Academic literature on the topic 'Eye movements'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eye movements.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eye movements"

1

Lagopoulos, Jim. "Eye movements." Acta Neuropsychiatrica 20, no. 1 (February 2008): 46–47. http://dx.doi.org/10.1111/j.1601-5215.2007.00264.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shaunak, S., E. O'Sullivan, and C. Kennard. "Eye movements." Journal of Neurology, Neurosurgery & Psychiatry 59, no. 2 (August 1, 1995): 115–25. http://dx.doi.org/10.1136/jnnp.59.2.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rayner, Keith, and Monica Castelhano. "Eye movements." Scholarpedia 2, no. 10 (2007): 3649. http://dx.doi.org/10.4249/scholarpedia.3649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Büttner, Ulrich, and Leonard Fuhry. "Eye movements." Current Opinion in Neurology 8, no. 1 (February 1995): 77–82. http://dx.doi.org/10.1097/00019052-199502000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Averbuch-Heller, Lea, and R. John Leigh. "Eye movements." Current Opinion in Neurology 9, no. 1 (February 1996): 26–31. http://dx.doi.org/10.1097/00019052-199602000-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tatara, Shunya, Haruo Toda, Fumiatsu Maeda, and Tomoya Handa. "Development of a New Eye Movement Measurement Device Using Eye-Tracking Analysis Technology." Applied Sciences 13, no. 10 (May 12, 2023): 5968. http://dx.doi.org/10.3390/app13105968.

Full text
Abstract:
Smooth pursuit eye movements and saccadic eye movements are vital for precise vision. Therefore, tests for eye movement are important for assessing nervous or muscular diseases. However, objective measurements are not frequently performed due to the need for a polygraph system, electrodes, amplifier, and personal computer for data analysis. To address this, we developed an all-in-one eye-movement-measuring device that simultaneously presents visual stimuli, records eye positions, and examines its feasibility for evaluating eye movements. This device generates stimulus that induces eye movements and records those movements continuously. The horizontal or vertical eye movements of 16 participants were measured at various visual target speeds of 20–100 deg/s. The maximum cross-correlation coefficient (rho max) between the eye and visual target positions was used as an index of eye movement accuracy. A repeated-measures multi-way analysis of variance was performed, with the main effect being that rho max significantly decreased as the visual target speed increased. The average (±standard deviation) rho max values across all velocities were 0.995 ± 0.008 and 0.967 ± 0.062 in the horizontal and vertical directions, respectively, and were significantly higher for horizontal eye movements than for vertical eye movements. Moreover, rho max and saccadic frequency were significantly correlated for the slowest and fastest visual target motions. These suggest that our device enables accurate measurements of eye movements. We believe our new measurement device can be applied clinically for easily and objectively evaluating eye movements.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Chang Yuan, Bing Yao, Hong Zhe Bi, and Hong Bo Jia. "The Vestibular System Modeling in the Head and Eye Movement Research." Advanced Materials Research 605-607 (December 2012): 2434–37. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.2434.

Full text
Abstract:
Head and eye movement is eye movement response to head movements ,the eyes are the signals generated by the vestibular system is movement.The vestibular system is important to feel the organs and tissues of the body movement,Can be said that the vestibular system response to head movement, eye movement associated with the vestibule.We can use eye movements comparing with normal eye movements to detect whether the dizziness,in this process the modeling of the vestibular system is very important.Paper summarizes the response of head and eye movement system, vestibular system in the head and eye movement systems vestibular system exercise and Research at home and abroad, raised modeling method of the head and eye movement system when turn the head.
APA, Harvard, Vancouver, ISO, and other styles
8

이윤형. "Eye movements and sentence processing: Review on eye movement measurement." Korean Journal of Cognitive and Biological Psychology 21, no. 2 (June 2009): 91–110. http://dx.doi.org/10.22172/cogbio.2009.21.2.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Benson, Kathleen L. "Rapid Eye Movement Sleep Eye Movements in Schizophrenia and Depression." Archives of General Psychiatry 50, no. 6 (June 1, 1993): 474. http://dx.doi.org/10.1001/archpsyc.1993.01820180076008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Seo-Yoon, Tae-Woo Kang, and Dong-Kyun Koo. "Investigating Eye Movement and Postural Stability Relationships Using Mobile Eye-Tracking and Posturography: A Cross-Sectional Study." Bioengineering 11, no. 8 (July 23, 2024): 742. http://dx.doi.org/10.3390/bioengineering11080742.

