Contents
Academic literature on the topic 'Export sédimentaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Export sédimentaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Export sédimentaire"
Delmas, Magalie. "Origine des exports de sédiments fluviatiles : prise en compte de l'hétérogénéité spatiale des versants." Paris 6, 2011. http://www.theses.fr/2011PA066077.
Full textSong, Layheang. "Usage des terres, ruissellement de surface, érosion des sols : analyse multi-échelles de l'impact des plantations de teck dans un agro-écosystème montagneux tropical humide." Electronic Thesis or Diss., Toulouse 3, 2021. http://www.theses.fr/2021TOU30188.
Full textSoil erosion is yet known as one of the most concerning problems of the environment in the world. Soil erosion is particularly and increasingly driven by anthropogenic activities under the changing climate. In Lao PDR, a tropical country, soil erosion is significantly due to inappropriate land management on the sloping land. The Houay Pano, a cultivated catchment of the northern Lao PDR, is prone to soil erosion, particularly after the conversion from shifting cultivation to teak tree plantation. Land mismanagement by clearing the understory under the teak tree plantation is considered as an underlying cause of higher runoff coefficient (Rc) and soil erosion. Some mitigations such as understory and riparian vegetation are suggested for alleviating soil erosion. However, the mitigation measure of soil erosion and the effect of land use management on surface runoff (SR) and soil loss/sediment yield (Sl) on multiple scales in the teak tree plantation are not fully assessed. In this context, we hypothesize that understory and riparian grass mitigate the soil erosion in the teak tree plantation and that teak tree plantation impacts on SR and Sl driven by dominant processes (inter rill erosion, linear erosion, and deposition) on various spatial scales. Therefore, the objectives set out for this work are: (1) to assess the effect of understory management on SR and Sl in the teak tree plantation on the microplot scale; (2) to assess the ability of riparian grass buffers to mitigate SR and Sl, and to assess their water and sediment trapping efficiencies in the teak tree plantations with no understory on the hillslope scale; and (3) to assess the effect of teak tree plantation on SR and Sl on various spatial scales (microplot, hillslope including micro-catchment, and catchment scales) in a mixed land uses mountainous tropical catchment. In this study, Ban Kokngew village and Houay Pano catchment were selected as experimental study areas during the rainy season. Microplots, Gerlach traps, and weirs were used to estimate SR and Sl on each scale. We followed the TEST model developed for inter rill erosion, which requires a few parameters, to assess Sl on the microplot and upscale it to predict Sl on the hillslope and catchment scale. In a study performed in 2017 in the teak tree plantations of Ban Kokngew on the microplot scale, we showed that Rc and Sl (23%, 381 Mg·km-2, respectively) under teak tree with understory were less than those under teak tree with no understory (60% and 5455 Mg·km-2, respectively). Hence, soil erosion mitigation by keeping the understory under teak tree plantation reduces Sl by 14 times. In a study performed in 2014 in the teak tree plantations of Houay Pano on both the microplot and the hillslope scales, we showed that leaving the riparian grass buffer of at least 6 m could limit SR and Sl discharging downstream during small storms (24-hour rainfall < 54.8 mm) with the trapping efficiency up to 88%. Lastly, in a study performed in 2014 in the teak tree plantations of Houay Pano on various scales, we showed that SR and Sl were significantly higher (p-value < 0.05) in the teak-dominated micro-catchment than in the mixed-land-use micro-catchment. SR and Sl decreased from the microplot (122 - 196 mm, 275 - 1065 Mg·km-2, respectively) to the micro-catchment (24 - 188 mm, 95 - 3635 Mg·km-2, respectively) and catchment scale (33 mm, 236 Mg·km-2, respectively), except that Sl in teak tree plantation increased from the microplot (1065 Mg·km-2) to the micro-catchment scale (3635 Mg·km-2). [...]
Rolland, Benoît. "Transfert des radionucléides par voie fluviale : conséquences sur les stocks sédimentaires rhodaniens et les exports vers la Méditerranée." Aix-Marseille 3, 2006. http://www.theses.fr/2006AIX30006.
Full textThis study deals with the behaviour of trace contaminants originating from chronic liquid releases within fluvial aquatic systems. It focuses on some artificial radionuclides that were mainly released by the Marcoule nuclear fuel reprocessing plant during several years prior the end of the nineties and that are still detected in the lower Rhône River. The role of the transport dynamic during flood events on the removal of sedimentary stocks and on the radionuclides fluxes to the Mediterranean Sea is particularly considered. The contribution of such sedimentary stocks acting as a delayed source term to radionuclides fluxes as well as the residence time of these stocks are estimated. The location typologies of sediment storages in fluvial systems are also specified
Books on the topic "Export sédimentaire"
Pollution of lakes and rivers: A paleoenvironmental perspective. London: Arnold, 2002.
Find full textPollution of lakes and rivers: A paleoenvironmental perspective. 2nd ed. Malden, MA: Blackwell Pub., 2008.
Find full text