Academic literature on the topic 'Extremal self-dual codes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Extremal self-dual codes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Extremal self-dual codes"
Dougherty, S. T., T. A. Gulliver, and M. Harada. "Extremal binary self-dual codes." IEEE Transactions on Information Theory 43, no. 6 (1997): 2036–47. http://dx.doi.org/10.1109/18.641574.
Full textDontcheva, R., and M. Harada. "New extremal self-dual codes of length 62 and related extremal self-dual codes." IEEE Transactions on Information Theory 48, no. 7 (July 2002): 2060–64. http://dx.doi.org/10.1109/tit.2002.1013144.
Full textBouyuklieva, Stefka, Anton Malevich, and Wolfgang Willems. "Automorphisms of Extremal Self-Dual Codes." IEEE Transactions on Information Theory 56, no. 5 (May 2010): 2091–96. http://dx.doi.org/10.1109/tit.2010.2043763.
Full textHan, Sun-Ghyu, and June-Bok Lee. "NONEXISTENCE OF SOME EXTREMAL SELF-DUAL CODES." Journal of the Korean Mathematical Society 43, no. 6 (November 1, 2006): 1357–69. http://dx.doi.org/10.4134/jkms.2006.43.6.1357.
Full textTsai, H. P. "Existence of certain extremal self-dual codes." IEEE Transactions on Information Theory 38, no. 2 (March 1992): 501–4. http://dx.doi.org/10.1109/18.119711.
Full textHan-Ping Tsai. "Existence of some extremal self-dual codes." IEEE Transactions on Information Theory 38, no. 6 (1992): 1829–33. http://dx.doi.org/10.1109/18.165461.
Full textHan-Ping Tsai and Yih-Jaw Jiang. "Some new extremal self-dual [58,29,10] codes." IEEE Transactions on Information Theory 44, no. 2 (March 1998): 813–14. http://dx.doi.org/10.1109/18.661527.
Full textGulliver, T. Aaron, Masaaki Harada, and Jon-Lark Kim. "Construction of new extremal self-dual codes." Discrete Mathematics 263, no. 1-3 (February 2003): 81–91. http://dx.doi.org/10.1016/s0012-365x(02)00570-8.
Full textKoch, Helmut. "On self-dual doubly-even extremal codes." Discrete Mathematics 83, no. 2-3 (August 1990): 291–300. http://dx.doi.org/10.1016/0012-365x(90)90013-8.
Full textSpence, Edward, and Vladimir D. Tonchev. "Extremal self-dual codes from symmetric designs." Discrete Mathematics 110, no. 1-3 (December 1992): 265–68. http://dx.doi.org/10.1016/0012-365x(92)90716-s.
Full textDissertations / Theses on the topic "Extremal self-dual codes"
Malevich, Anton [Verfasser], and Wolfgang [Akademischer Betreuer] Willems. "Extremal self-dual codes / Anton Malevich. Betreuer: Wolfgang Willems." Magdeburg : Universitätsbibliothek, 2012. http://d-nb.info/1053914296/34.
Full textBORELLO, MARTINO. "Automorphism groups of self-dual binary linear codes with a particular regard to the extremal case of length 72." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49887.
Full textSu, Wen-Ku, and 蘇文谷. "CONSTRUCT EXTREMAL SELF-DUAL CODES FROM NON-EXTREMAL SELF-DUAL CODES." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/aujcym.
Full text東吳大學
數學系
93
1.We constructed 17 extremal self-dual [66,33,12] codes with weight enumerator W1(y) and 19 extremal self-dual [66,33,12] codes with weight enumerator W3(y). 2.We constructed 27 extremal self-dual [68,34,12] codes with weight enumerator W1(y) and 64 extremal self-dual [68,34,12] codes with weight enumerator W2(y).
Shih, Ming-Chih, and 施明志. "INEQUIVALENT CODES OF EXTREMAL SELF-DUAL CODES." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/07398386185225200279.
Full textHSU, HAO-CHUNG, and 徐浩鐘. "EXTREMAL SELF-DUAL CODES OF LENGTH 68." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/99390085693207554696.
Full textWu, Ren-Yih, and 吳仁義. "Extremal Self-Dual Codes of Length 66." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/56088992181448892067.
Full text東吳大學
數學系
91
In Dougherty, Gulliver, and Harada [2] there are three possibilities for the weight enumerators of extremal self-dual [66,33,12] codes. Where β is an undetermined parameter. The code D16 constructed in Conway and Sloane [1] with β=0 in w1 . Also β=0 and β=66 were constructed in [3]. Two extremal self-dual [66,33,12] codes with weight enumerator w2 were constructed in Tsai [5]. A general method of construction of self-dual codes from a known [N,K,D] self-dual code with K is even has constructed by Harada [5]. We extend this method on K is odd and apply in K is odd.Apply those properties to find the self-dual code of length 66, we got new extremal self-dual [66,33,12] code with β=32 for w1 and at least 50 inequivalent extremal self-dual [66,33,12] codes with .At length 50, we got 3 inequivalent extremal self-dual [50,25,10] codes.
Jiang, Yih-Jaw, and 姜義照. "Extremal Self-Dual Codes of Length 58." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/78252984777614434121.
Full text東吳大學
數學系
85
The main purpose of this thesis is to obtain the following extremal self-dual codes of length 58 with weight enumerator W=1+(319-24β-2γ)y^10+(3132+152β+2γ)y^12+(36540-680β+18γ) y^14 +(299541+1832β-18γ)y^16+... .where (β=0,γ=88),(β=0, γ=90),(β=0,γ=92),(β=0,γ=102),(β=0,γ=104),(β=0,γ=106),( β=0,γ=108),(β=0,γ=110),(β=0,γ=112),(β=0,γ=114),(β=0, γ=116),(β=0,γ=118),(β=0,γ=120),(β=0,γ=122),(β=0, γ=124),(β=2,γ=62),(β=2,γ=64),(β=2,γ=68),(β=2,γ=70),( β=2,γ=72),(β=2,γ=74),(β=2,γ=76),(β=2,γ=78),(β=2, γ=80),(β=2,γ=82),(β=2,γ=84),(β=2,γ=86),(β=2,γ=88).
Shih, Pei-Yu, and 施沛渝. "Extremal self-dual codes of lengh 60." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/98450279682727582732.
Full textOuyang, Jung-Yan, and 歐陽中彥. "On the Classification of Binary Extremal Self-dual Codes." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/26168086921462710845.
Full text國立成功大學
數學系應用數學碩博士班
92
The object of this study is mainly discuss the binary extremal self-dual codes. For Type I codes, we are going to investigate the weight enumerators and relative data from length 2 to length 100. For Type II codes, we investigate those from length 8 to length 96.
Hsu, Mu-Hsin, and 許睦鑫. "Extremal Self-Dual Codes of Lengths 54, 64, 66 and 68." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/35552907472067873200.
Full textBook chapters on the topic "Extremal self-dual codes"
Kim, Jon-Lark. "Computer Based Reconstruction of Binary Extremal Self-dual Codes of Length 32." In Mathematical Software – ICMS 2014, 115–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44199-2_20.
Full textCamion, P., B. Courteau, and A. Monpetit. "Coset Weight Enumerators of the Extremal Self-Dual Binary Codes of Length 32." In Eurocode ’92, 17–29. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-2786-5_2.
Full textTonchev, Vladimir D. "Symmetric Designs without Ovals and Extremal Self-Dual Codes." In Combinatorics ′86, Proceedings of the International Conference on Incidence Geometries and Com binatorial Structures, 451–57. Elsevier, 1988. http://dx.doi.org/10.1016/s0167-5060(08)70268-1.
Full textBanek, Tadeusz, and Edward Kozlowski. "Active Learning in Discrete-Time Stochastic Systems." In Knowledge-Based Intelligent System Advancements, 350–71. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61692-811-7.ch016.
Full textConference papers on the topic "Extremal self-dual codes"
Yorgova, Radinka. "Binary self-dual extremal codes of length 92." In 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.262034.
Full textYorgova, Radinka, and Nuray At. "On extremal binary doubly-even self-dual codes of length 88." In 2008 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2008. http://dx.doi.org/10.1109/isita.2008.4895444.
Full text