Full text
Abstract:
Vision and eye movements play a crucial role in maintaining postural stability. This study investigated the relationship between eye movements and postural control in healthy adults using mobile eye-tracking technology and posturography. Forty healthy participants underwent assessments of eye movements using a mobile eye-tracking system and postural stability using Tetrax posturography under various sensory conditions. Pearson correlation coefficients were computed to examine associations between eye movement parameters and postural control indices. Significant correlations were found between eye movement parameters and postural stability indices. Faster and more consistent horizontal eye movements were associated with better postural stability (r = −0.63, p < 0.05). Eye movement speed variability positively correlated with weight distribution indices under normal eyes open (r = 0.65, p < 0.05) and closed (r = 0.59, p < 0.05) conditions. Coordination of horizontal and vertical eye movements positively correlated with postural control (r = 0.69, p < 0.01). Negative correlations were observed between eye movement coordination and Fourier indices in various frequency bands (p < 0.05) and the stability index under different head positions (p < 0.05). The findings provide insights into sensory integration mechanisms underlying balance maintenance and highlight the importance of integrated sensory processing in postural stability. Eye movement assessments have potential applications in balance evaluation and fall risk prediction.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Eye movements"

1

Riddell, Patricia Mary. "Vergence eye movements and dyslexia." Thesis, University of Oxford, 1987. http://ora.ox.ac.uk/objects/uuid:fc695d53-073a-467d-bc8d-8d47c0b9321e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santoro, Loredana. "Perception during eye movements." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Christophers, R. A. "Vergence eye movements and stereopsis." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scholz, Agnes. "Eye Movements, Memory, and Thinking." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-167967.

Full text
Abstract:
This thesis investigates the relationship between eye movements, memory and thinking in five studies based on eye tracking experiments. The studies draw on the human ability to spatially index multimodal events as demonstrated by people’s gaze reverting back to emptied spatial locations when retrieving information that was associated with this location during a preceding encoding phase – the so called “looking-at-nothing” phenomenon. The first part of this thesis aimed at gaining a better understanding of the relationship between eye movements and memory in relation to verbal information. The second part of this thesis investigated what could be learned about the memory processes involved in reasoning and decision-making by studying eye movements to blank spaces. The first study presented in this thesis clarified the role of eye movements for the retrieval of verbal information from memory. More precisely, it questioned if eye movements to nothing are functionally related to memory retrieval for verbal information, i.e. auditorily presented linguistic information. Eye movements were analyzed following correct and incorrect retrievals of previously presented auditory statements concerning artificial places that were probed during a subsequent retrieval phase. Additionally, eye movements were manipulated as the independent variable with the aid of a spatial cue that either guided the eyes towards or away from associated spatial locations. Using verbal materials elicited eye movements to associated but emptied spatial locations, thereby replicating previous findings on eye movements to nothing. This behaviour was more pronounced for correct in comparison to incorrect retrievals. Retrieval performance was higher when the eyes were guided towards in comparison to being guided away from associated spatial locations. In sum, eye movements play a functional role for the retrieval of verbal materials. The second study tested if the looking-at-nothing behaviour can also diminish; for example, does its effect diminish if people gain enough practice in a retrieval task? The same paradigm was employed as in the first study. Participants listened to four different sentences. Each sentence was associated with one of four areas on the screen and was presented 12 times. After every presentation, participants heard a statement probing one sentence, while the computer screen remained blank. More fixations were found to be located in areas associated with the probed sentence than in other locations. Moreover, the more trials participants completed, the less frequently they exhibited the looking-at-nothing behaviour. Looking-at-nothing behaviour can in this way be seen to indeed diminish when knowledge becomes strongly represented in memory. In the third and fourth study eye movements were utilized as a tool to investigate memory search during rule- versus similarity-based decision-making. In both studies participants first memorized multiple pieces of information relating to job candidates (exemplars). In subsequent test trials they judged the suitability of new candidates that varied in their similarity to the previously learned exemplars. Results showed that when using similarity, but not when using a rule, participants fixated longer on the previous location of exemplars that were similar to the new candidates than on the location of dissimilar exemplars. This suggests that people using similarity retrieve previously learned exemplars, whereas people using a rule do not. Eye movements were used yet again as a tool in the fifth study. On this occasion, eye movements were investigated during memory-based diagnostic reasoning. The study tested the effects of symptom order and diversity with symptom sequences that supported two or three contending hypotheses, and which were ambiguous throughout the symptom sequence. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation on emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Gaze data showed how the diagnostic decision develops and revealed instances of hypothesis change and biases in symptom processing. The results of this thesis demonstrate in very different scenarios the tight interplay between eye movements, memory and thinking. They show that eye movements are not automatically directed to spatial locations. Instead, they reflect the dynamic updating of internal, multimodal memory representations. Eye movements can be used as a direct behavioural correlate of memory processes involved in similarity- versus rule-based decision-making, and they reveal rich time-course information about the process of diagnostic reasoning. The results of this thesis are discussed in light of the current theoretical debates on cognitive processes that guide eye movements, memory and thinking. This thesis concludes by outlining a list of recommendations for using eye movements to investigate thinking processes, an outlook for future research and possible applications for the research findings
Diese Dissertation beschäftigt sich mit der Interaktion von Blickbewegungen, Gedächtnis- und Denkprozessen. In fünf experimentellen Untersuchungen, die auf der Messung von Blickbewegungen beruhen, wurde die menschliche Fähigkeit zum räumlichen Indizieren multimodaler Ereignisse untersucht. Diese Fähigkeit manifestiert sich u.a. im sogenannten „Looking-at-nothing“ Phänomen, das beschreibt, dass Menschen beim Abruf von Informationen aus dem Gedächtnis an Orte zurückblicken, die in einer vorhergehenden Enkodierphase mit den abzurufenden Informationen assoziiert wurden, selbst wenn diese räumlichen Positionen keinerlei erinnerungsrelevante Informationen mehr enthalten. In der ersten Untersuchung wurde der Frage nachgegangen, ob Blickbewegungen an geleerte räumliche Positionen den Abruf von Informationen aus dem Gedächtnis erleichtern. Während ein solches Verhalten für den Abruf zuvor visuell dargebotener Informationen bereits gezeigt werden konnte, ist die Befundlage für die Erinnerungsleistung bei auditiv dargebotenen, linguistischen Informationen unklar. Um diesen Zusammenhang zu untersuchen, wurde das Blickverhalten zunächst als Folge von richtigen und falschen Antworten untersucht. In einem weiteren Schritt wurde das Blickverhalten experimentell manipuliert. Dies geschah mit Hilfe eines räumlichen Hinweisreizes, der die Blicke entweder hin zu der Position leitete, die mit dem abzurufenden Stimulus assoziiert war, oder weg von dieser Position. Die Ergebnisse dieser Untersuchung konnten bisherige Befunde zum Looking-at-nothing Verhalten replizieren. Zudem zeigte sich, dass beim korrekten Abruf von Informationen aus dem Gedächtnis vermehrt Looking-at-nothing gezeigt wurde, während das bei fehlerhaften Abrufen nicht der Fall war. Die Blickmanipulation ergab, dass die Gedächtnisleistung besser war, wenn der Hinweisreiz den Blick hin zur assoziierten räumlichen Position leitete. Im Gegensatz dazu war die Erinnerungsleistung schlechter, wenn der Blick von der assoziierten räumlichen Position weggeleitet wurde. Blickbewegungen an geleerte räumliche Positionen scheinen demnach auch den Abruf verbaler Stimuli zu erleichtern. In der zweiten Untersuchung wurde erforscht, ob das Looking-at-nothing Verhalten nachlässt, wenn das experimentelle Material stark gelernt, d.h. stark im Gedächtnis repräsentiert ist. Dazu wurde das gleiche experimentelle Paradigma, wie in der ersten Untersuchung verwendet. Vier verschiedene Sätze wurden während der Enkodierphase mit vier verschiedenen räumlichen Positionen assoziiert. Nach jeder Präsentation aller vier Sätze, wurde einer der Sätze getestet. Diese Prozedur wiederholte sich in zwölf Durchgängen. In den ersten vier Durchgängen sahen die Versuchspersonen beim Abruf häufiger in das Feld, dass mit der getesteten Information assoziiert war, d.h. sie zeigten wie erwartet das Looking-at-nothing Verhalten. Je mehr Durchgänge die Versuchspersonen bearbeiteten, desto seltener blickten sie zu der assoziierten räumlichen Position. Demnach verschwindet das Looking-at-nothing Verhalten, wenn Informationen stark im Gedächtnis repräsentiert sind. In der dritten und vierten Untersuchung wurden Blickbewegungen an geleerte räumliche Positionen als Methode verwendet um Denkprozesse zu untersuchen. In der dritten Untersuchung lernten Versuchsteilnehmer zunächst Informationen über fiktive Bewerber (Exemplare) für eine freie Position in einem Unternehmen. Jedes Exemplar wurde mit seinen Eigenschaften während der Lernphase mit einer distinkten räumlichen Position verknüpft. In einer nachfolgenden Entscheidungsphase beurteilten die Versuchsteilnehmer neue Bewerber. Diese neuen Bewerber variierten in ihrer Ähnlichkeit mit den zuvor gelernten Bewerbern. Versuchsteilnehmer die eine ähnlichkeitsbasierte Entscheidungsstrategie verwendeten, sahen an die geleerten räumlichen Positionen zurück, die in der Lernphase mit den Exemplaren verknüpft wurden. Wendeten sie jedoch eine abstrakte Regel an, um die neuen Bewerber zu beurteilten, so zeigten sie kein Looking-at-nothing Verhalten. Dieses Ergebnis lässt darauf schließen, dass eine ähnlichkeitsbasierte im Gegensatz zu einer regelbasierten Strategie den Abruf zuvor gelernter Exemplare bewirkt. Auch in der fünften Untersuchung wurden Blickbewegungen als Methode eingesetzt, diesmal zur Untersuchung gedächtnisbasierter Schlussfolgerungsprozesse, wie sie beim Finden von Erklärungen für eine Anzahl gegebener Informationen auftreten. Manipuliert wurden die Reihenfolge der präsentierten Informationen und die Diversität der möglichen Erklärungen. Die getesteten Symptomsequenzen unterstützen stets mindestens zwei mögliche Erklärungen. Die Versuchsteilnehmer lernten in einer vorangestellten Lernphase die Symptome und ihre möglichen Erklärungen. Symptome und Erklärungen wurden mit räumlichen Positionen verknüpft. In einer anschließenden Diagnosephase wurden verschiedene Symptomsequenzen getestet. Das Blickverhalten während der Diagnosephase reflektierte die Interpretation der Symptome im Sinne der subjektiv wahrscheinlichsten Erklärung. Die Aufzeichnung und Analyse der Blickbewegungen erlaubte es die Entwicklung dieser Interpretation über die gesamte Sequenz hinweg zu beobachten und Hypothesenwechsel lokalisieren zu können. Insgesamt stützen die Ergebnisse dieser Dissertation die Annahme einer engen funktionalen Verbindung von Blickbewegungen, Gedächtnis- und Denkprozessen. Sie zeigen, dass Blickbewegungen nicht automatisch an alle assoziierten räumlichen Positionen gerichtet werden, sondern dass sie vielmehr den situations- und aufgabenabhängigen Abruf von Informationen aus dem Gedächtnis widerspiegeln. Blickbewegungen können als direktes Verhaltensmaß zur Messung von Gedächtnisprozessen beim ähnlichkeitsbasierten Entscheiden herangezogen werden und liefern wertvolle Prozessdaten über die Integration von Symptominformationen beim diagnostischen Schließen. Die Ergebnisse dieser Dissertation werden im Lichte der aktuellen theoretischen Diskussion über kognitive Prozesse beim Bewegen der Augen, beim Gedächtnisabruf und beim komplexen Denken betrachtet. Abschließend werden Empfehlungen für die Verwendung der Methode der Blickbewegungsmessung als Prozessmaß zur Untersuchung gedächtnisbasierter Denkprozesse gegeben, ein Überblick über zukünftige Forschungsmöglichkeiten präsentiert und Ideen für Anwendungsmöglichkeiten der präsentierten Befunde aufgezeigt
APA, Harvard, Vancouver, ISO, and other styles
5

Veltri, Leandro A. (Leandro Almeida). "Modeling eye movements in driving." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36979.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.
Includes bibliographical references (leaves 87-88).
by Leandro A. Veltri.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
6

TANNFELT, WU JENNIFER. "Robot mimicking human eye movements to test eye tracking devices." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245066.

Full text
Abstract:
Testing of eye tracking devices is done by humans looking at well defined stimuli. This way of testing eye trackers is not accurate enough because of human errors. The goal of this thesis is to design and construct reliable robotic eyes that can mimic the behaviour of human eyes. After a pre-study where human eyes, eye tracking and previous robotic eyes were studied, system requirements and specifications were formulated. Based on the re-quirements important design decisions were taken such as the use of RC servo motors, push rods, microcontrollers and a Raspberry Pi. Later the inverse kinematics of the movements and a saccade’s path planing were modelled. Additional mechanical de-sign features are rotation of the head and adjustment of the interpupillary distance. The robot is controlled using two types of application programming interfaces (APIs.) The first API is used to control the motors and the second API builds on top of the first API but is used to design paths of different eye movements between fixation points. All eye movement calculations are computed on the Raspberry Pi before the movements are communicated in real time to the microcontroller which directly performs the control signal. The robot was tested using the integrated lasers in the eyes and a video cam-era with slow motion capabilities to capture the projected laser dot on a wall. The properties tested are saccade, smooth pursuit, head rotation and eye tracking device compatibility. The results show high precision but not enough accuracy. The robot needs a few mechanical improvements such as removing the backlash in the rotat-ing joints on the eyes, decreasing the flexibility of some of the 3D printed parts and assuring symmetry in the design. The robot is a powerful testing platform capa-ble of performing all eye movement types with high-resolution control of both eyes independently through an API.
Eyetracking utrustning testas av människor som tittar på väldefinierade stimuli. Att testa eyetracking på det här sättet är inte tillräckligt noggrant på grund av mänskligt fel. Malet med detta examensarbete är att designa och bygga en pålitlig ögonrobot som kan härma beteendet hos mänskliga ögon. Efter en förstudie om mänskliga ögon, eyetracking och existerade robotögon formulerades system-krav och -specikationer. Baserat på dessa krav togs en del betydande designbeslut som att använda RC servomotorer, tryckstånger, mikrokontrollers och en Raspberry Pi. Senare modellerades den inverterade kinematiken av rörelserna och saccaders banor. Ytterligare mekaniska funktioner är rotation av huvudet och justering av avståndet mellan pupillerna. Roboten styrs med hjälp av två applikationsprogrammeringsgränssnitt (API). Det första API:et används för att styra motorerna och det andra API:et bygger på det första men används för att bygga rörelsevanor av olika ögonrörelser mellan fixationspunkter. Alla ögonrörelseberåkningar görs på Raspberry Pin innan rörelsen kommuniceras i realtid till mikrokontrollen som på direkten exekverar styrsignalen. Roboten testades med integrerade lasrar i ögonen och en kamera med slow motion funktionalitet för att fånga laser prickens projektion på en vägg. Funktioner som testades är saccader, smooth pursuit, huvudrotation och eyetracking kompatibilitet. Resultat visade en hög precision men inte tillräckligt hög noggrannhet. Roboten behöver några få mekaniska förbättringar som att få bort glappet i de roterande lederna på ögat, minska flexibiliteten i några av de 3D-utskrivna delarna och garantera symmetri i designen. Roboten är en kraftfull testplatform kapabel till att utföra alla typer av ögonrörelser med högupplöst kontroll av båda ögonen var för sig genom ett API.
APA, Harvard, Vancouver, ISO, and other styles
7

Mergenthaler, Konstantin K. "The control of fixational eye movements." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/2939/.

Full text
Abstract:
In normal everyday viewing, we perform large eye movements (saccades) and miniature or fixational eye movements. Most of our visual perception occurs while we are fixating. However, our eyes are perpetually in motion. Properties of these fixational eye movements, which are partly controlled by the brainstem, change depending on the task and the visual conditions. Currently, fixational eye movements are poorly understood because they serve the two contradictory functions of gaze stabilization and counteraction of retinal fatigue. In this dissertation, we investigate the spatial and temporal properties of time series of eye position acquired from participants staring at a tiny fixation dot or at a completely dark screen (with the instruction to fixate a remembered stimulus); these time series were acquired with high spatial and temporal resolution. First, we suggest an advanced algorithm to separate the slow phases (named drift) and fast phases (named microsaccades) of these movements, which are considered to play different roles in perception. On the basis of this identification, we investigate and compare the temporal scaling properties of the complete time series and those time series where the microsaccades are removed. For the time series obtained during fixations on a stimulus, we were able to show that they deviate from Brownian motion. On short time scales, eye movements are governed by persistent behavior and on a longer time scales, by anti-persistent behavior. The crossover point between these two regimes remains unchanged by the removal of microsaccades but is different in the horizontal and the vertical components of the eyes. Other analyses target the properties of the microsaccades, e.g., the rate and amplitude distributions, and we investigate, whether microsaccades are triggered dynamically, as a result of earlier events in the drift, or completely randomly. The results obtained from using a simple box-count measure contradict the hypothesis of a purely random generation of microsaccades (Poisson process). Second, we set up a model for the slow part of the fixational eye movements. The model is based on a delayed random walk approach within the velocity related equation, which allows us to use the data to determine control loop durations; these durations appear to be different for the vertical and horizontal components of the eye movements. The model is also motivated by the known physiological representation of saccade generation; the difference between horizontal and vertical components concurs with the spatially separated representation of saccade generating regions. Furthermore, the control loop durations in the model suggest an external feedback loop for the horizontal but not for the vertical component, which is consistent with the fact that an internal feedback loop in the neurophysiology has only been identified for the vertical component. Finally, we confirmed the scaling properties of the model by semi-analytical calculations. In conclusion, we were able to identify several properties of the different parts of fixational eye movements and propose a model approach that is in accordance with the described neurophysiology and described limitations of fixational eye movement control.
Während des alltäglichen Sehens führen wir große (Sakkaden) und Miniatur- oder fixationale Augenbewegungen durch. Die visuelle Wahrnehmung unserer Umwelt geschieht jedoch maßgeblich während des sogenannten Fixierens, obwohl das Auge auch in dieser Zeit ständig in Bewegung ist. Es ist bekannt, dass die fixationalen Augenbewegungen durch die gestellten Aufgaben und die Sichtbedingungen verändert werden. Trotzdem sind die Fixationsbewegungen noch sehr schlecht verstanden, besonders auch wegen ihrer zwei konträren Hauptfunktionen: Das stabilisieren des Bildes und das Vermeiden der Ermüdung retinaler Rezeptoren. In der vorliegenden Dissertation untersuchen wir die zeitlichen und räumlichen Eigenschaften der Fixationsbewegungen, die mit hoher zeitlicher und räumlicher Präzision aufgezeichnet wurden, während die Versuchspersonen entweder einen sichtbaren Punkt oder aber den Ort eines verschwundenen Punktes in völliger Dunkelheit fixieren sollten. Zunächst führen wir einen verbesserten Algorithmus ein, der die Aufspaltung in schnelle (Mikrosakkaden) und langsame (Drift) Fixationsbewegungen ermöglicht. Den beiden Typen von Fixationsbewegungen werden unterschiedliche Beiträge zur Wahrnehmung zugeschrieben. Anschließend wird für die Zeitreihen mit und ohne Mikrosakkaden das zeitliche Skalenverhalten untersucht. Für die Fixationsbewegung während des Fixierens auf den Punkt konnten wir feststellen, dass diese sich nicht durch Brownsche Molekularbewegung beschreiben lässt. Stattdessen fanden wir persistentes Verhalten auf den kurzen und antipersistentes Verhalten auf den längeren Zeitskalen. Während die Position des Übergangspunktes für Zeitreihen mit oder ohne Mikrosakkaden gleich ist, unterscheidet sie sich generell zwischen horizontaler und vertikaler Komponente der Augen. Weitere Analysen zielen auf Eigenschaften der Mikrosakkadenrate und -amplitude, sowie Auslösemechanismen von Mikrosakkaden durch bestimmte Eigenschaften der vorhergehenden Drift ab. Mittels eines Kästchenzählalgorithmus konnten wir die zufällige Generierung (Poisson Prozess) ausschließen. Des weiteren setzten wir ein Modell auf der Grundlage einer Zufallsbewegung mit zeitverzögerter Rückkopplung für den langsamen Teil der Augenbewegung auf. Dies erlaubt uns durch den Vergleich mit den erhobenen Daten die Dauer des Kontrollkreislaufes zu bestimmen. Interessanterweise unterscheiden sich die Dauern für vertikale und horizontale Augenbewegungen, was sich jedoch dadurch erklären lässt, dass das Modell auch durch die bekannte Neurophysiologie der Sakkadengenerierung, die sich räumlich wie auch strukturell zwischen vertikaler und horizontaler Komponente unterscheiden, motiviert ist. Die erhaltenen Dauern legen für die horizontale Komponente einen externen und für die vertikale Komponente einen internen Kontrollkreislauf dar. Ein interner Kontrollkreislauf ist nur für die vertikale Kompoente bekannt. Schließlich wird das Skalenverhalten des Modells noch semianalytisch bestätigt. Zusammenfassend waren wir in der Lage, unterschiedliche Eigenschaften von Teilen der Fixationsbewegung zu identifizieren und ein Modell zu entwerfen, welches auf der bekannten Neurophysiologie aufbaut und bekannte Einschränkungen der Kontrolle der Fixationsbewegung beinhaltet.
APA, Harvard, Vancouver, ISO, and other styles
8

Drew, Anthony Scott. "The brain, attention, and eye movements /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1188872491&sid=1&Fmt=2&clientId=11238&RQT=309&VName=PQD.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 72-80). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
9

Boonstra, Frouke Nienke. "Fusional vergence eye movements in microstrabismus." [Groningen] : [Groningen] : Rijksuniversiteit Groningen ; [University Library Groningen] [Host], 1997. http://irs.ub.rug.nl/ppn/157856534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harvard, Catriona. "Eye movements strategies during face matching." Thesis, University of Glasgow, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502694.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Eye movements"

1

Carpenter, R. H. S. 1945-, ed. Eye movements. Boca Raton: CRC Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carpenter, R. H. S., 1945-, ed. Eye movements. Basingstoke: Macmillan, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

W, Johnston Cris, and Pirozzolo Francis J, eds. Neuropsychology of eye movements. Hillsdale, N.J: L. Erlbaum Associates, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eye Movements in Reading (Conference) (1994 Stockholm, Sweden). Eye movements in reading. Oxford: Pergamon, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, Dominic P. Eye movement: Theory, interpretation, and disorders. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1938-, Lüer Gerd, Lass Uta 1949-, and Shallo-Hoffmann Josephine 1946-, eds. Fourth European Conference on Eye Movements. Toronto: Hogrefe, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Dominic P. Eye movement: Theory, interpretation, and disorders. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groner, Rudolf, Christine Menz, Dennis F. Fisher, and Richard A. Monty. Eye Movements and Psychological Functions. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003165538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghahari, Alireza, and John D. Enderle. Models of Horizontal Eye Movements. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-01661-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghahari, Alireza, and John D. Enderle. Models of Horizontal Eye Movements. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-031-01663-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Eye movements"

1

Ettinger, Ulrich, and Christoph Klein. "Eye Movements." In Neuroeconomics, 481–502. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35923-1_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MacKay, Alicia. "Eye Movements." In Encyclopedia of Child Behavior and Development, 628–29. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stidwill, David, and Robert Fletcher. "Eye Movements." In Normal Binocular Vision, 119–39. West Sussex, UK: John Wiley & Sons, Ltd., 2014. http://dx.doi.org/10.1002/9781118788684.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alexander, Robert G., and Susana Martinez-Conde. "Fixational Eye Movements." In Eye Movement Research, 73–115. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20085-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tarr, Michael, and Adrian Nestor. "Saccadic Eye Movements." In Encyclopedia of Clinical Neuropsychology, 2207–8. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_1400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ebner, Natalie C., Desiree Gulliford, and Sevilay Yumusak. "Saccadic Eye Movements." In Encyclopedia of Clinical Neuropsychology, 1–2. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-56782-2_1400-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ebner, Natalie C., Desiree Gulliford, and Sevilay Yumusak. "Saccadic Eye Movements." In Encyclopedia of Clinical Neuropsychology, 3067–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_1400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Padberg, G. "Psychogenic eye movements." In Eye Movement Disorders, 219–23. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3317-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prsa, Mario, and Peter Thier. "Cerebellum: Eye Movements." In Neuroscience in the 21st Century, 1297–314. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3474-4_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clément, Gilles, and Millard F. Reschke. "Compensatory Eye Movements." In Neuroscience in Space, 163–88. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-78950-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Eye movements"

1

Riggs, Lorrin A., John P. Kelly, Karen A. Manning, and Robert K. Moore. "Blink-related eye movements." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.wf6.

Full text
Abstract:
Using a visual-persistence method described by Ginsborg and Maurice,1 coupled with high-speed photography and eye-tracker records, we have explored the eye movements that take place during a blink. With straight-ahead binocular fixation each eye typically rotates nasalward and downward by 1° or 2° during the closing phase of a blink. The movements of the eyes are more rapid, however, than those of the lids. Maximum rotation of the eyes occurs slightly before lid closure is complete, and the eyes return to their initial positions well before the lids are fully reopened. Measurement of the direction, amplitude, and time course of such eye movements provides evidence for recent proposals that, with off-center viewing, a blink causes each eye to rotate toward its primary position of regard. Indeed, if the eye is already in that position when the blink takes place, there is scarcely any eye movement at all. In normal conditions of viewing there is no evidence of conjugate saccades or of any large upward rotation of the eyes (Bell’s phenomenon) that was formerly thought to take place during a blink.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Nam-Gyoon. "Wayfinding and eye movements." In Electronic Imaging '97, edited by Bernice E. Rogowitz and Thrasyvoulos N. Pappas. SPIE, 1997. http://dx.doi.org/10.1117/12.274535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Begel, Andrew, and Hana Vrzakova. "Eye movements in code review." In the Workshop. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3216723.3216727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

White, Keith D., Charles B. Woods, and Lawrence K. Cormack. "3D Displays And Eye Movements." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by David F. McAllister and Woodrow E. Robbins. SPIE, 1987. http://dx.doi.org/10.1117/12.940122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skripal, Anatoli V., Tatjana B. Usanova, Anton V. Abramov, and Dmitry A. Usanov. "Videoanalysis of involuntary eye movements." In Saratov Fall Meeting 2001, edited by Valery V. Tuchin. SPIE, 2002. http://dx.doi.org/10.1117/12.475616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

de Jesus Rubio, Jose, Carlos Aviles, Raymundo Coello, Jose Francisco Cruz, and Hector Rivero. "Pattern recognition of eye movements." In 2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/esdis.2009.4938997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Phillips, Jonathan B., James A. Ferwerda, and Ann Nunziata. "Gloss discrimination and eye movements." In IS&T/SPIE Electronic Imaging, edited by Bernice E. Rogowitz and Thrasyvoulos N. Pappas. SPIE, 2010. http://dx.doi.org/10.1117/12.845399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hill, Robin L., Anna Dickinson, John L. Arnott, Peter Gregor, and Louise McIver. "Older web users' eye movements." In the 2011 annual conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1978942.1979115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vienne, Cyril, Laurent Blondé, and Didier Doyen. "Visual fatigue versus eye-movements." In IS&T/SPIE Electronic Imaging, edited by Andrew J. Woods, Nicolas S. Holliman, and Gregg E. Favalora. SPIE, 2012. http://dx.doi.org/10.1117/12.906994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coombs, David J. "Tracking Objects with Eye Movements." In Image Understanding and Machine Vision. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/iumv.1989.tub1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Eye movements"

1

Baker, Laura, Robert Goldstein, and John A. Stern. Saccadic Eye Movements in Deception. Fort Belvoir, VA: Defense Technical Information Center, December 1992. http://dx.doi.org/10.21236/ada304658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada437672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada209817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada278364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada259955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonides, John. High-Resolution Analysis of Eye Movements. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada170779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada176162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kowler, Eileen. Eye Movements and Visual Information Processing. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada226782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henderson, John M., and Monica S. Castelhano. Eye Movements and Visual Memory for Scenes. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada442310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography