Academic literature on the topic 'Extracellular polymeric saccharides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Extracellular polymeric saccharides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Extracellular polymeric saccharides"

1

Samsonov, Sergey A., Stephan Theisgen, Thomas Riemer, Daniel Huster, and M. Teresa Pisabarro. "Glycosaminoglycan Monosaccharide Blocks Analysis by Quantum Mechanics, Molecular Dynamics, and Nuclear Magnetic Resonance." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/808071.

Full text
Abstract:
Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, andωdihedral angle. The net sulfation of the monosaccharides was found to be correlated with the1H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. Theωdihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment.
APA, Harvard, Vancouver, ISO, and other styles
2

Leriche, V., P. Sibille, and B. Carpentier. "Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms." Applied and Environmental Microbiology 66, no. 5 (May 1, 2000): 1851–56. http://dx.doi.org/10.1128/aem.66.5.1851-1856.2000.

Full text
Abstract:
ABSTRACT An enzyme-linked lectinsorbent assay (ELLA) was developed for quantification and characterization of extracellular polysaccharides produced by 1- and 4-day biofilms of 10 bacterial strains isolated from food industry premises. Peroxidase-labeled concanavalin A (ConA) and wheat germ agglutinin (WGA) were used, as they specifically bind to saccharide residues most frequently encountered in biofilms matrices:d-glucose or d-mannose for ConA andN-acetyl-d-glucosamine orN-acetylneuraminic acid for WGA. The ELLA applied to 1- and 4-day biofilms colonizing wells of microtiter plates was able to detect that for Stenotrophomonas maltophilia and to a lesser extent Staphylococcus sciuri, the increase in production of exopolysaccharides over time was not the same for sugars binding with ConA and those binding with WGA. Differences in extracellular polysaccharides produced were observed among strains belonging to the same species. These results demonstrate that ELLA is a useful tool not only for rapid characterization of biofilm extracellular polysaccharides but also, in studies of individual strains, for detection of changes over time in the proportion of the exopolysaccharidic component within the polymeric matrix.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Xiahui, Shouqing Cui, Jiajun Hu, Xiubing Ma, Tian-Ao Zhang, Yiu Fai Tsang, Jixiang Li, and Min-Tian Gao. "Saccharides in straw hydrolysate decrease cell membrane damage by phenolics by inducing the formation of extracellular matrix in yeast." Carbohydrate Polymers 219 (September 2019): 414–22. http://dx.doi.org/10.1016/j.carbpol.2019.05.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shamsuzzaman, Md, Ram Hari Dahal, Shukho Kim, and Jungmin Kim. "Genome insight and probiotic potential of three novel species of the genus Corynebacterium." Frontiers in Microbiology 14 (July 6, 2023). http://dx.doi.org/10.3389/fmicb.2023.1225282.

Full text
Abstract:
Three bacterial strains, B5-R-101T, TA-R-1T, and BL-R-1T, were isolated from the feces of a healthy Korean individual. Cells of these strains were Gram-stain-positive, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped, and non-motile. They were able to grow within a temperature range of 10–42°C (optimum, 32–37°C), at a pH range of 2.0–10.0 (optimum, pH 5.5–8.0), and at NaCl concentration of 0.5–10.5% (w/v). All the three strains exhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities ranging from 58 ± 1.62 to 79 ± 1.46% (% inhibition). These strains survived in lower pH (2.0) and in 0.3% bile salt concentration for 4 h. They did not show hemolytic activity and exhibited antimicrobial activity against pathogenic bacteria, such as Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Salmonella enterica. The genomic analysis presented no significant concerns regarding antibiotic resistance or virulence gene content, indicating these strains could be potential probiotic candidates. Phylogenetic analysis showed that they belonged to the genus Corynebacterium, with 98.5–99.0% 16S rRNA gene sequence similarities to other members of the genus. Their major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The abundant cellular fatty acids were C16:0, C18:1ω9c, and anteiso-C19:0. Genomic analysis of these isolates revealed the presence of genes necessary for their survival and growth in the gut environment, such as multi-subunit ATPases, stress response genes, extracellular polymeric substance biosynthesis genes, and antibacterial genes. Furthermore, the genome of each strain possessed biosynthetic gene clusters with antioxidant and antimicrobial potentials, including terpenes, saccharides, polyketides, post-translationally modified peptides (RIPPs), and non-ribosomal peptides (NRPs). In silico DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values were lower than the thresholds to distinguish novel species. Based on phenotypic, genomic, phylogenomic, and phylogenetic analysis, these potential probiotic strains represent novel species within the genus Corynebacterium, for which the names Corynebacterium intestinale sp. nov. (type strain B5-R-101T = CGMCC 1.19408T = KCTC 49761T), Corynebacterium stercoris sp. nov. (type strain TA-R-1T = CGMCC 1.60014T = KCTC 49742T), and Corynebacterium faecium sp. nov. (type strain BL-R-1T = KCTC 49735T = TBRC 17331T) are proposed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Extracellular polymeric saccharides"

1

Sukumar, Reshma. "Extra-cellular Polysaccharides and Microbially Induced Carbonate Cementation Using Indigenous Microbes in Cattle Manure." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4643.

Full text
Abstract:
Soft soils are composed of large portions of silts and clay and are characterized by low strength and high compressibility owing to their high-water content. Biocementation techniques are emerging as a strong alternative to conventional methods owing to their eco- friendliness and sustainability. Biocementation techniques bonds soil particles through biologically precipitated cementing products, such as extracellular polymeric saccharides (EPS) and microbially induced calcite precipitation (MICP). Extracellular polymeric saccharides are constituents of protective biofilms that shield microorganisms from environmental stress and are responsible for cohesion of microorganisms and adhesion of biofilms to surfaces. They are bound to surfaces by growth of fibrous bridges, filling of voids and formation of van der Waal’s, hydrogen, and ionic bonds. Existing studies have relied on extraneous polymer addition to overcome the need for microbial and nutrient injection, time for cultivation and excrement secretion and compatibility of the microbes with host mineral. A major drawback of extraneous addition is the inability of polysaccharides to penetrate the deeper layers of a porous solid owing to formation of surficial crust and/or resistance by the micro-porosity of the system. The problem of binding particles located in deeper layers can be addressed by in-situ secretion of polysaccharides in the connected voids network of a solid ensuring cementation through entire depth. Microbially induced calcite precipitation (MICP) is another preferred biocementation technique in which bacteria possessing urease enzyme hydrolyses solution of externally injected urea to produce bicarbonate ions. The anions react with calcium ions in soil to form calcium carbonate that bond soil particles and produce stabilized soil. Flushing of microbes during repeated injection resulted in uneven distribution of precipitated calcite. Further, competition with native bacteria for nutrients led to starvation and diminished population of injected microbes. These factors motivated researchers to examine indigenous microbes for calcite precipitation. An alternative to urease pathway is microbially induced denitrification that relies on anaerobes/facultatively anaerobes to oxidise organic matter using nitrate ions. The CO2 produced from anaerobic decomposition of organic matter transform to carbonates upon hydrolysis in alkaline pH environment. The focus of this thesis is to examine biocementation process such as in-situ EPS secretion and in-situ microbially induced carbonate cementation (MICC) to improve the unconfined compressive strength of synthetic soft soil using native microbes of cattle manure. The thesis has three objectives. In the first objective, the thesis explores in-situ EPS secretion to improve the unconfined compressive strength of a synthetic soft soil specimen. Small amount of cattle manure is mixed with the synthetic soil to facilitate supply of organic C and native EPS producing bacteria under anaerobic condition. The soft soil is prepared in the laboratory by mixing equal proportions of kaolinite (50%), sand (50%) and small amount of cattle manure (10% of kaolinite-sand mass). The mix is remoulded into cylindrical specimens at adequately high-water content using ultra-pure water. Sand inclusion facilitates sites for bacterial adhesion during curing of the soil under anoxic/anaerobic conditions. The environmental stress caused by restricted availability of electron acceptors (dissolved oxygen, nitrate ions) induces EPS secretion by the native microbes of cattle manure in the porous network of the synthetic soil specimen. Evidence for the growth of EPS producing bacteria and the bonding mechanisms of EPS with soil particles is obtained by performing bio-chemical analysis with slurry samples and micro-structural studies with slices obtained at mid-depth of cylindrical specimens. The unconfined compressive strength of the synthetic soil specimen increased from 19 kPa to 132 kPa after 28-days of curing. Besides van der Waals and hydrogen bonds, interfacial frictional resistance between mineral units mobilized by bridging of sand particles and embedment of cattle manure fibres in kaolinite aggregates cause immediate increase in unconfined compressive strength of the treated specimen. Frictional bonds between mineral grains/aggregates and cattle manure fibres, EPS bonds between soil aggregates and hydrogen and van der Waals bonds contributed 46, 39 and 14% to the unconfined compressive strength (132 kPa) of the treated soil specimen. The stress-strain characteristics of the specimens exhibit progressive failure which is attributed to the ductility of the bridge-forming fibres and the viscoelastic nature of EPS deposited in soil pores and on particle surfaces. In the second objective, the thesis explores microbially induced calcium carbonate precipitation (MICC) in the synthetic soft soil specimen using the anaerobic denitrification pathway by native microbes. Cattle manure is again used as organic C and native denitrifying bacteria source in the soft soil specimen. Required amount of calcium nitrate salt is extraneously added to the soil to provide nitrate source (electron acceptors) for metabolism of denitrifying bacteria, while Ca2+ ions participate in calcium carbonate precipitation. Small amount of magnesium oxide (MgO) is added to counter the reduction in pH caused by volatile fatty acids (VFAs) produced during microbial degradation of cattle manure. The presence of cattle manure also facilitates EPS cementation in the soft soil specimen. The unconfined compressive strength of the soil specimen increased from 19 kPa to 169 kPa after 28-days of curing. Hydrogen and van der Waals bonds, frictional bonds between sand grains/kaolinite aggregates and cattle manure fibres, and EPS + MICC bonds contribute 13, 40 and 47% to the unconfined compressive strength (169 kPa) of the treated soil. Presence of microbially induced carbonate cementation between aggregate contacts, tend to impart brittle behaviour and greater rigidity to the stress-strain characteristics of the treated soil specimens. In the third objective, the thesis explores combining pozzolanic reactions with microbially induced carbonate cementation (MICC) to improve the unconfined compressive strength of the synthetic soft soil. Cattle manure is used as source of native microbes and organic matter reservoir for growth and sustenance of microbes contained in cattle manure. It also provides calcium (Ca2+) and magnesium (Mg2+) ions necessary for carbonate precipitation and pozzolanic reactions. Carbon dioxide (gas) is formed as by-product of degradation of cattle manure particles by facultative anaerobes. Dissolution of evolved carbon dioxide (gas) provides the alkalinity for mineral precipitate formation. Volatile fatty acids (VFAs) produced during microbial degradation of cattle manure are neutralized by addition of varying (0.5 to 10%) amounts of magnesium oxide (MgO). Pozzolanic reactions are facilitated by strong alkaline pH from MgO presence. Bridging of soil aggregates by CM fibers and short-term reactions contribute to immediate gain in strength of treated specimens. At MgO contents ≥ 3.5%, deposition of carbonate precipitates and pozzolanic reaction products at aggregate contacts over-ride the ductile nature of CM fibers and impart brittle stress-strain behavior. The gain in strength from interfacial resistance mobilised by CM fibres bridges, short-term modification reactions, pozzolanic reactions and MICC cementation transform the very soft soil (UCS < 25 kPa) to hard (UCS > 383 kPa) soils. At lower MgO contents (0.5 and 3.5%) pozzolanic reactions and MICC modes near equally (48 and 52%) contribute to compression strength of the specimens. At higher MgO contents (5 and 10%), pozzolanic reactions are dominant (60 and 71%) contributors as the slightly more alkaline pH of these specimens may have suppressed microbial activity. Based on the classification of compression strengths, EPS bonding transforms very soft kaolinite to stiff kaolinite (UCS range 96-192 kPa). EPS plus MICC bonding also transforms the very soft specimen to stiff specimen. Finally, MICC plus pozzolanic reactions transform the very soft soil to hard specimens (UCS range > 383 kPa).
APA, Harvard, Vancouver, ISO, and other styles
2

Zethof, Jeroen H. T. "The role of extracellular polymeric substances from microbes in soil aggregate stabilization in semiarid grasslands." 2003. https://tud.qucosa.de/id/qucosa%3A75438.

Full text
Abstract:
Soil structural stability plays a pivotal role in landscape preservation when a protective vegetation cover is lacking. For example, under semiarid climates seasonal rainfall cannot sustain a full vegetation cover, but still causes soil erosion. With the loss of (fertile) soil material, ecosystem productivity reduces and less C can be stored. In natural semiarid systems, soil erosion is a spatially heterogeneous process, whereby local highly erodible spots are alternated by improved soil structure under the sparse canopy cover, creating a very heterogeneous landscape. Although the physical protection by the plant canopy is well understood, the potential influence of soil archaea and bacteria on soil structural stability in relation to plants and parent material is less well known. Mainly from studies under controlled conditions, we know that certain archaeal and bacterial species have the ability to produce extracellular polymeric substances (EPS), forming an extracellular matrix. As the formed matrix connects soil particles, EPS seem to have the potential of playing a substantial role in soil aggregation, thereby controlling soil erodibility. Little is known of this gluing process by EPS and its importance under natural conditions as most evidence is derived from controlled conditions in the laboratory. This dissertation aims to unravel the role of EPS from soil archaea and bacteria in soil aggregate stabilization in semiarid grasslands by considering the potential role of plant species and parent material in this process. The sparse vegetation in semiarid grasslands provide a useful gradient in soil organic C contents to study these processes. Improved conditions for soil microbes producing EPS can be found at the root surface, while the bare canopy interspaces lack in C/resources. Two sites were selected in southeast Spain, mainly differing in graphitic C, inorganic C and nitrogen contents. On both sites, soil adjacent to the widely occurring Anthyllis cytisoides legumes shrubs and Macrochloa tenacissima grass tussocks were sampled during two campaigns. The first sampling campaign in April 2017 focused on the top soil, whereby a distance gradient from the plant stem to the bare intercanopy area was sampled. The second sampling campaign in April 2018 focused more on the effect of plant roots on soil archaeal and bacterial communities by including the rhizosphere. As the parent material of the Rambla Honda site, i.e. one of the study sites, contains a substantial amount of graphitic C, several methods were tested to quantify the different types of C in these soils to understand their role in shaping EPS contents. Furthermore, the quantification of graphitic C contents opened the possibility to study a potential interaction between graphite minerals and microbes. Although graphitic C contents explained part of the variances in microbial community, no direct link with EPS-saccharide contents was found. EPS contents were relative high in the rhizosphere, most notable at the legumes shrub Anthyllis cytisoides, and were linked to the enrichment of N-fixing bacteria. However, outside the root influenced soil, EPS contents were still substantially high, whereby the abundance of microbial species, previously associated to biofilm formation in other environments, indicated that EPS synthesis is not only restricted to the rhizosphere. Soil aggregation was linked to EPS-saccharide contents, whereby two mechanisms were hypothesized. Firstly, the strong link between soil wettability and EPS-saccharide content in the soil of the carbonate poor Rambla Honda site, indicated that aggregates become stabilized by hydrophobic bonds created by the EPS. Secondly, results from the carbonate rich Alboloduy site indicates that EPS has a facilitating role in creating stable aggregates by precipitating carbonates on the EPS structure. This likely lead to a higher soil structural stability, as carbonate bindings are more stable when prolonged drought reduces soil biological activity and thereby EPS contents. Overall, EPS play a substantial role in soil aggregate stabilization in semiarid grasslands, whereby EPS contents were increased by legume plants, by means of enriching EPS producing bacteria.
Die Stabilität der Bodenstruktur spielt eine entscheidende Rolle in der Erhaltung der Landschaft, insbesondere wenn keine schützende Vegetationsbedeckung vorhanden ist. So ist beispielsweise unter semiariden Klimabedingungen wegen der Saisonalität der Niederschläge keine vollständige Vegetationsbedeckung vorhanden, was Bodenerosion verursacht. Durch den Verlust von (fruchtbarem) Bodenmaterial verringert sich die Produktivität des Ökosystems. Dadurch kann weniger Kohlenstoff (C) im Boden gespeichert werden. In natürlichen semiariden Systemen ist die Bodenerosion ein räumlich heterogener Prozess, bei dem sich stark erosionsanfällige Stellen mit solchen Bereichen abwechseln, welche durch günstige Bodenstruktur unter der spärlichen Pflanzendecke gekennzeichnet sind. Hierdurch entsteht eine sehr heterogene Landschaft. Während zum physikalischen Schutz durch Vegetationsüberschirmung viele Erkenntnisse vorliegen, ist über den möglichen Einfluss von Archaeen und Bakterien auf die strukturelle Stabilität des Bodens in Bezug auf Pflanzen und Ausgangsmaterial weit weniger bekannt. Hauptsächlich aus Studien unter kontrollierten Bedingungen wissen wir, dass bestimmte Archaen- und Bakterienarten die Fähigkeit besitzen, extrazelluläre polymere Substanzen (EPS) zu produzieren, die eine extrazelluläre Matrix bilden. Da die gebildete Matrix Bodenpartikel verbindet, scheint EPS das Potenzial für eine maßgebliche Beeinflussung der Bodenaggregation zu haben und dadurch die Erosionsanfälligkeit zu steuern. Über solche Klebemechanismen von EPS und deren Bedeutung unter natürlichen Bedingungen ist aber wenig bekannt; die meisten Hinweise stammen aus kontrollierten Bedingungen im Labor. Diese Dissertation zielt darauf ab, die Bedeutung von EPS von Archaeen und Bakterien hinsichtlich der Stabilisierung von Bodenaggregaten in semiariden Graslandschaften unter Berücksichtigung der möglichen Rolle von Pflanzenarten und Ausgangsmaterial in diesem Prozess aufzuklären. Zur Untersuchung solcher Prozesse bietet die spärliche Vegetation in semiariden Graslandschaften einen zweckdienlichen Gradienten bezüglich des Gehalt an organischem C im Boden. Günstige Bedingungen für EPS-produzierende Bodenmikroorganiosmen sind an der Wurzeloberfläche zu finden, während dem unbedeckten Boden zwischen Stellen ohne Pflanzenbedeckung C / Ressourcen fehlen. Es wurden zwei Standorte in Südostspanien ausgewählt, die sich hauptsächlich in den Gehalten an graphitischem C, anorganischem C und Stickstoff unterscheiden. An beiden Standorten wurden im Rahmen von zwei Feldkampagnen Böden in unmittelbarer Nähe zu der weit verbreiteten Leguminosenart Anthyllis cytisoides-Hülsenfrüchten und Grasbüscheln von Macrochloa tenacissima beprobt. Die erste Probenahmekampagne im April 2017 konzentrierte sich auf den obersten Boden, wobei ein Abstandsgradient vom Pflanzenspross zum unbedeckten Boden zwischen der Pflanzendecke beprobt wurde. Die zweite Probenahmekampagne im April 2018 konzentrierte sich mehr auf die Wirkung von Pflanzenwurzeln auf Archaeen- und Bakteriengemeinschaften durch Beprobung der Rhizosphäre. Am Rambla Honda-Standort enthält das Ausgangsmaterial eine erhebliche Menge an graphitischem C. Deshalb wurden verschiedene Methoden getestet, um die verschiedenen Arten von C in diesen Böden zu quantifizieren und ihre Rolle bei der Gestaltung des EPS-Gehalts zu verstehen. Darüber hinaus eröffnete die Quantifizierung des graphitischen C-Gehalts die Möglichkeit, die Wechselwirkung zwischen Graphitmineralen und Mikroorganismen zu untersuchen. Obwohl der Gehalt an graphitischem C einen Teil der Varianzen in der mikrobiellen Gemeinschaft erklärte, wurde kein direkter Zusammenhang mit dem EPS-Saccharidgehalt gefunden. Die EPS-Gehalte waren in der Rhizosphäre relativ hoch - am deutlichsten bei der Leguminosenart Anthyllis cytisoides - und mit der Anreicherung von N-fixierenden Bakterien verbunden. Außerhalb des von der Wurzel beeinflussten Bodens war der EPS-Gehalt jedoch immer noch deutlich erhöht. Dabei wies die Häufigkeit von Mikroorganismenarten, die zuvor mit der Bildung von Biofilmen in anderen Umgebungen in Verbindung gebracht wurden, darauf hin, dass die EPS-Synthese nicht nur auf die Rhizosphäre beschränkt ist. Die Bodenaggregation zeigte eine Verbindung mit dem EPS-Saccharidgehalt auf, wobei zwei Mechanismen angenommen wurden: Erstens wies der starke Zusammenhang zwischen der Bodenbenetzbarkeit und dem EPS-Saccharidgehalt im Boden des karbonatarmen Rambla Honda-Standorts auf eine Aggregatstabilisierung durch EPS-erzeugte hydrophobe Bindungen hin. Zweitens zeigen die Ergebnisse des Standorts Alboloduy-Standorts mit karbonatreichem Boden, dass EPS eine unterstützende Funktion bei der Erzeugung stabiler Aggregate besitzt, indem Karbonate auf der EPS-Struktur ausgefällt werden. Dies führt wahrscheinlich zu einer höheren Stabilität der Bodenstruktur, da Karbonatbindungen stabiler sind, wenn eine längere Trockenheit zu einer Verringerung der biologischen Aktivität im Boden und damit des EPS-Gehalts führt. Insgesamt spielt EPS eine wesentliche Rolle bei der Stabilisierung von Bodenaggregaten in semiariden Graslandschaften, wobei der EPS-Gehalt durch Leguminsosen, mittels Anreicherung von EPS-produzierenden Bakterien, erhöht wurde.
APA, Harvard, Vancouver, ISO, and other styles
3

Zethof, Jeroen Hendricus Theodoor. "The role of extracellular polymeric substances from microbes in soil aggregate stabilization in semiarid grasslands." 2021. https://tud.qucosa.de/id/qucosa%3A75438.

Full text
Abstract:
Soil structural stability plays a pivotal role in landscape preservation when a protective vegetation cover is lacking. For example, under semiarid climates seasonal rainfall cannot sustain a full vegetation cover, but still causes soil erosion. With the loss of (fertile) soil material, ecosystem productivity reduces and less C can be stored. In natural semiarid systems, soil erosion is a spatially heterogeneous process, whereby local highly erodible spots are alternated by improved soil structure under the sparse canopy cover, creating a very heterogeneous landscape. Although the physical protection by the plant canopy is well understood, the potential influence of soil archaea and bacteria on soil structural stability in relation to plants and parent material is less well known. Mainly from studies under controlled conditions, we know that certain archaeal and bacterial species have the ability to produce extracellular polymeric substances (EPS), forming an extracellular matrix. As the formed matrix connects soil particles, EPS seem to have the potential of playing a substantial role in soil aggregation, thereby controlling soil erodibility. Little is known of this gluing process by EPS and its importance under natural conditions as most evidence is derived from controlled conditions in the laboratory. This dissertation aims to unravel the role of EPS from soil archaea and bacteria in soil aggregate stabilization in semiarid grasslands by considering the potential role of plant species and parent material in this process. The sparse vegetation in semiarid grasslands provide a useful gradient in soil organic C contents to study these processes. Improved conditions for soil microbes producing EPS can be found at the root surface, while the bare canopy interspaces lack in C/resources. Two sites were selected in southeast Spain, mainly differing in graphitic C, inorganic C and nitrogen contents. On both sites, soil adjacent to the widely occurring Anthyllis cytisoides legumes shrubs and Macrochloa tenacissima grass tussocks were sampled during two campaigns. The first sampling campaign in April 2017 focused on the top soil, whereby a distance gradient from the plant stem to the bare intercanopy area was sampled. The second sampling campaign in April 2018 focused more on the effect of plant roots on soil archaeal and bacterial communities by including the rhizosphere. As the parent material of the Rambla Honda site, i.e. one of the study sites, contains a substantial amount of graphitic C, several methods were tested to quantify the different types of C in these soils to understand their role in shaping EPS contents. Furthermore, the quantification of graphitic C contents opened the possibility to study a potential interaction between graphite minerals and microbes. Although graphitic C contents explained part of the variances in microbial community, no direct link with EPS-saccharide contents was found. EPS contents were relative high in the rhizosphere, most notable at the legumes shrub Anthyllis cytisoides, and were linked to the enrichment of N-fixing bacteria. However, outside the root influenced soil, EPS contents were still substantially high, whereby the abundance of microbial species, previously associated to biofilm formation in other environments, indicated that EPS synthesis is not only restricted to the rhizosphere. Soil aggregation was linked to EPS-saccharide contents, whereby two mechanisms were hypothesized. Firstly, the strong link between soil wettability and EPS-saccharide content in the soil of the carbonate poor Rambla Honda site, indicated that aggregates become stabilized by hydrophobic bonds created by the EPS. Secondly, results from the carbonate rich Alboloduy site indicates that EPS has a facilitating role in creating stable aggregates by precipitating carbonates on the EPS structure. This likely lead to a higher soil structural stability, as carbonate bindings are more stable when prolonged drought reduces soil biological activity and thereby EPS contents. Overall, EPS play a substantial role in soil aggregate stabilization in semiarid grasslands, whereby EPS contents were increased by legume plants, by means of enriching EPS producing bacteria.
Die Stabilität der Bodenstruktur spielt eine entscheidende Rolle in der Erhaltung der Landschaft, insbesondere wenn keine schützende Vegetationsbedeckung vorhanden ist. So ist beispielsweise unter semiariden Klimabedingungen wegen der Saisonalität der Niederschläge keine vollständige Vegetationsbedeckung vorhanden, was Bodenerosion verursacht. Durch den Verlust von (fruchtbarem) Bodenmaterial verringert sich die Produktivität des Ökosystems. Dadurch kann weniger Kohlenstoff (C) im Boden gespeichert werden. In natürlichen semiariden Systemen ist die Bodenerosion ein räumlich heterogener Prozess, bei dem sich stark erosionsanfällige Stellen mit solchen Bereichen abwechseln, welche durch günstige Bodenstruktur unter der spärlichen Pflanzendecke gekennzeichnet sind. Hierdurch entsteht eine sehr heterogene Landschaft. Während zum physikalischen Schutz durch Vegetationsüberschirmung viele Erkenntnisse vorliegen, ist über den möglichen Einfluss von Archaeen und Bakterien auf die strukturelle Stabilität des Bodens in Bezug auf Pflanzen und Ausgangsmaterial weit weniger bekannt. Hauptsächlich aus Studien unter kontrollierten Bedingungen wissen wir, dass bestimmte Archaen- und Bakterienarten die Fähigkeit besitzen, extrazelluläre polymere Substanzen (EPS) zu produzieren, die eine extrazelluläre Matrix bilden. Da die gebildete Matrix Bodenpartikel verbindet, scheint EPS das Potenzial für eine maßgebliche Beeinflussung der Bodenaggregation zu haben und dadurch die Erosionsanfälligkeit zu steuern. Über solche Klebemechanismen von EPS und deren Bedeutung unter natürlichen Bedingungen ist aber wenig bekannt; die meisten Hinweise stammen aus kontrollierten Bedingungen im Labor. Diese Dissertation zielt darauf ab, die Bedeutung von EPS von Archaeen und Bakterien hinsichtlich der Stabilisierung von Bodenaggregaten in semiariden Graslandschaften unter Berücksichtigung der möglichen Rolle von Pflanzenarten und Ausgangsmaterial in diesem Prozess aufzuklären. Zur Untersuchung solcher Prozesse bietet die spärliche Vegetation in semiariden Graslandschaften einen zweckdienlichen Gradienten bezüglich des Gehalt an organischem C im Boden. Günstige Bedingungen für EPS-produzierende Bodenmikroorganiosmen sind an der Wurzeloberfläche zu finden, während dem unbedeckten Boden zwischen Stellen ohne Pflanzenbedeckung C / Ressourcen fehlen. Es wurden zwei Standorte in Südostspanien ausgewählt, die sich hauptsächlich in den Gehalten an graphitischem C, anorganischem C und Stickstoff unterscheiden. An beiden Standorten wurden im Rahmen von zwei Feldkampagnen Böden in unmittelbarer Nähe zu der weit verbreiteten Leguminosenart Anthyllis cytisoides-Hülsenfrüchten und Grasbüscheln von Macrochloa tenacissima beprobt. Die erste Probenahmekampagne im April 2017 konzentrierte sich auf den obersten Boden, wobei ein Abstandsgradient vom Pflanzenspross zum unbedeckten Boden zwischen der Pflanzendecke beprobt wurde. Die zweite Probenahmekampagne im April 2018 konzentrierte sich mehr auf die Wirkung von Pflanzenwurzeln auf Archaeen- und Bakteriengemeinschaften durch Beprobung der Rhizosphäre. Am Rambla Honda-Standort enthält das Ausgangsmaterial eine erhebliche Menge an graphitischem C. Deshalb wurden verschiedene Methoden getestet, um die verschiedenen Arten von C in diesen Böden zu quantifizieren und ihre Rolle bei der Gestaltung des EPS-Gehalts zu verstehen. Darüber hinaus eröffnete die Quantifizierung des graphitischen C-Gehalts die Möglichkeit, die Wechselwirkung zwischen Graphitmineralen und Mikroorganismen zu untersuchen. Obwohl der Gehalt an graphitischem C einen Teil der Varianzen in der mikrobiellen Gemeinschaft erklärte, wurde kein direkter Zusammenhang mit dem EPS-Saccharidgehalt gefunden. Die EPS-Gehalte waren in der Rhizosphäre relativ hoch - am deutlichsten bei der Leguminosenart Anthyllis cytisoides - und mit der Anreicherung von N-fixierenden Bakterien verbunden. Außerhalb des von der Wurzel beeinflussten Bodens war der EPS-Gehalt jedoch immer noch deutlich erhöht. Dabei wies die Häufigkeit von Mikroorganismenarten, die zuvor mit der Bildung von Biofilmen in anderen Umgebungen in Verbindung gebracht wurden, darauf hin, dass die EPS-Synthese nicht nur auf die Rhizosphäre beschränkt ist. Die Bodenaggregation zeigte eine Verbindung mit dem EPS-Saccharidgehalt auf, wobei zwei Mechanismen angenommen wurden: Erstens wies der starke Zusammenhang zwischen der Bodenbenetzbarkeit und dem EPS-Saccharidgehalt im Boden des karbonatarmen Rambla Honda-Standorts auf eine Aggregatstabilisierung durch EPS-erzeugte hydrophobe Bindungen hin. Zweitens zeigen die Ergebnisse des Standorts Alboloduy-Standorts mit karbonatreichem Boden, dass EPS eine unterstützende Funktion bei der Erzeugung stabiler Aggregate besitzt, indem Karbonate auf der EPS-Struktur ausgefällt werden. Dies führt wahrscheinlich zu einer höheren Stabilität der Bodenstruktur, da Karbonatbindungen stabiler sind, wenn eine längere Trockenheit zu einer Verringerung der biologischen Aktivität im Boden und damit des EPS-Gehalts führt. Insgesamt spielt EPS eine wesentliche Rolle bei der Stabilisierung von Bodenaggregaten in semiariden Graslandschaften, wobei der EPS-Gehalt durch Leguminsosen, mittels Anreicherung von EPS-produzierenden Bakterien, erhöht wurde.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography