Journal articles on the topic 'Fabrication additive hybride'

To see the other types of publications on this topic, follow the link: Fabrication additive hybride.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fabrication additive hybride.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Berger, Uwe. "1808 A Survey on Hybrid Fabrication Processes by Integration of Additive and Subtractive Manufacturing." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _1808–1_—_1808–6_. http://dx.doi.org/10.1299/jsmelem.2015.8._1808-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gutierrez, Cassie, Rudy Salas, Gustavo Hernandez, Dan Muse, Richard Olivas, Eric MacDonald, Michael D. Irwin, et al. "CubeSat Fabrication through Additive Manufacturing and Micro-Dispensing." International Symposium on Microelectronics 2011, no. 1 (January 1, 2011): 001021–27. http://dx.doi.org/10.4071/isom-2011-tha4-paper3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fabricating entire systems with both electrical and mechanical content through on-demand 3D printing is the future for high value manufacturing. In this new paradigm, conformal and complex shapes with a diversity of materials in spatial gradients can be built layer-by-layer using hybrid Additive Manufacturing (AM). A design can be conceived in Computer Aided Design (CAD) and printed on-demand. This new integrated approach enables the fabrication of sophisticated electronics in mechanical structures by avoiding the restrictions of traditional fabrication techniques, which result in stiff, two dimensional printed circuit boards (PCB) fabricated using many disparate and wasteful processes. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing and robotic pick-and-place for component placement can 1) provide the capability to print-on-demand fabrication, 2) enable the use of micron-resolution cavities for press fitting electronic components and 3) integrate conductive traces for electrical interconnect between components. The fabrication freedom introduced by AM techniques such as stereolithography (SL), ultrasonic consolidation (UC), and fused deposition modeling (FDM) have only recently been explored in the context of electronics integration and 3D packaging. This paper describes a process that provides a novel approach for the fabrication of stiff conformal structures with integrated electronics and describes a prototype demonstration: a volumetrically-efficient sensor and microcontroller subsystem scheduled to launch in a CubeSat designed with the CubeFlow methodology.
3

Kumar, Sanjay, Pulak Bhushan, Mohit Pandey, and Shantanu Bhattacharya. "Additive manufacturing as an emerging technology for fabrication of microelectromechanical systems (MEMS)." Journal of Micromanufacturing 2, no. 2 (June 17, 2019): 175–97. http://dx.doi.org/10.1177/2516598419843688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The recent success of additive manufacturing processes (also called, 3D printing) in the manufacturing sector has led to a shift in the focus from simple prototyping to real production-grade technology. The enhanced capabilities of 3D printing processes to build intricate geometric shapes with high precision and resolution have led to their increased use in fabrication of microelectromechanical systems (MEMS). The 3D printing technology has offered tremendous flexibility to users for fabricating custom-built components. Over the past few decades, different types of 3D printing technologies have been developed. This article provides a comprehensive review of the recent developments and significant achievements in most widely used 3D printing technologies for MEMS fabrication, their working methodology, advantages, limitations, and potential applications. Furthermore, some of the emerging hybrid 3D printing technologies are discussed, and the current challenges associated with the 3D printing processes are addressed. Finally, future directions for process improvements in 3D printing techniques are presented.
4

Li, Yan, Dichen Li, Bingheng Lu, Dajing Gao, and Jack Zhou. "Current status of additive manufacturing for tissue engineering scaffold." Rapid Prototyping Journal 21, no. 6 (October 19, 2015): 747–62. http://dx.doi.org/10.1108/rpj-03-2014-0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Purpose – The purpose of this paper is to review the current status of additive manufacturing (AM) used for tissue engineering (TE) scaffold. AM processes are identified as an effective method for fabricating geometrically complex objects directly from computer models or three-dimensional digital representations. The use of AM technologies in the field of TE has grown rapidly in the past 10 years. Design/methodology/approach – The processes, materials, precision, applications of different AM technologies and their modified versions used for TE scaffold are presented. Additionally, future directions of AM used for TE scaffold are also discussed. Findings – There are two principal routes for the fabrication of scaffolds by AM: direct and indirect routes. According to the working principle, the AM technologies used for TE scaffold can be generally classified into: laser-based; nozzle-based; and hybrid. Although a number of materials and fabrication techniques have been developed, each AM technique is a process based on the unique property of the raw materials applied. The fabrication of TE scaffolds faces a variety of challenges, such as expanding the range of materials, improving precision and adapting to complex scaffold structures. Originality/value – This review presents the latest research regarding AM used for TE scaffold. The information available in this paper helps researchers, scholars and graduate students to get a quick overview on the recent research of AM used for TE scaffold and identify new research directions for AM in TE.
5

He, Liu, Peiren Wang, Lizhe Wang, Min Chen, Haiyun Liu, and Ji Li. "Multifunctional Polymer-Metal Lattice Composites via Hybrid Additive Manufacturing Technology." Micromachines 14, no. 12 (November 30, 2023): 2191. http://dx.doi.org/10.3390/mi14122191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With increasing interest in the rapid development of lattice structures, hybrid additive manufacturing (HAM) technology has become a competent alternative to traditional solutions such as water jet cutting and investment casting. Herein, a HAM technology that combines vat photopolymerization (VPP) and electroless/electroplating processes is developed for the fabrication of multifunctional polymer-metal lattice composites. A VPP 3D printing process is used to deliver complex lattice frameworks, and afterward, electroless plating is employed to deposit a thin layer of nickel-phosphorus (Ni-P) conductive seed layer. With the subsequent electroplating process, the thickness of the copper layer can reach 40 μm within 1 h and the resistivity is around 1.9×10−8 Ω⋅m, which is quite close to pure copper (1.7 ×10−8 Ω⋅m). The thick metal shell can largely enhance the mechanical performance of lattice structures, including structural strength, ductility, and stiffness, and meanwhile provide current supply capability for electrical applications. With this technology, the frame arms of unmanned aerial vehicles (UAV) are developed to demonstrate the application potential of this HAM technology for fabricating multifunctional polymer-metal lattice composites.
6

Ley, Jazmin, Cristian Pantea, John Greenhall, and Joseph A. Turner. "Resonant ultrasound spectroscopy of hybrid metal additive manufacturing." Journal of the Acoustical Society of America 154, no. 4_supplement (October 1, 2023): A150. http://dx.doi.org/10.1121/10.0023085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive manufacturing has been targeted as the next high-impact fabrication technique for parts and components. Hybrid metal additive manufacturing (AM) refers to the 3-D printed fabrication process involving secondary manufacturing processes or energy sources and multifunctional printing. Specific layers are altered within the build using additional processes (i.e., milling or peening) that are synergistic with the additive process. This combination alters the sample microstructure and can refine grains, increase dislocation density, or induce residual stresses. The effect of these hybrid layers is typically not confined within the layer alone but has a compounding effect on preceding layers. The goal is to control the changes in print parameters throughout the build to enhance component performance, but unique challenges remain for nondestructive validation of such samples. Traditional ultrasonic methods on hybrid-AM components have successfully mapped material variations with sufficient spatial resolution. However, the use of resonance ultrasound spectroscopy (RUS) for hybrid-AM is less developed. In this presentation, the use of RUS is described relative to the characterization of hybrid AM 316L stainless steel samples. The spatial organization of the hybrid samples affects the resonances relative to their mode shape. Computational models are used to quantify the impact of the hybrid processes.
7

Zhong, Fanchao, Haisen Zhao, Haochen Li, Xin Yan, Jikai Liu, Baoquan Chen, and Lin Lu. "VASCO: Volume and Surface Co-Decomposition for Hybrid Manufacturing." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–17. http://dx.doi.org/10.1145/3618324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive and subtractive hybrid manufacturing (ASHM) involves the alternating use of additive and subtractive manufacturing techniques, which provides unique advantages for fabricating complex geometries with otherwise inaccessible surfaces. However, a significant challenge lies in ensuring tool accessibility during both fabrication procedures, as the object shape may change dramatically, and different parts of the shape are interdependent. In this study, we propose a computational framework to optimize the planning of additive and subtractive sequences while ensuring tool accessibility. Our goal is to minimize the switching between additive and subtractive processes to achieve efficient fabrication while maintaining product quality. We approach the problem by formulating it as a Volume-And-Surface-CO-decomposition (VASCO) problem. First, we slice volumes into slabs and build a dynamic-directed graph to encode manufacturing constraints, with each node representing a slab and direction reflecting operation order. We introduce a novel geometry property called hybrid-fabricability for a pair of additive and subtractive procedures. Then, we propose a beam-guided top-down block decomposition algorithm to solve the VASCO problem. We apply our solution to a 5-axis hybrid manufacturing platform and evaluate various 3D shapes. Finally, we assess the performance of our approach through both physical and simulated manufacturing evaluations.
8

Berktas, Ilayda, Ali Nejad Ghafar, Patrick Fontana, Ayten Caputcu, Yusuf Menceloglu, and Burcu Saner Okan. "Facile Synthesis of Graphene from Waste Tire/Silica Hybrid Additives and Optimization Study for the Fabrication of Thermally Enhanced Cement Grouts." Molecules 25, no. 4 (February 17, 2020): 886. http://dx.doi.org/10.3390/molecules25040886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work evaluates the effects of newly designed graphene/silica hybrid additives on the properties of cementitious grout. In the hybrid structure, graphene nanoplatelet (GNP) obtained from waste tire was used to improve the thermal conductivity and reduce the cost and environmental impacts by using recyclable sources. Additionally, functionalized silica nanoparticles were utilized to enhance the dispersion and solubility of carbon material and thus the hydrolyzable groups of silane coupling agent were attached to the silica surface. Then, the hybridization of GNP and functionalized silica was conducted to make proper bridges and develop hybrid structures by tailoring carbon/silica ratios. Afterwards, special grout formulations were studied by incorporating these hybrid additives at different loadings. As the amount of hybrid additive incorporated into grout suspension increased from 3 to 5 wt%, water uptake increased from 660 to 725 g resulting in the reduction of thermal conductivity by 20.6%. On the other hand, as the concentration of GNP in hybrid structure increased, water demand was reduced, and thus the enhancement in thermal conductivity was improved by approximately 29% at the same loading ratios of hybrids in the prepared grout mixes. Therefore, these developed hybrid additives showed noticeable potential as a thermal enhancement material in cement-based grouts.
9

Hinton, Jack, Dejan Basu, Maria Mirgkizoudi, David Flynn, Russell Harris, and Robert Kay. "Hybrid additive manufacturing of precision engineered ceramic components." Rapid Prototyping Journal 25, no. 6 (July 8, 2019): 1061–68. http://dx.doi.org/10.1108/rpj-01-2019-0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Purpose The purpose of this paper is to develop a hybrid additive/subtractive manufacturing platform for the production of high density ceramic components. Design/methodology/approach Fabrication of near-net shape components is achieved using 96 per cent Al3O2 ceramic paste extrusion and a planarizing machining operations. Sacrificial polymer support can be used to aid the creation of overhanging or internal features. Post-processing using a variety of machining operations improves tolerances and fidelity between the component and CAD model while reducing defects. Findings This resultant three-dimensional monolithic ceramic components demonstrated post sintering tolerances of ±100 µm, surface roughness’s of ∼1 µm Ra, densities in excess of 99.7 per cent and three-point bending strength of 221 MPa. Originality/value This method represents a novel approach for the digital fabrication of ceramic components, which provides improved manufacturing tolerances, part quality and capability over existing additive manufacturing approaches.
10

Krokoszinski, H. ‐J, H. Oetzmann, H. Gernoth, and C. Schmidt. "Additive thin film technology for hybrid circuit fabrication." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 3, no. 6 (November 1985): 2704–7. http://dx.doi.org/10.1116/1.572821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Freeman, Amihay, Yael Dror, Carmit Ophir Porat, Noa Hadar, and Yossi Shacham Diamand. "Silver-Coated Biologically Active Protein Hybrids: Antimicrobial Applications." Applied Mechanics and Materials 749 (April 2015): 453–56. http://dx.doi.org/10.4028/www.scientific.net/amm.749.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Novel hybrids, comprised of a biologically active protein molecule core, coated with a thin outer layer of porous metallic silver, were developed in our lab. By the conjugation of silver reducing polymer to the surface of soluble, molecular, biologically active protein molecules and subsequent addition of silver salt, electroless silver deposition, culminating in thin porous metallic coating, was directed to the surface of the protein molecules. The silver-protein hybrids thus obtained, presenting novel nanoparticles several nanometers in size, retained their solubility and biological activity.The silver coating combined with the retained biological activity of its protein core, paved the way to a series of biomedical applications of these hybrids including "wiring" of the active site of oxido-reductase enzyme to electrodes, imaging of the presence of targeted ligands displayed on cancer cell surface and antimicrobial enzymatically attenuated release of silver ions.In this presentation we shall overview the technology of protein-silver hybrid's fabrication and analytical applications of silver-glucose oxidase and silver-Avidin hybrids, followed by feasibility demonstration of using silver-glucose oxidase hybrid as novel antibacterial and antifungal agent.
12

Zafar, Muhammad Qasim, Jinnan Wang, Zhenlin Zhang, Chaochao Wu, Haiyan Zhao, Ghulam Hussain, and Ninshu Ma. "Thermomechanical Process Simulation and Experimental Verification for Laser Additive Manufacturing of Inconel®718." Materials 16, no. 7 (March 24, 2023): 2595. http://dx.doi.org/10.3390/ma16072595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Laser cladding has emerged as a promising technique for custom-built fabrications, remanufacturing, and repair of metallic components. However, frequent melting and solidification in the process cause inevitable residual stresses that often lead to geometric discrepancies and deterioration of the end product. The accurate physical interpretation of the powder consolidation process remains challenging. Thermomechanical process simulation has the potential to comprehend the layer-by-layer additive process and subsequent part-scale implications. Nevertheless, computational accuracy and efficacy have been serious concerns so far; therefore, a hybrid FEM scheme is adopted for efficient prediction of the temperature field, residual stress, and distortion in multilayer powder-fed laser cladding of Inconel®718. A transient material deposition with powder material modeling is schematized to replicate the fabrication process. Moreover, simulation results for residual stress and distortion are verified with in-house experiments, where residual stress is measured with XRD (X-Ray Diffraction) and geometric distortion is evaluated with CMM (Coordinate Measuring Machine). A maximum tensile residual stress of 373 ± 5 MPa is found in the vicinity of the layer right in the middle of the substrate and predicted results are precisely validated with experiments. Similarly, a 0.68 ± 0.01 mm distortion is observed with numerical simulation and showed a precise agreement with experimental data for the same geometry and processing conditions. Conclusively, the implemented hybrid FEM approach demonstrated a robust and accurate prediction of transient temperature field, residual stresses, and geometric distortion in the multilayer laser cladding of Inconel®718.
13

Wu, Wenzheng, Haiming Wang, Jiaqi Wang, Qingping Liu, Zheng Zhang, Ke Li, Yuhan Gong, Ji Zhao, Luquan Ren, and Guiwei Li. "Hybrid Additive Manufacturing of Fused Filament Fabrication and Ultrasonic Consolidation." Polymers 14, no. 12 (June 12, 2022): 2385. http://dx.doi.org/10.3390/polym14122385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fused filament fabrication (FFF) additive manufacturing technology has the advantages of being low cost, having a simple operation, using wide types of molding materials, and producing less pollution during the printing process. However, the mechanical properties of the molded sample are unsatisfactory due to the limited bonding force between the filaments during the forming process, which limits its further development and application in the engineering field. Herein, the hybrid additive manufacturing technology for heterogeneous materials based on the ultrasonic-assisted enhanced fused filament fabrication technology was proposed. The mechanism of ultrasonic vibration on the strengthening of FFF samples was explored. The influence mechanisms of bonding time and ultrasonic strengthening times, ultrasonic strengthening and static load compression on the strengthening of mechanical properties of the sample were investigated. The effects of the thickness and printing angle of the FFF samples on the ultrasonic-enhanced mechanical properties were explored. The tensile strength of the one-time ultrasonic-strengthened sample is up to 43.43 MPa, which is 16.12% higher than that of the original. The maximum bending strength of the four-time ultrasonic-strengthened sample is 73.38 MPa, which is 78.98% higher than that of the original. Ultrasonic strengthening not only re-fused the pores inside the sample, but also improved the bond strength between the rasters. With the increase in the thickness of the sample, the increase rate of ultrasonic to the strength of the sample decreased significantly. The effects of ultrasound on the interlayer adhesion of samples with various printing angles were different. Based on the systematic research on the influence mechanism of ultrasonic process parameters and molding process parameters on the strengthening of FFF, a molding method for additively manufacturing heterogeneous material parts while strengthening the mechanical properties of FFF samples was proposed, and the influence mechanisms of the molding process on the mechanical properties and shape memory properties of the sample were explored, which can broaden the application of FFF technology in the engineering field.
14

Pragana, João P. M., Stephan Rosenthal, Ivo M. F. Bragança, Carlos M. A. Silva, A. Erman Tekkaya, and Paulo A. F. Martins. "Hybrid Additive Manufacturing of Collector Coins." Journal of Manufacturing and Materials Processing 4, no. 4 (December 9, 2020): 115. http://dx.doi.org/10.3390/jmmp4040115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objective of this paper is to present a new hybrid additive manufacturing route for fabricating collector coins with complex, intricate contoured holes. The new manufacturing route combines metal deposition by additive manufacturing with metal cutting and forming, and its application is illustrated with an example consisting of a prototype coin made from stainless steel AISI 316L. Experimentation and finite element analysis of the coin minting operation with the in-house computer program i-form show that the blanks produced by additive manufacturing and metal cutting can withstand the high compressive pressures that are attained during the embossing and impressing of lettering and other reliefs on the coin surfaces. The presentation allows concluding that hybrid additive manufacturing opens the way to the production of innovative collector coins with geometric features that are radically different from those that are currently available in the market.
15

Baskar, Arun V., Jefrin M. Davidraj, Ajanya M. Ruban, Stalin Joseph, Gurwinder Singh, Ala'a H. Al-Muhtaseb, Jang Mee Lee, Jiabao Yi, and A. Vinu. "Fabrication of Mesoporous C60/Carbon Hybrids with 3D Porous Structure for Energy Storage Applications." Journal of Nanoscience and Nanotechnology 21, no. 3 (March 1, 2021): 1483–92. http://dx.doi.org/10.1166/jnn.2021.19141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report on the synthesis of 3D mesoporous fullerene/carbon hybrid materials with ordered porous structure and high surface area by mixing the solution of fullerene and sucrose molecules in the nanochannels of 3D mesoporous silica, KIT-6 via nanotemplating approach. The addition of sucrose molecules in the synthesis offers a thin layer of carbon between the fullerene molecules which enhances not only the specific surface area and the specific pore volume but also the conductivity of the hybrid materials. The prepared hybrids exhibit 3D mesoporous structure and show a much higher specific surface area than that of the pure mesoporous fullerene. The hybrids materials are used as the electrodes for supercapacitor and Li-ion battery applications. The optimised hybrid sample shows an excellent rate capability and a high specific capacitance of 254 F/g at the current density of 0.5 A/g, which is much higher than that of the pure mesoporous fullerene, mesoporous carbon, activated carbon and multiwalled carbon nanotubes. When used as the electrode for Li-ion battery, the sample delivers the largest specific capacity of 1067 mAh/g upon 50 cycles at the current density of 0.1 A/g with stability. These results reveal that the addition of carbon in the mesoporous fullerene with 3D structure makes a significant impact on the electrochemical properties of the hybrid samples, demonstrating their potential for applications in Li-ion battery and supercapacitor devices.
16

Jeong, Jooyoung, Jia Lee, Jinuk Kim, Jinyoung Chun, DongGyu Kang, Seung Min Han, Changshin Jo, and Jinwoo Lee. "A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte." Journal of Materials Chemistry A 9, no. 12 (2021): 7774–81. http://dx.doi.org/10.1039/d0ta12153c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
For practical use of Li metal anode, developing the stabilization method with simple fabrication steps is necessary. Here, biopolymer-based hybrid film with simple preparation steps extended the cycle life (>1000 h) under additive-free condition.
17

Hong, Quan, Lan Jiang, Sumei Wang, Ji Huang, Jiaxin Sun, Xin Li, Pei Zuo, Jiangang Yin, and Jiangang Lu. "One-Step In Situ Patternable Reduction of a Ag–rGO Hybrid Using Temporally Shaped Femtosecond Pulses." Materials 15, no. 2 (January 12, 2022): 563. http://dx.doi.org/10.3390/ma15020563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In recent years, metallic nanoparticle (NP)–two-dimensional material hybrids have been widely used for photocatalysis and photoreduction. Here, we introduce a femtosecond laser reduction approach that relies on the repetitive ablation of recast layers by usi–ng temporally shaped pulses to achieve the fast fabrication of metallic NP–two-dimensional material hybrids. We selectively deposited silver-reduced graphene oxide (Ag–rGO) hybrids on different substrates under various fabrication conditions. The deposition of the hybrids was attributed to the redistribution of the cooling ejected plume after multiple radiation pulses and the exchange of carriers with ejected plume ions containing activated species such as small carbon clusters and H2O. The proposed one-step in situ fabrication method is a competitive fabrication process that eliminates the additive separation process and exhibits morphological controllability. The Ag–rGO hybrids demonstrate considerable potential for chemomolecular and biomolecular detection because the surface-enhanced Raman scattering signal of the enhancement factor reached 4.04 × 108.
18

Phung, Thanh Huy, Anton Nailevich Gafurov, Inyoung Kim, Sung Yong Kim, Kyoung Min Kim, and Taik-Min Lee. "Hybrid Device Fabrication Using Roll-to-Roll Printing for Personal Environmental Monitoring." Polymers 15, no. 12 (June 15, 2023): 2687. http://dx.doi.org/10.3390/polym15122687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Roll-to-roll (R2R) printing methods are well known as additive, cost-effective, and ecologically friendly mass-production methods for processing functional materials and fabricating devices. However, implementing R2R printing to fabricate sophisticated devices is challenging because of the efficiency of material processing, the alignment, and the vulnerability of the polymeric substrate during printing. Therefore, this study proposes the fabrication process of a hybrid device to solve the problems. The device was created so that four layers, composed of polymer insulating layers and conductive circuit layers, are entirely screen-printed layer by layer onto a roll of polyethylene terephthalate (PET) film to produce the circuit. Registration control methods were presented to deal with the PET substrate during printing, and then solid-state components and sensors were assembled and soldered to the printed circuits of the completed devices. In this way, the quality of the devices could be ensured, and the devices could be massively used for specific purposes. Specifically, a hybrid device for personal environmental monitoring was fabricated in this study. The importance of environmental challenges to human welfare and sustainable development is growing. As a result, environmental monitoring is essential to protect public health and serve as a basis for policymaking. In addition to the fabrication of the monitoring devices, a whole monitoring system was also developed to collect and process the data. Here, the monitored data from the fabricated device were personally collected via a mobile phone and uploaded to a cloud server for additional processing. The information could then be utilized for local or global monitoring purposes, moving one step toward creating tools for big data analysis and forecasting. The successful deployment of this system could be a foundation for creating and developing systems for other prospective uses.
19

Kovacev, Nikolina, Sheng Li, Weining Li, Soheil Zeraati-Rezaei, Athanasios Tsolakis, and Khamis Essa. "Additive Manufacturing of Novel Hybrid Monolithic Ceramic Substrates." Aerospace 9, no. 5 (May 7, 2022): 255. http://dx.doi.org/10.3390/aerospace9050255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive manufacturing (AM) can revolutionise engineering by taking advantage of unconstrained design and overcoming the limitations of traditional manufacturing capabilities. A promising application of AM is in catalyst substrate manufacturing, aimed at the enhancement of the catalytic efficiency and reduction in the volume and weight of the catalytic reactors in the exhaust gas aftertreatment systems. This work addresses the design and fabrication of innovative, hybrid monolithic ceramic substrates using AM technology based on Digital Light Processing (DLP). The designs are based on two individual substrates integrated into a single, dual-substrate monolith by various interlocking systems. These novel dual-substrate monoliths lay the foundation for the potential reduction in the complexity and expense of the aftertreatment system. Several examples of interlocking systems for dual substrates were designed, manufactured and thermally post-processed to illustrate the viability and versatility of the DLP manufacturing process. Based on the findings, the sintered parts displayed anisotropic sintering shrinkage of approximately 14% in the X–Y direction and 19% in the Z direction, with a sintered density of 97.88 ± 0.01%. Finally, mechanical tests revealed the mechanical integrity of the designed interlocks. U-lock and Thread configurations were found to sustain more load until complete failure.
20

Classen, Martin, Jan Ungermann, and Rahul Sharma. "Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement." Applied Sciences 10, no. 11 (May 29, 2020): 3791. http://dx.doi.org/10.3390/app10113791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Reinforced concrete (RC) is by far the most widely used composite material in the world. Despite the enormous economic importance of RC construction, there is a lack of viable concepts for its digital fabrication. While 3D printing of plain concrete has been pushed forward by a growing research community in recent years, methods for integration of steel reinforcement have only scarcely been researched and little attention has been payed to meet the practical requirements of construction sites and prefabrication plants. Therefore, full-scale implementations of current approaches are hardly available. Based on both, a sound review of R&D for digital fabrication of RC structures and an analysis of practical requirements, the present paper proposes a novel 3D printing process for RC structures, called Additive Manufacturing of Reinforced Concrete (AMoRC), viable for real-world application. In this hybrid process, consisting of an intermittent stud welding process and a continuous concrete extrusion process, segmented steel reinforcing bars are joined to form a three-dimensional reinforcement mesh and simultaneously encased with extruded concrete. The paper describes the conceptual design and development of the process and demonstrates the results of preliminary investigations on its feasibility. As AMoRC enables the operation of rebar welding and concrete extrusion process with synchronized feed rates, combination of both processes in one hybrid print head for digital fabrication of RC is a key-advantage of the proposed method.
21

Saunders, Jacob, Mohammad Elbestawi, and Qiyin Fang. "Ultrafast Laser Additive Manufacturing: A Review." Journal of Manufacturing and Materials Processing 7, no. 3 (May 5, 2023): 89. http://dx.doi.org/10.3390/jmmp7030089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ultrafast lasers are proven and continually evolving manufacturing tools. Concurrently, additive manufacturing (AM) has emerged as a key area of interest for 3D fabrication of objects with arbitrary geometries. Use of ultrafast lasers for AM presents possibilities for next generation manufacturing techniques for hard-to-process materials, transparent materials, and micro- and nano-manufacturing. Of particular interest are selective laser melting/sintering (SLM/SLS), multiphoton lithography (MPL), laser-induced forward transfer (LIFT), pulsed laser deposition (PLD), and welding. The development, applications, and recent advancements of these technologies are described in this review as an overview and delineation of the burgeoning ultrafast laser AM field. As they mature, their adoption by industry and incorporation into commercial systems will be facilitated by process advancements such as: process monitoring and control, increased throughput, and their integration into hybrid manufacturing systems. Recent progress regarding these aspects is also reviewed.
22

De Marzi, Anna, Giulio Giometti, Johannes Erler, Paolo Colombo, and Giorgia Franchin. "Hybrid additive manufacturing for the fabrication of freeform transparent silica glass components." Additive Manufacturing 54 (June 2022): 102727. http://dx.doi.org/10.1016/j.addma.2022.102727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Min, Chunying, Zengbao He, Haojie Song, Dengdeng Liu, Wei Jia, Jiamin Qian, Yuhui Jin, and Li Guo. "Fabrication of Novel CeO2/GO/CNTs Ternary Nanocomposites with Enhanced Tribological Performance." Applied Sciences 9, no. 1 (January 4, 2019): 170. http://dx.doi.org/10.3390/app9010170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Increasing demands of multi-functional lubricant materials with well distributed nanoparticles has been generated in the field of oil lubrication. In this study, one-dimensional (1-D) acidified multi-walled carbon nanotubes (CNTs) and two-dimensional (2-D) graphene oxide (GO) sheets were dispersed together under an ultra-sonication condition to form CNTs/GO hybrids and the corresponding CNTs/GO hybrids decorated with uniform zero-dimensional (0-D) cerium oxide (CeO2) nanoparticles were prepared via a facile hydrothermal method. The tribological performance of CeO2/CNTs/GO ternary nanocomposite was systematically investigated using a MS-T3000 ball-on-disk tester. The results demonstrated that CeO2/GO/CNTs nanocomposites can effectively reduce the friction of sliding pairs in paraffin oil. Moreover, the oil with 1 wt% of CeO2/GO/CNTs exhibited the best lubrication properties with the lowest friction coefficient and wear scar diameters (WSD) compared with adding only GO nanosheet, CeO2, and CeO2/CNTs hybrid nanocomposite as lubricant additives. It is concluded that due to the synergistic effect of 0D CeO2, 1D CNTs, and 2D GO during sliding process, a dimensionally mixed CeO2/GO/CNTs nanocomposite exhibits excellent lubricating properties, providing innovative and effective additives for application in the field of lubrication.
24

Ingle, Dr A. H., Dilip Patle, Shashank Dhawade, Shahrukh Khan, Habib Quraishi, and Swapnil Ingole. "Fabrication of Hybrid Engine Vehicle." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 2187–90. http://dx.doi.org/10.22214/ijraset.2023.51596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract: A hybrid vehicle uses two or more distinct types of power, such as internal combustion engine + electric motor, e.g. in diesel-electric trains using diesel engines and electricity from overhead lines, and submarines that use diesels when surfaced and batteries when submerged. Other means to store energy include pressurized fluid, in hydraulic hybrids. A water-fuelled car is an automobile that hypothetically derives its energy directly from water. Water-fuelled cars have been the subject of numerous international patents, newspaper and popular science magazine articles, local television news coverage, and websites. The claims for these devices have been found to be pseudoscience and some were found to be tied to investment frauds.[1] These vehicles may be claimed to produce fuel from water on board with no other energy input, or may be a hybrid claiming to derive some of its energy from water in addition to a conventional source (such as gasoline). Water is fully oxidized hydrogen. Hydrogen itself is a high-energy, flammable substance, but its useful energy is released when water is formed. Water will not burn. The process of electrolysis can split water into hydrogen and oxygen, but it takes as much energy to take apart a water molecule as was released when the hydrogen was oxidized to form water. In fact, some energy would be lost in converting water to hydrogen and then burning the hydrogen because some waste heat would always be produced in the conversions. Releasing chemical energy from water, in excess or in equal proportion to the energy required to facilitate such production, would therefore violate the first or second law of thermodynamics.
25

Pittiglio, Alexandra, Ailey Simpson, Vanessa Costalonga Martins, and Hanaa Dahy. "Fibrx Rocking Chair: Design and Application of Tailored Timber as an Embedded Frame for Natural Fibre-Reinforced Polymer (NFRP) Coreless Winding." Polymers 15, no. 3 (January 18, 2023): 495. http://dx.doi.org/10.3390/polym15030495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The building industry needs to innovate towards a more sustainable future and can do so through a combination of more renewable material choices and less wasteful fabrication processes. To address these issues, a hybrid material and fabrication system was developed using laminated timber veneer and natural fibre-reinforced composites (NFRPs), two materials that are leveraged for their potential of strategic material placement in additive processes towards programmed material behaviour and performance. The main contribution is in the hybrid fabrication approach, using thin, bent laminated veneer as an embedded frame for coreless filament winding of NFRP, which removes the need for temporary, wasteful formwork that is typically required to achieve structurally performative bent timber or FRP elements. Integrative methods are developed for the design, simulation, and fabrication of a rocking chair prototype that illustrates the architectural potential of the developed fabrication approach.
26

Amend, Philipp, Oliver Hentschel, Chritian Scheitler, Andrey Igorevich Gorunov, and Michael Schmidt. "Effect of Additive Manufactured Metallic Structures on Laser-Based Thermal Joining of Thermoplastic Metal Hybrids." Key Engineering Materials 651-653 (July 2015): 777–82. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In future, the use of tailored multi material parts consisting of thermoplastics and metals will increase especially in the field of automotive applications based on the pursuit of lightweight design. This provides completely new demands on automated manufacturing because dissimilar materials have to be joined reliably. A promising approach is the thermal joining by laser radiation which enables a non-contact, automated and reproducible production of thermoplastic metal hybrids. Thereby, laser radiation heats the metal and through heat conduction the thermoplastic melts and wets the metal surface. The surface topography of the metallic joining partner plays an important role for the strength of the hybrid joint. In this paper, a novel approach for the fast and flexible fabrication of part-adapted surface structures by means of laser cladding with powder injection is investigated. The aim of the performed experiments is to find out how the geometry and arrangement of additive manufactured line-like metallic structures affect the strength of the dissimilar joint. Therefore, the height and width of the structures are varied. The structure geometries are investigated by microscopy of cross-sections and laser-scanning microscope measurements. As substrate and powder material stainless steel is used. Finally, the metallic samples are joined with polyamide 12 by means of laser radiation and mechanically analyzed by tensile shear tests.
27

Saptaji, Kushendarsyah, Dindamilenia Choirunnisa Hardiyasanti, Muchammad Fachrizal Ali, Raffy Frandito, and Tiara Kusuma Dewi. "Potential Applications of Hydroxyapatite-Mineralized-Collagen Composites as Bone Structure Regeneration: a Review." JOURNAL OF SCIENCE AND APPLIED ENGINEERING 5, no. 1 (March 16, 2022): 33. http://dx.doi.org/10.31328/jsae.v5i1.3577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The composites materials are known for their flexibility due to the combinations of two or three different materials and manipulation of their compositions. The advantage offered by composite materials make it suitable for biomedical applications especially to be used for implants. There are three types of composites biocompatible materials namely Metal Matrix Composite (MMC), Ceramic Matrix Composite (CMC) and Polymer Matrix Composite (PMC). In order to produce the biocompatible composite materials, various manufacturing processes can be performed. The manufacturing processes of MMCs are stir casting and powder metallurgy; the typical manufacturing process for CMCs is powder metallurgy; and 3-D printing by synthesizing and cross-linking the networks is used for fabricating PMCs. One of the promising biocompatible composites is Hydroxyapatite Mineralized Collagen (HMC). The HMC is used to create bone scaffold in bone regeneration process. The suggested manufacturing process for HMC is hybrid process which collaborate Additive Manufacturing and CNC Machining. In this paper, the HMC is reviewed especially related with its properties, fabrication method, and existed experimentation. In addition, the three types of biocompatible composites are also discussed on the applications and its manufacturing processes.
28

Holzer, K., L. Maier, V. Böhm, and W. Volk. "Dimensional precision and wear of a new approach for prototype tooling in deep drawing." IOP Conference Series: Materials Science and Engineering 1284, no. 1 (June 1, 2023): 012078. http://dx.doi.org/10.1088/1757-899x/1284/1/012078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract In this work, we present and evaluate a new approach for prototype tooling in deep drawing based on direct polymer additive tooling. With fused filament fabrication (FFF) a PLA shell is printed additively. Afterwards, this is filled with ultra-high performance concrete (UHPC). UHPC is characterized by its higher strength properties compared to conventional concrete materials, which makes the material feasible for forming applications. Two configurations of these hybrid UHPC polymer additive are possible: either the PLA shell is in contact with the sheet metal during forming or UHPC. The hybrid UHPC polymer additive tooling approach has the potential to be more cost-efficient for small series. The dimensional precision and wear of such hybrid tools is evaluated using a standard cup geometry. A test series of 30 cups with sheet metal DX56+Z with 1 mm thickness was drawn with the hybrid tools as well as with a polymeric tool and a conventional steel tool. The dimensional precision and wear of the prototype tools was evaluated optically.
29

Jiménez, Amaia, Prveen Bidare, Hany Hassanin, Faris Tarlochan, Stefan Dimov, and Khamis Essa. "Powder-based laser hybrid additive manufacturing of metals: a review." International Journal of Advanced Manufacturing Technology 114, no. 1-2 (March 19, 2021): 63–96. http://dx.doi.org/10.1007/s00170-021-06855-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractRecent advances in additive manufacturing (AM) have attracted significant industrial interest. Initially, AM was mainly associated with the fabrication of prototypes, but the AM advances together with the broadening range of available materials, especially for producing metallic parts, have broaden the application areas and now the technology can be used for manufacturing functional parts, too. Especially, the AM technologies enable the creation of complex and topologically optimised geometries with internal cavities that were impossible to produce with traditional manufacturing processes. However, the tight geometrical tolerances along with the strict surface integrity requirements in aerospace, biomedical and automotive industries are not achievable in most cases with standalone AM technologies. Therefore, AM parts need extensive post-processing to ensure that their surface and dimensional requirements together with their respective mechanical properties are met. In this context, it is not surprising that the integration of AM with post-processing technologies into single and multi set-up processing solutions, commonly referred to as hybrid AM, has emerged as a very attractive proposition for industry while attracting a significant R&D interest. This paper reviews the current research and technology advances associated with the hybrid AM solutions. The special focus is on hybrid AM solutions that combine the capabilities of laser-based AM for processing powders with the necessary post-process technologies for producing metal parts with required accuracy, surface integrity and material properties. Commercially available hybrid AM systems that integrate laser-based AM with post-processing technologies are also reviewed together with their key application areas. Finally, the main challenges and open issues in broadening the industrial use of hybrid AM solutions are discussed.
30

Stanlykeninxavier, L., P. Elangovan, and M. S. S. Saravanakumaar. "Fabrication of Non-precious Vanadium Tungsten Nanocomposite for Enhanced Electrocatalytic Oxygen Reduction Reaction." Asian Journal of Chemistry 33, no. 4 (March 20, 2021): 919–24. http://dx.doi.org/10.14233/ajchem.2021.23097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
For the commercialization of alkaline fuel cells and metal air batteries, the advances in non-precious, cheap, stable electrocatalysts for the oxygen reduction reaction (ORR) and highly active remain a major problem. To overcome this problem, a facile approach was established to fabricate non-precious metal electrocatalysts, such as nanoparticles, pristine V2O5 and their WO3 hybrids. This is the first study reporting the utilization of monoclinic-WO3-nanocrystal-coupled V2O5 that serves as ORR catalysts. Compared with 50 wt.% WO3 with 50 wt.% V2O5 (VW-2) spheres and pristine V2O5, the hybrid catalyst of 25 wt.% WO3 and 75 wt.% V2O5 (VW-1) spheres exhibits outstanding catalytic activity towards ORR. In addition, the hybrid of 25 wt.% WO3 and 75 wt.% V2O5 (VW-1) exhibits a higher long-term durability and catalytic activity than high-quality commercial Pt/C catalysts, which renders the composites of WO3/V2O5 composites hybrid a high-capacity candidate for non-precious, high-performance, metal-based electrocatalysts having high efficiency and low cost for electrochemical energy conversion. The enhanced activity of WO3/V2O5 composites is mainly obtained from the improved structural openness in the V2O5 tunnel structure when coupled with WO3.
31

Hao, Jingbin, Xin Chen, Hao Liu, and Shengping Ye. "A novel process planning algorithm for additive and subtractive manufacturing based on skeleton tree matching." Rapid Prototyping Journal 24, no. 2 (March 12, 2018): 441–62. http://dx.doi.org/10.1108/rpj-11-2016-0179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Purpose To remanufacture a disused part, a hybrid process needs to be taken in part production. Therefore, a reasonable machining route is necessary to be developed for the hybrid process. This paper aims to develop a novel process planning algorithm for additive and subtractive manufacturing (ASM) system to achieve this purpose. Design/methodology/approach First, a skeleton of the model is generated by using thinning algorithm. Then, the skeleton tree is constructed based on topological structure and shape feature. Further, a feature matching algorithm is developed for recognizing the different features between the initial model and the final model based on the skeleton tree. Finally, a reasonable hybrid machining route of the ASM system is generated in consideration of the machining method of each different sub-feature. Findings This paper proposes a hybrid process planning algorithm for the ASM system. Further, it generates new process planning insights on the hybrid process service provider market. Practical implications The proposed process planning algorithm enables engineers to obtain a proper hybrid machining route before product fabrication. And thereby, it extends the machining capability of the hybrid process to manufacture some parts accurately and efficiently. Originality/value This study addresses one gap in the hybrid process literature. It develops the first hybrid process planning strategy for remanufacturing of disused parts based on skeleton tree matching, which generates a more proper hybrid machining route than the currently available hybrid strategy studies. Also, this study provides technical support for the ASM system to repair damaged parts.
32

Mondal, Sudeepta, Daniel Gwynn, Asok Ray, and Amrita Basak. "Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid Modeling." Metals 10, no. 5 (May 22, 2020): 683. http://dx.doi.org/10.3390/met10050683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Metal additive manufacturing (AM) works on the principle of consolidating feedstock material in layers towards the fabrication of complex objects through localized melting and resolidification using high-power energy sources. Powder bed fusion and directed energy deposition are two widespread metal AM processes that are currently in use. During layer-by-layer fabrication, as the components continue to gain thermal energy, the melt pool geometry undergoes substantial changes if the process parameters are not appropriately adjusted on-the-fly. Although control of melt pool geometry via feedback or feedforward methods is a possibility, the time needed for changes in process parameters to translate into adjustments in melt pool geometry is of critical concern. A second option is to implement multi-physics simulation models that can provide estimates of temporal process parameter evolution. However, such models are computationally near intractable when they are coupled with an optimization framework for finding process parameters that can retain the desired melt pool geometry as a function of time. To address these challenges, a hybrid framework involving machine learning-assisted process modeling and optimization for controlling the melt pool geometry during the build process is developed and validated using experimental observations. A widely used 3D analytical model capable of predicting the thermal distribution in a moving melt pool is implemented and, thereafter, a nonparametric Bayesian, namely, Gaussian Process (GP), model is used for the prediction of time-dependent melt pool geometry (e.g., dimensions) at different values of the process parameters with excellent accuracy along with uncertainty quantification at the prediction points. Finally, a surrogate-assisted statistical learning and optimization architecture involving GP-based modeling and Bayesian Optimization (BO) is employed for predicting the optimal set of process parameters as the scan progresses to keep the melt pool dimensions at desired values. The results demonstrate that a model-based optimization can be significantly accelerated using tools of machine learning in a data-driven setting and reliable a priori estimates of process parameter evolution can be generated to obtain desired melt pool dimensions for the entire build process.
33

Placzek, Gerrit, and Patrick Schwerdtner. "Concrete Additive Manufacturing in Construction: Integration Based on Component-Related Fabrication Strategies." Buildings 13, no. 7 (July 11, 2023): 1769. http://dx.doi.org/10.3390/buildings13071769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive manufacturing (AM) with concrete, also known as concrete 3D printing, is one of the most interesting approaches for disrupting the construction industry and is currently subject to numerous research activities worldwide. AM has great potential to decrease labour costs and increase the material efficiency and geometric complexity of non-standardised building components. Although prior investigations have shown various fields of application for AM with concrete, the full potential with respect to different structural component types has not been covered yet. With this paper, an up-to-date review of fabrication strategies for the main structural components, (1) walls, (2) columns, (3) slabs, and (4) beams, is provided to identify trends and existing challenges. Therefore, firstly, AM methods and their underlying principles and characteristics for concrete components are presented, and secondly, fabrication strategies for each AM method are shown. The investigation uncovers different AM strategies (direct part vs. indirect “permanent formwork”; in situ, on-site, or off-site), which are currently being used. As a result, future applications of AM will require a hybrid manufacturing strategy combining conventional and additive manufacturing to fully explore its potential.
34

Mangrulkar, Mayuribala, and Keith J. Stevenson. "The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells." Crystals 11, no. 7 (July 13, 2021): 814. http://dx.doi.org/10.3390/cryst11070814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Methylammonium lead triiodide (CH3NH3PbI3/MAPbI3) is the most intensively explored perovskite light-absorbing material for hybrid organic–inorganic perovskite photovoltaics due to its unique optoelectronic properties and advantages. This includes tunable bandgap, a higher absorption coefficient than conventional materials used in photovoltaics, ease of manufacturing due to solution processability, and low fabrication costs. In addition, the MAPbI3 absorber layer provides one of the highest open-circuit voltages (Voc), low Voc loss/deficit, and low exciton binding energy, resulting in better charge transport with decent charge carrier mobilities and long diffusion lengths of charge carriers, making it a suitable candidate for photovoltaic applications. Unfortunately, MAPbI3 suffers from poor photochemical stability, which is the main problem to commercialize MAPbI3-based perovskite solar cells (PSCs). However, researchers frequently adopt additive engineering to overcome the issue of poor stability. Therefore, in this review, we have classified additives as organic and inorganic additives. Organic additives are subclassified based on functional groups associated with N/O/S donor atoms; whereas, inorganic additives are subcategorized as metals and non-metal halide salts. Further, we discussed their role and mechanism in terms of improving the performance and stability of MAPbI3-based PSCs. In addition, we scrutinized the additive influence on the morphology and optoelectronic properties to gain a deeper understanding of the crosslinking mechanism into the MAPbI3 framework. Our review aims to help the research community, by providing a glance of the advancement in additive engineering for the MAPbI3 light-absorbing layer, so that new additives can be designed and experimented with to overcome stability challenges. This, in turn, might pave the way for wide scale commercial use.
35

Lomte, Amulya, and Bhisham Sharma. "Effect of geometrical defects on the acoustical and transport properties of periodic porous absorbers manufactured using stereolithography." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 266, no. 2 (May 25, 2023): 273–82. http://dx.doi.org/10.3397/nc_2023_0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive manufacturing allows the fabrication of acoustical materials with previously unrealizable micro- and macrostructural complexities. However, the still nascent understanding of various geometrical defects occurring during the additive process remains a barrier to accurately predicting the acoustical behavior of such complex absorbers. In this study, we present the results from our efforts on numerically modeling the absorption behavior of periodic porous absorbers fabricated using the stereolithography (SLA) technique using the hybrid micro-macro multiphysics approach. Specifically, we focus on understanding the role played by the expansion or shrinkage of the solid ligaments during the SLA process on the transport parameters of the final printed samples. First, the periodic absorbers are modeled using COMSOL multiphysics, where the transport properties are derived using the Johnson-Champoux-Allard-Lafarge-Pride (JCALP) semiempirical model. Results from the parametric study guide the design and fabrication of test articles that closely match the initial design requirements. Finally, the fabricated samples are tested using an impedance tube, and the obtained absorption properties are compared to the a priori numerical predictions. Results indicate that accounting for fabrication defects within the numerical modeling schema can provide reliable sound absorption predictions for additively manufactured porous absorbers.
36

Kumar, Mohit, and Varun Sharma. "Additive manufacturing techniques for the fabrication of tissue engineering scaffolds: a review." Rapid Prototyping Journal 27, no. 6 (July 5, 2021): 1230–72. http://dx.doi.org/10.1108/rpj-01-2021-0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Purpose Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds. Design/methodology/approach The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods. Findings Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail. Originality/value The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.
37

Melzer, Jeffrey E., and Euan McLeod. "3D Nanophotonic device fabrication using discrete components." Nanophotonics 9, no. 6 (June 6, 2020): 1373–90. http://dx.doi.org/10.1515/nanoph-2020-0161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThree-dimensional structure fabrication using discrete building blocks provides a versatile pathway for the creation of complex nanophotonic devices. The processing of individual components can generally support high-resolution, multiple-material, and variegated structures that are not achievable in a single step using top-down or hybrid methods. In addition, these methods are additive in nature, using minimal reagent quantities and producing little to no material waste. In this article, we review the most promising technologies that build structures using the placement of discrete components, focusing on laser-induced transfer, light-directed assembly, and inkjet printing. We discuss the underlying principles and most recent advances for each technique, as well as existing and future applications. These methods serve as adaptable platforms for the next generation of functional three-dimensional nanophotonic structures.
38

Song, Jian, Qidong Huo, Dongming Li, Bingzhi Chen, and Jun Zhang. "Energy-Absorption Behavior of Novel Bio-Inspired Thin-Walled Honeycomb Tubes Filled with TPMS Structure." Coatings 14, no. 6 (May 27, 2024): 675. http://dx.doi.org/10.3390/coatings14060675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The application of bionic structures for the design of energy-absorbing structures has been proposed recently. The rapid advancement of additive manufacturing technology provides technical support for the fabrication of non-traditional structures and further improves the energy-absorbing properties of bionic structures. This work proposes a novel bionic hybrid structure that consists of honeycomb-inspired thin-walled tubes filled with weevil-inspired diamond TPMS (triple periodic minimal surface) structures. The energy-absorbing properties and the deformation behaviors of these topologies under axial crushing loads were investigated using combined numerical simulations and experimental tests. First, the effect of filling quantity and filling distribution on energy absorption of the hybrid structures was investigated. Results show that honeycomb tubes and diamond TPMS structures produce a synergistic effect during compression, and the hybrid structures exhibit excellent stability and energy absorption capacity. The bionic hybrid structure improves specific energy absorption (SEA) by 299% compared to honeycomb tubes. Peak crush force (PCF) and SEA are more influenced by filling quantity than by filling distribution. The effects of diamond TPMS structure volume fraction and honeycomb tube wall thickness on the energetic absorptive capacity of the hybrid structure were furthermore investigated numerically. Finally, a multi-objective optimization method was used to optimize the design of the bionic hybrid structure and balance the relationship between crashworthiness and cost to obtain a bionic hybrid energy-absorbing structure with superior performance. This study provides valuable guidelines for designing and fabricating lightweight and efficient energy-absorbing structures with significant potential for engineering applications.
39

Kilian, David, Max von Witzleben, Matthew Lanaro, Cynthia S. Wong, Corina Vater, Anja Lode, Mark C. Allenby, Maria A. Woodruff, and Michael Gelinsky. "3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process." Journal of Functional Biomaterials 13, no. 2 (June 8, 2022): 75. http://dx.doi.org/10.3390/jfb13020075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800–2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.
40

Belle, Stefan, Babette Goetzendorfer, and Ralf Hellmann. "Challenges in a Hybrid Fabrication Process to Generate Metallic Polarization Elements with Sub-Wavelength Dimensions." Materials 13, no. 22 (November 22, 2020): 5279. http://dx.doi.org/10.3390/ma13225279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report on the challenges in a hybrid sub-micrometer fabrication process while using three dimensional femtosecond direct laser writing and electroplating. With this hybrid subtractive and additive fabrication process, it is possible to generate metallic polarization elements with sub-wavelength dimensions of less than 400 nm in the cladding area. We show approaches for improving the adhesion of freestanding photoresist pillars as well as of the metallic cladding area, and we also demonstrate the avoidance of an inhibition layer and sticking of the freestanding pillars. Three-dimensional direct laser writing in a positive tone photoresist is used as a subtractive process to fabricate free-standing non-metallic photoresist pillars with an area of about 850 nm × 1400 nm, a height of 3000 nm, and a distance between the pillars of less than 400 nm. In a subsequent additive fabrication process, these channels are filled with gold by electrochemical deposition up to a final height of 2200 nm. Finally, the polarization elements are characterized by measuring the degree of polarization in order to show their behavior as quarter- and half-wave plates.
41

Liu, Shuning, Chenchen Liu, Yong You, Yajie Wang, Renbo Wei, and Xiaobo Liu. "Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties." Nanomaterials 9, no. 12 (November 22, 2019): 1667. http://dx.doi.org/10.3390/nano9121667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, barium titanate@zinc phthalocyanine (BT@ZnPc) and graphene oxide (GO) hybrids (BT@ZnPc-GO) connected by calcium ions are prepared by electrostatic adsorption, and then introduced into polyarylene ether nitrile (PEN) to obtain composites with enhanced dielectric and crystallization properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results confirm the successful fabrication of the BT@ZnPc-GO. BT@ZnPc-GO and PEN composites (BT@ZnPc-GO/PENs) are obtained through the solution-casting method. BT@ZnPc-GO demonstrates well compatibility with PEN due to its unique structure and the organic layer of ZnPc at the periphery of BT. On the other hand, BT and GO contribute a high dielectric constant of the composites obtained. In addition, the BT@ZnPc-GO can be used as a nucleating agent to promote the crystallization of the nanocomposites. As a result, The BT@ZnPc-GO/PEN exhibits a dielectric constant of 6.4 at 1 kHz and crystallinity of 21.03% after being isothermally treated at 280 °C for 2 h at the GO content of 0.75 wt %. All these results indicate that the hybrid nanofiller BT@ZnPc-GO can be an effective additive for preparing high-performance PEN-based nanocomposites.
42

Zhang, Heng, Quanqing Han, Xin Gao, Xiaoning Tang, Keli Chen, and Meng Li. "Impact of reinforcing additives on the structure and performance of composite films based on regenerated cellulose from corn stalk pith." BioResources 14, no. 4 (September 10, 2019): 8455–69. http://dx.doi.org/10.15376/biores.14.4.8455-8469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cellulose was extracted from corn stalk pith (CSP) and used for fabricating hybrid composite films with acceptable physical properties. As reinforced additives, low contents of graphene oxide (GO) and black phosphorene (BP), both ranging from 0.05 to 0.15 wt%, were separately incorporated into the cellulose matrix in a ZnCl2 aqueous system. A series of the composites were prepared via a regeneration process. The as-prepared composites showed various properties depending largely on the additive content, manner of processing, and the type of additive used. GO and BP nanosheets were homogeneously dispersed in the regenerated cellulose (RC), smoothly forming the dense films. Crystalline structures of RC-based films were revealed to be cellulose-II, and in addition to GO-crosslinked RC samples (RC-GO), an increase in the additive dosage led to a decrement in the crystallinity index of blended films (RC/GO and RC/BP). At 0.15 wt% additive amount, the RC-GO possessed superior thermal stability, tensile strength, and Young’s modulus, increasing 7.8%, 190.2%, and 79.0%, respectively, while the RC/BP exhibited a 3.5 times improvement in the elongation at break.
43

Gjokaj, Vincens, John Papapolymerou, John D. Albrecht, and Premjeet Chahal. "Design and Fabrication of Additively Manufactured Hybrid Rigid-Flex RF Components." IEEE Transactions on Components, Packaging and Manufacturing Technology 9, no. 4 (April 2019): 779–85. http://dx.doi.org/10.1109/tcpmt.2019.2900210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dugar, Jaka, Awais Ikram, Damjan Klobčar, and Franci Pušavec. "Sustainable Hybrid Manufacturing of AlSi5 Alloy Turbine Blade Prototype by Robotic Direct Energy Layered Deposition and Subsequent Milling: An Alternative to Selective Laser Melting?" Materials 15, no. 23 (December 3, 2022): 8631. http://dx.doi.org/10.3390/ma15238631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Additive technologies enable the flexible production through scalable layer-by-layer fabrication of simple to intricate geometries. The existing 3D-printing technologies that use powders are often slow with controlling parameters that are difficult to optimize, restricted product sizes, and are relatively expensive (in terms of feedstock and processing). This paper presents the development of an alternative approach consisting of a CAD/CAM + combined wire arc additive-manufacturing (WAAM) hybrid process utilizing the robotic MIG-based weld surfacing and milling of the AlSi5 aluminum alloy, which achieves sustainably high productivity via structural alloys. The feasibility of this hybrid approach was analyzed on a representative turbine blade piece. SprutCAM suite was utilized to identify the hybrid-manufacturing parameters and virtually simulate the processes. This research provides comprehensive experimental data on the optimization of cold metal transfer (CMT)–WAAM parameters such as the welding speed, current/voltage, wire feed rate, wall thickness, torch inclination angle (shift/tilt comparison), and deposit height. The multi-axes tool orientation and robotic milling strategies, i.e., (a) the side surface from rotational one-way bottom-up and (b) the top surface in a rectangular orientation, were tested in virtual CAM environments and then adopted during the prototype fabrication to minimize the total fabrication time. The effect of several machining parameters and robotic stiffness (during WAAM + milling) were also investigated. The mean deviation for the test piece’s tolerance between the virtual processing and experimental fabrication was −0.76 mm (approx.) at a standard deviation of 0.22 mm assessed by 3D scanning. The surface roughness definition Sa in the final WAAM pass corresponds to 36 µm, which was lowered to 14.3 µm after milling, thus demonstrating a 55% improvement through the robotic comminution. The tensile testing at 0° and 90° orientations reported fracture strengths of 159 and 161.3 MPa, respectively, while the yield stress and reduced longitudinal (0°) elongations implied marginally better toughness along the WAAM deposition axes. The process sustainability factors of hybrid production were compared with Selective Laser Melting (SLM) in terms of the part size freedom, processing costs, and fabrication time with respect to tight design tolerances. The results deduced that this alternative hybrid-processing approach enables an economically viable, resource/energy feasible, and time-efficient method for the production of complex parts in contrast to the conventional additive technologies, i.e., SLM.
45

A Whitmore, Stephen. "Development and testing of an all-additively manufactured hybrid thruster for smallsats." Aeronautics and Aerospace Open Access Journal 5, no. 2 (August 10, 2021): 66–81. http://dx.doi.org/10.15406/aaoaj.2021.05.00129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background: The design, development, and testing of a small-thruster system with additively-manufacturing key components is presented. The primary issue associated with conventionally-manufactured small thruster systems is the assembly complexity, where the motor case, injector, ignition electrodes, nozzle retainer, nozzle, fuel grain, insulting liner, and other components are fabricated individually and then assembled. For very small thruster systems, this detailed fabrication and assembly process is extremely labor intensive and time-consuming. Proposed "all- additive" designs reduce component fabrication and procurement cycle time, and may significantly reduce overall system complexity. Before committing to hardware, a student-lead design team reduced the trade-space to 2 design-options. Each option employs multiple additively-manufactured components including the oxidizer delivery system attachments, motor cap, motor casing, insulation, and the fuel grain. Components are additively manufactured using one of three different methods, fused-deposition modeling (FDM), stereo lithography (SL), and non-galvanic nickel plating (EN). Both designs feature an FDM-fabricated ABS fuel grain, with 1) a two material combustion chamber assembly fabricated from Veroclear® plastic using Polyjet 3-D SL printing technology, and 2) a chamber/fuel assembly additively fabricated from ABS, but plated with an external nickel coating. For simplicity the student prototype employs gaseous oxygen (GOX) and additively manufactured acrylonitrile-butadiene-styrene (ABS) as propellants. ABS has been previously demonstrated to be a highly efficient hybrid fuel material. The research campaign emphasized multiple objectives including hot and cold material testing burn lifetime survivability, system restart capability, and overall performance. Performance comparisons with hydrazine are presented.
46

Aseni, Paolo, Tommaso Santaniello, Francesco Rizzetto, Lorenzo Gentili, Federico Pezzotta, Francesco Cavaliere, Maurizio Vertemati, and Paolo Milani. "Hybrid Additive Fabrication of a Transparent Liver with Biosimilar Haptic Response for Preoperative Planning." Diagnostics 11, no. 9 (September 21, 2021): 1734. http://dx.doi.org/10.3390/diagnostics11091734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Due to the complexity of liver surgery, the interest in 3D printing is constantly increasing among hepatobiliary surgeons. The aim of this study was to produce a patient-specific transparent life-sized liver model with tissue-like haptic properties by combining additive manufacturing and 3D moulding. A multistep pipeline was adopted to obtain accurate 3D printable models. Semiautomatic segmentation and registration of routine medical imaging using 3D Slicer software allowed to obtain digital objects representing the structures of interest (liver parenchyma, vasculo-biliary branching, and intrahepatic lesion). The virtual models were used as the source data for a hybrid fabrication process based on additive manufacturing using soft resins and casting of tissue-mimicking silicone-based blend into 3D moulds. The model of the haptic liver reproduced with high fidelity the vasculo-biliary branching and the relationship with the intrahepatic lesion embedded into the transparent parenchyma. It offered high-quality haptic perception and a remarkable degree of surgical and anatomical information. Our 3D transparent model with haptic properties can help surgeons understand the spatial changes of intrahepatic structures during surgical manoeuvres, optimising preoperative surgical planning.
47

Kapusuzoglu, Berkcan, and Sankaran Mahadevan. "Physics-Informed and Hybrid Machine Learning in Additive Manufacturing: Application to Fused Filament Fabrication." JOM 72, no. 12 (October 26, 2020): 4695–705. http://dx.doi.org/10.1007/s11837-020-04438-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lutter-Günther, Max, Stephan Wagner, Christian Seidel, and Gunther Reinhart. "Economic and Ecological Evaluation of Hybrid Additive Manufacturing Technologies Based on the Combination of Laser Metal Deposition and CNC Machining." Applied Mechanics and Materials 805 (November 2015): 213–22. http://dx.doi.org/10.4028/www.scientific.net/amm.805.213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Hybrid additive manufacturing technologies combine selective material deposition with a conventional milling process in one machine, enabling the production of complex metal parts and reducing the need for part specific tools. The hybrid technology offers technological advantages compared to more established additive fabrication processes, such as powder bed fusion. Compared to powder bed based additive processes, which are currently in a prevailing positon regarding AM adaption, hybrid additive technologies enable increased build rates, enhanced build volumes and a reduction of machine changes. In the Laser Metal Deposition (LMD) process, metal powder is deposited through a nozzle and melted by a laser on the surface of the part. By integrating the LMD process into a machining center, good surface roughness and low tolerances can be realized by means of e. g. milling without reclamping. In comparison to powder bed based processes, cost and resource input have not been investigated in detail. In this study, hybrid additive manufacturing technologies are analyzed regarding cost and resource input. A cost model for hybrid additive processes is introduced that enables the analysis of the manufacturing cost structure for a given part. Furthermore, the resource inputs for the operation of a hybrid production machine are estimated.
49

Jiao, Junke, Shengyuan Sun, Zifa Xu, Jiale Wang, Liyuan Sheng, and Jicheng Gao. "Fabricating Inner Channels in Laser Additive Manufacturing Process via Thin-Plate-Preplacing Method." Materials 16, no. 19 (September 26, 2023): 6406. http://dx.doi.org/10.3390/ma16196406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper presents a hybrid manufacturing process for the preparation of complex cavity structure parts with high surface quality. Firstly, laser precision packaging technology is utilized to accurately connect a thin plate to a substrate with microchannel. Secondly, Direct Metal Laser-Sintering (DMLS) technology is utilized to completely shape the part. The morphology and microstructure of laser encapsulated specimens and DMLS molded parts were investigated. The results show that the thin plate and the substrate can form a good metallurgical bond. The lowest surface roughness of the DMLS molded parts was 1.18 μm. The perpendicularity between the top of the microchannel and the side wall was optimal when the laser power was 240 W. Consequently, the hybrid manufacturing process effectively solves the problems of poor surface quality and powder sticking of closed inner cavities. The method effectively eliminates the defects of adhesive powder in the inner cavity of the DMLS microchannel, improves the finish, and solves the problem that mechanical tools cannot be processed inside the microchannel, which lays the foundation for the research of DMLS high-quality microchannel process.
50

Ingle, Dr A. H. "Literature Review on the Fabrication of Hybrid Engine Vehicle." International Journal for Research in Applied Science and Engineering Technology 11, no. 6 (June 30, 2023): 592–96. http://dx.doi.org/10.22214/ijraset.2023.53637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract: A hybrid vehicle uses two or more distinct types of power, such as internal combustion engine + electric motor, e.g. in diesel-electric trains using diesel engines and electricity from overhead lines, and submarines that use diesels when surfaced and batteries when submerged. Other means to store energy include pressurized fluid, in hydraulic hybrids. A water-fuelled car is an automobile that hypothetically derives its energy directly from water. Water-fuelled cars have been the subject of numerous international patents, newspaper and popular science magazine articles, local television news coverage, and websites. The claims for these devices have been found to be pseudoscience and some were found to be tied to investment frauds. These vehicles may be claimed to produce fuel from water on board with no other energy input, or may be a hybrid claiming to derive some of its energy from water in addition to a conventional source (such as gasoline). Water is fully oxidized hydrogen. Hydrogen itself is a high-energy, flammable substance, but its useful energy is released when water is formed. Water will not burn. The process of electrolysis can split water into hydrogen and oxygen, but it takes as much energy to take apart a water molecule as was released when the hydrogen was oxidized to form water. In fact, some energy would be lost in converting water to hydrogen and then burning the hydrogen because some waste heat would always be produced in the conversions. Releasing chemical energy from water, in excess or in equal proportion to the energy required to facilitate such production, would therefore violate the first or second law of thermodynamics.

To the bibliography