Journal articles on the topic 'Extra large pore'

To see the other types of publications on this topic, follow the link: Extra large pore.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Extra large pore.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kang, Jong Hun, Dan Xie, Stacey I. Zones, and Mark E. Davis. "Transformation of Extra-Large Pore Germanosilicate CIT-13 Molecular Sieve into Extra-Large Pore CIT-5 Molecular Sieve." Chemistry of Materials 31, no. 23 (November 6, 2019): 9777–87. http://dx.doi.org/10.1021/acs.chemmater.9b03675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhaumik, Asim, Sujit Samanta, and Nawal Kishor Mal. "Highly active disordered extra large pore titanium silicate." Microporous and Mesoporous Materials 68, no. 1-3 (March 2004): 29–35. http://dx.doi.org/10.1016/j.micromeso.2003.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shamzhy, Mariya V., Oleksiy V. Shvets, Maksym V. Opanasenko, Pavel S. Yaremov, Liana G. Sarkisyan, Pavla Chlubná, Arnošt Zukal, V. Reddy Marthala, Martin Hartmann, and Jiří Čejka. "Synthesis of isomorphously substituted extra-large pore UTL zeolites." Journal of Materials Chemistry 22, no. 31 (2012): 15793. http://dx.doi.org/10.1039/c2jm31725g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarkar, Krishanu, Subhash Chandra Laha, and Asim Bhaumik. "A new extra large pore organic–inorganic hybrid silicoaluminophosphate." J. Mater. Chem. 16, no. 25 (2006): 2439–44. http://dx.doi.org/10.1039/b600989a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lobo, Raul F., Michael Tsapatsis, Clemens C. Freyhardt, Shervin Khodabandeh, Paul Wagner, Cong-Yan Chen, Kenneth J. Balkus, Stacey I. Zones, and Mark E. Davis. "Characterization of the Extra-Large-Pore Zeolite UTD-1." Journal of the American Chemical Society 119, no. 36 (September 1997): 8474–84. http://dx.doi.org/10.1021/ja9708528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davis, Mark E. "The Quest For Extra-Large Pore, Crystalline Molecular Sieves." Chemistry - A European Journal 3, no. 11 (November 1997): 1745–50. http://dx.doi.org/10.1002/chem.19970031104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yichen, Hongjuan Wang, Yuanchao Shao, Tianduo Li, Takashi Tatsumi, and Jin-Gui Wang. "Direct Synthesis of Ti-Containing CFI-Type Extra-Large-Pore Zeolites in the Presence of Fluorides." Catalysts 9, no. 3 (March 14, 2019): 257. http://dx.doi.org/10.3390/catal9030257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ti-containing zeolites showed extremely high activity and selectivity in numerous friendly environmental oxidation reactions with hydrogen peroxide as a green oxidant. It will be in high demand to synthesize Ti-containing crystalline extra-large-pore zeolites due to the severe restrictions of medium-pore and/or large-pore zeolites for bulky reactant oxidations. However, the direct synthesis of extra-large-pore Ti-zeolites was still challengeable. Here, we firstly report a strategy to directly synthesize high-performance Ti-containing CFI-type extra-large-pore (Ti-CFI) zeolites assisted with fluorides. The well-crystallized Ti-CFI zeolites with framework titanium species could be synthesized in the hydrofluoric acid system with seed or in the ammonium fluoride system without seed, which showed higher catalytic activity for cyclohexene oxidation than that synthesized from the traditional LiOH system.
8

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk, and Mietek Jaroniec. "Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues." Chemistry of Materials 13, no. 5 (May 2001): 1726–31. http://dx.doi.org/10.1021/cm000964p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martínez-Franco, Raquel, Cecilia Paris, Manuel Moliner, and Avelino Corma. "Synthesis of highly stable metal-containing extra-large-pore molecular sieves." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2061 (February 28, 2016): 20150075. http://dx.doi.org/10.1098/rsta.2015.0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV–Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.
