges and Scope." Metals 11, no. 9 (August 29, 2021): 1356. http://dx.doi.org/10.3390/met11091356.
Full text