10

Gao, Zihao Rei, Salvador R. G. Balestra, Jian Li, and Miguel A. Camblor. "Synthesis of Extra‐Large Pore, Large Pore and Medium Pore Zeolites Using a Small Imidazolium Cation as the Organic Structure‐Directing Agent." Chemistry – A European Journal 27, no. 72 (November 17, 2021): 18109–17. http://dx.doi.org/10.1002/chem.202103288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Ting, Cheng Chen, Furong Guo, Jing Li, Hongmei Zeng, and Zhien Lin. "Extra-large-pore metal sulfate-oxalates with diamondoid and zeolitic frameworks." Inorganic Chemistry Communications 93 (July 2018): 33–36. http://dx.doi.org/10.1016/j.inoche.2018.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Prasad, S., and Tran Chin Yang. "Iron-incorporation in extra-large pore molecular sieve in acid medium." Catalysis Letters 28, no. 2-4 (1994): 269–75. http://dx.doi.org/10.1007/bf00806056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Burton, Allen, Saleh Elomari, Cong-Yan Chen, Ronald C. Medrud, Ignatius Y. Chan, Lucy M. Bull, Charles Kibby, Thomas V. Harris, Stacey I. Zones, and E. Steven Vittoratos. "SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites." Chemistry - A European Journal 9, no. 23 (December 5, 2003): 5737–48. http://dx.doi.org/10.1002/chem.200305238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

DAVIS, M. E. "ChemInform Abstract: The Quest for Extra-Large Pore, Crystalline Molecular Sieves." ChemInform 29, no. 2 (June 24, 2010): no. http://dx.doi.org/10.1002/chin.199802260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zwijnenburg, Martijn A., Stefan T. Bromley, Jacobus C. Jansen, and Thomas Maschmeyer. "Toward Understanding Extra-Large-Pore Zeolite Energetics and Topology: A Polyhedral Approach." Chemistry of Materials 16, no. 1 (January 2004): 12–20. http://dx.doi.org/10.1021/cm034132d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bai, Risheng, Qiming Sun, Ning Wang, Yongcun Zou, Guanqi Guo, Sara Iborra, Avelino Corma, and Jihong Yu. "Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites." Chemistry of Materials 28, no. 18 (September 9, 2016): 6455–58. http://dx.doi.org/10.1021/acs.chemmater.6b03179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Přech, Jan, and Jiří Čejka. "UTL titanosilicate: An extra-large pore epoxidation catalyst with tunable textural properties." Catalysis Today 277 (November 2016): 2–8. http://dx.doi.org/10.1016/j.cattod.2015.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bjørgen, Morten, Anlaug Haukvik Grave, Saepurahman, Andrey Volynkin, Karina Mathisen, Karl Petter Lillerud, Unni Olsbye, and Stian Svelle. "Spectroscopic and catalytic characterization of extra large pore zeotype H-ITQ-33." Microporous and Mesoporous Materials 151 (March 2012): 424–33. http://dx.doi.org/10.1016/j.micromeso.2011.09.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jiang, Jiuxing, Yan Xu, Peng Cheng, Qiming Sun, Jihong Yu, Avelino Corma, and Ruren Xu. "Investigation of Extra-Large Pore Zeolite Synthesis by a High-Throughput Approach." Chemistry of Materials 23, no. 21 (November 8, 2011): 4709–15. http://dx.doi.org/10.1021/cm201221z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tontisirin, Supak, and Stefan Ernst. "Zeolite SSZ-53: An Extra-Large-Pore Zeolite with Interesting Catalytic Properties." Angewandte Chemie International Edition 46, no. 38 (September 24, 2007): 7304–6. http://dx.doi.org/10.1002/anie.200701634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Matos, Jivaldo R., Lucildes P. Mercuri, Michal Kruk, and Mietek Jaroniec. "ChemInform Abstract: Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues." ChemInform 32, no. 35 (August 28, 2001): no. http://dx.doi.org/10.1002/chin.200135256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jiang, Jiuxing, Jihong Yu, and Avelino Corma. "Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures." Angewandte Chemie International Edition 49, no. 18 (April 19, 2010): 3120–45. http://dx.doi.org/10.1002/anie.200904016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou, and Stacey I. Zones. "High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels." Angewandte Chemie International Edition 53, no. 39 (August 1, 2014): 10398–402. http://dx.doi.org/10.1002/anie.201405658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Smeets, Stef, Dan Xie, Christian Baerlocher, Lynne B. McCusker, Wei Wan, Xiaodong Zou, and Stacey I. Zones. "High-Silica Zeolite SSZ-61 with Dumbbell-Shaped Extra-Large-Pore Channels." Angewandte Chemie 126, no. 39 (August 1, 2014): 10566–70. http://dx.doi.org/10.1002/ange.201405658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Qian, Kun, Yilin Wang, Zhiqiang Liang, and Jiyang Li. "Germanosilicate zeolite ITQ-44 with extra-large 18-rings synthesized using a commercial quaternary ammonium as a structure-directing agent." RSC Advances 5, no. 78 (2015): 63209–14. http://dx.doi.org/10.1039/c5ra09942k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Jingjing, Yue-Biao Zhang, Qi Liu, Christopher A. Trickett, Enrique Gutiérrez-Puebla, M. Ángeles Monge, Hengjiang Cong, Abdulrahman Aldossary, Hexiang Deng, and Omar M. Yaghi. "Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks." Journal of the American Chemical Society 139, no. 18 (April 27, 2017): 6448–55. http://dx.doi.org/10.1021/jacs.7b02272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ronchi, Laura, Andrey Ryzhikov, Habiba Nouali, T. Jean Daou, Sébastien Albrecht, and Joël Patarin. "Extra large pore opening CFI and DON-type zeosils for mechanical energy storage." Microporous and Mesoporous Materials 255 (January 2018): 211–19. http://dx.doi.org/10.1016/j.micromeso.2017.07.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Leifeng, Zheng-Bao Yu, Hong Chen, Youqian Deng, Bao-Lin Lee, and Junliang Sun. "Disorder in Extra-Large Pore Zeolite ITQ-33 Revealed by Single Crystal XRD." Crystal Growth & Design 13, no. 10 (August 26, 2013): 4168–71. http://dx.doi.org/10.1021/cg400880a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Han, Zeyu, Qingpeng Wang, Guixian Li, Dong Ji, and Xinhong Zhao. "Simplified ionothermal synthesis of extra-large-pore aluminophosphate molecular sieve with -CLO topology." Solid State Sciences 100 (February 2020): 106118. http://dx.doi.org/10.1016/j.solidstatesciences.2020.106118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Přech, Jan, Martin Kubů, and Jiří Čejka. "Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5." Catalysis Today 227 (May 2014): 80–86. http://dx.doi.org/10.1016/j.cattod.2014.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zi, Wenwen, Xianshu Cai, Feng Jiao, and Hongbin Du. "Synthesis, Structure and Properties of an Extra‐Large‐Pore Aluminosilicate Zeolite NUD‐6." Chemistry – A European Journal 26, no. 71 (November 19, 2020): 17143–48. http://dx.doi.org/10.1002/chem.202003183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shamzhy, Mariya, Maksym Opanasenko, Patricia Concepción, and Agustín Martínez. "New trends in tailoring active sites in zeolite-based catalysts." Chemical Society Reviews 48, no. 4 (2019): 1095–149. http://dx.doi.org/10.1039/c8cs00887f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Paillaud, J. L. "Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings." Science 304, no. 5673 (May 14, 2004): 990–92. http://dx.doi.org/10.1126/science.1098242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gao, Zi-Hao, Fei-Jian Chen, Lei Xu, Lin Sun, Yan Xu, and Hong-Bin Du. "A Stable Extra-Large-Pore Zeolite with Intersecting 14- and 10-Membered-Ring Channels." Chemistry - A European Journal 22, no. 40 (August 17, 2016): 14367–72. http://dx.doi.org/10.1002/chem.201602419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Fei-Jian, Yan Xu, and Hong-Bin Du. "An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels." Angewandte Chemie International Edition 53, no. 36 (July 11, 2014): 9592–96. http://dx.doi.org/10.1002/anie.201404608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He, and Peng Wu. "Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels." Angewandte Chemie 130, no. 30 (June 28, 2018): 9659–63. http://dx.doi.org/10.1002/ange.201805535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jiang, Jiuxing, Jihong Yu, and Avelino Corma. "ChemInform Abstract: Extra-Large-Pore Zeolites: Bridging the Gap Between Micro and Mesoporous Structures." ChemInform 41, no. 31 (July 9, 2010): no. http://dx.doi.org/10.1002/chin.201031239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Fei-Jian, Yan Xu, and Hong-Bin Du. "An Extra-Large-Pore Zeolite with Intersecting 18-, 12-, and 10-Membered Ring Channels." Angewandte Chemie 126, no. 36 (July 11, 2014): 9746–50. http://dx.doi.org/10.1002/ange.201404608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Boting, Jin-Gang Jiang, Hao Xu, Haihong Wu, Mingyuan He, and Peng Wu. "Synthesis of Extra-Large-Pore Zeolite ECNU-9 with Intersecting 14*12-Ring Channels." Angewandte Chemie International Edition 57, no. 30 (June 28, 2018): 9515–19. http://dx.doi.org/10.1002/anie.201805535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gao, Zhongquan, Yunzhang Rao, Liang Shi, Run Xiang, and Zhihua Yang. "Effect of Magnesium Sulfate Solution on Pore Structure of Ionic Rare Earth Ore during Leaching Process." Minerals 13, no. 2 (February 20, 2023): 294. http://dx.doi.org/10.3390/min13020294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
During in situ leaching of ionic rare earth ore, the pore structure of the orebody changes due to the chemical replacement reaction between the leaching agent and the rare earth ore. To explore the influence of leaching agents on the pore structure of ionic rare earth ore during the leaching process, magnesium sulfate solutions with different concentrations and pH are used as leaching agents in this paper. An experimental method of indoor simulated column leaching, a Zetaprobe potential analyzer, and an NM-60 rock microstructure analyzer to measure parameters, including surface zeta potential, T2 map, and the pore structure of rare-earth ore particles, were used to analyze the influence law of magnesium sulfate solution on the pore structure of ionic rare earth ore. The result proves that pure H2O leaching has little effect on the surface Zeta potential and the internal pore structure of the ore particles. In the leaching process of magnesium sulfate solutions with different concentrations, the absolute value of Zeta potential decreases, and the internal pore structure evolves from medium, large, and extra-large to small pores. In the leaching process of magnesium sulfate solutions with different pH, the absolute value of Zeta potential decreases and then increases slightly with the end of the ion exchange reaction. The internal pore structure generally shows a decrease in the number of small and extra-large pores and an increase in the number of medium and large pores. According to the analysis, the concentration and pH of the leaching agent cause the change of thickness of the electric double layer of the fine particles in the orebody, break the balance of interaction force between soil particles, and result in the evolution of a micropore structure of orebody during leaching.
41

Veselý, Ondřej, Pavla Eliášová, Russell E. Morris, and Jiří Čejka. "Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P." Materials Advances 2, no. 12 (2021): 3862–70. http://dx.doi.org/10.1039/d1ma00212k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The germanosilicate zeolite UTL was reconstructed from the layered precursor IPC-1P using the modified Assembly–Disassembly–Organisation–Reassembly (ADOR) process. The reverse ADOR is a promising new route for synthesis of extra-large-pore zeolites.
42

Pal, Nabanita, Manidipa Paul, and Asim Bhaumik. "New Extra Large Pore Chromium Oxophenylphosphate: An Efficient Catalyst in Liquid Phase Partial Oxidation Reactions." Open Catalysis Journal 2, no. 1 (December 15, 2009): 156–62. http://dx.doi.org/10.2174/1876214x00902010156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jiang, Jiuxing, Yifeng Yun, Xiaodong Zou, Jose Luis Jorda, and Avelino Corma. "ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels." Chemical Science 6, no. 1 (2015): 480–85. http://dx.doi.org/10.1039/c4sc02577f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kang, Jong Hun, Dan Xie, Stacey I. Zones, Stef Smeets, Lynne B. McCusker, and Mark E. Davis. "Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings." Chemistry of Materials 28, no. 17 (August 30, 2016): 6250–59. http://dx.doi.org/10.1021/acs.chemmater.6b02468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Martínez-Franco, Raquel, Junliang Sun, German Sastre, Yifeng Yun, Xiaodong Zou, Manuel Moliner, and Avelino Corma. "Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2166 (June 8, 2014): 20140107. http://dx.doi.org/10.1098/rspa.2014.0107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The combination of different experimental techniques, such as solid 13 C and 1 H magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8- bis (dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.
46

Du, Jinhao, Ruting Yuan, Feng Lin, Lijun Liao, Ge Yang, Furong Tao, Yuezhi Cui, and Christine E. A. Kirschhock. "Impact of residual sodium cations in azonia-spiro templates on the formation of large and extra-large pore zeolites." Microporous and Mesoporous Materials 336 (May 2022): 111891. http://dx.doi.org/10.1016/j.micromeso.2022.111891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cano, María L., Frances L. Cozens, Hermenegildo García, Vicente Martí, and J. C. Scaiano. "Intrazeolite Photochemistry. 13. Photophysical Properties of Bulky 2,4,6-Triphenylpyrylium and Tritylium Cations within Large- and Extra-Large-Pore Zeolites." Journal of Physical Chemistry 100, no. 46 (January 1996): 18152–57. http://dx.doi.org/10.1021/jp960730m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Lei, Zhi Ping Li, and Guo Ming Liu. "Permeability Curves Characteristic Analysis of L Oilfield." Advanced Materials Research 616-618 (December 2012): 898–901. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The L oilfield Cretaceous (M-I-1), Jurassic Department (Ю-0-3) clastic pore types, including primary porosity, secondary porosity and cracks in three categories, their characteristics and the degree of development. Chalk Department of particles holes and grain dissolution porosity, an average of 53.2%, followed by argillaceous porous and contraction joints, while a small number of particles dissolved pore, showing a small amount of paste particles seam and tensile crack; Jurassic inter-granular holes and intra-granular dissolution porosity is developed, accounting for the porosity as high as 95%, while a small amount of argillaceous porous and granulizing hole and a very small amount of mold holes. L Oilfield Cretaceous and Jurassic reservoirs inter-granular pores, inter-granular dissolution pore, pore throat combination M-I-1, mainly to large - in the hole, micro-throat, Ю-0-3 large - in the hole Extra Coarse - rough throat-based thin throat, Ю-0-1, Jurassic sandstone pore structure better than the Cretaceous.
49

Xue, Yun-Shan, Dayou Shi, Haitao Zhang, Weiwei Ju, Hua Mei, and Yan Xu. "A series of color-tunable light-emitting open-framework lanthanide sulfates containing extra-large 36-membered ring channels." CrystEngComm 19, no. 40 (2017): 5989–94. http://dx.doi.org/10.1039/c7ce01319a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zi, Wen‐Wen, Zihao Gao, Jun Zhang, Bao‐Xun Zhao, Xian‐Shu Cai, Hong‐Bin Du, and Fei‐Jian Chen. "An Extra‐Large‐Pore Pure Silica Zeolite with 16×8×8‐Membered Ring Pore Channels Synthesized using an Aromatic Organic Directing Agent." Angewandte Chemie 132, no. 10 (January 28, 2020): 3976–79. http://dx.doi.org/10.1002/ange.201915232.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography