Academic literature on the topic 'Explosion Phenomenon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Explosion Phenomenon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Explosion Phenomenon"
Kimura, Satoshi, Hidehiro Hata, Tetsuyuki Hiroe, Kazuhito Fujiwara, and Hideaki Kusano. "Analysis of Explosion Combustion Phenomenon with Ammonium Nitrate." Materials Science Forum 566 (November 2007): 213–18. http://dx.doi.org/10.4028/www.scientific.net/msf.566.213.
Full textMubarok, Muhammad Arif Husni, Aditya Rio Prabowo, Teguh Muttaqie, and Nurul Muhayat. "Dynamic Structural Assessment of Blast Wall Designs on Military-Based Vehicle Using Explicit Finite Element Approach." Mathematical Problems in Engineering 2022 (September 13, 2022): 1–22. http://dx.doi.org/10.1155/2022/5883404.
Full textLi, Dong, Shijie Dai, and Hongwei Zheng. "Investigation of the explosion characteristics of ethylene-air premixed gas in flameproof enclosures by using numerical simulations." Thermal Science, no. 00 (2022): 189. http://dx.doi.org/10.2298/tsci220905189l.
Full textHirai, Eiko, Joho Tokumine, Alan Kawarai Lefor, Shinobu Ogura, and Miwako Kawamata. "Bladder Explosion during Transurethral Resection of the Prostate with Nitrous Oxide Inhalation." Case Reports in Anesthesiology 2015 (2015): 1–3. http://dx.doi.org/10.1155/2015/464562.
Full textAntonov, Dmitrii V., Roman M. Fedorenko, and Pavel A. Strizhak. "Micro-Explosion Phenomenon: Conditions and Benefits." Energies 15, no. 20 (October 18, 2022): 7670. http://dx.doi.org/10.3390/en15207670.
Full textOgunfuye, Samuel, Hayri Sezer, Furkan Kodakoglu, Hamed Farmahini Farahani, Ali S. Rangwala, and V’yacheslav Akkerman. "Dynamics of Explosions in Cylindrical Vented Enclosures: Validation of a Computational Model by Experiments." Fire 4, no. 1 (February 15, 2021): 9. http://dx.doi.org/10.3390/fire4010009.
Full textMenčík, Matej, Richard Kuracina, Zuzana Szabová, and Karol Balog. "Determination of Fire and Explosion Characteristics of Dust." TRANSACTIONS of the VŠB – Technical University of Ostrava, Safety Engineering Series 11, no. 2 (September 1, 2016): 36–42. http://dx.doi.org/10.1515/tvsbses-2016-0015.
Full textStump, Brian W. "Constraints on explosive sources with spall from near-source waveforms." Bulletin of the Seismological Society of America 75, no. 2 (April 1, 1985): 361–77. http://dx.doi.org/10.1785/bssa0750020361.
Full textXiong, Ziming, Qinghua Zhang, Hao Lu, Shaoshuai Shi, Zewei You, Yuanpu Xia, and Lin Bu. "Evaluation and identification of dynamic strain on a blast door subjected to blast loading using fibre Bragg grating sensors." International Journal of Distributed Sensor Networks 14, no. 3 (March 2018): 155014771876686. http://dx.doi.org/10.1177/1550147718766860.
Full textSun, Wen Bin, Yang Jiang, and Wei Zhong He. "An Overview on the Blast Loading and Blast Effects on the RC Structures." Applied Mechanics and Materials 94-96 (September 2011): 77–80. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.77.
Full textDissertations / Theses on the topic "Explosion Phenomenon"
Duong, Giao ky. "Formation de singularités en temps fini pour les équations aux dérivées partielles non symétriques ou non variationnelles." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD058.
Full textIn the context of this thesis, we are interested in finite time singularity formation for non symmetric or non variational partial differential equations of parabolic type. In particular, we mainly focus on the following two phenomena : blowup and quenching (touch-down) infinite time. In this thesis, we aim at studying the following equations : [....] where Ω is a C² bounded domain in ℝᶰ and λ, Ƴ are positive constants.These models are closely related to many common phenomena in nature. In particular, equation (6) is a model for Micro Electro Mechanical Systems (MEMS). In this work, we construct blowup solutions to (4) and (5) and solutions with extinction to (6). In addition to that, we describe the asymptotic behavior of these solutions around the singular point. We use in this thesis the framework of similarity variables, introduced by Giga and Kohn in CPAM 1985. We finally derive the results by using a reduction to a finite dimensional problem and a topological argument which was introduced in particular by Bressan, Bricmont and Kupiainen, and also Merle and Zaag. Clearly, our work is not a simple adaptation of the works cited above. Indeed, our models, by their proximity to applications, are outside the ideal framework considered in pioneering works. In particular, equation (4) is not scaling-invariant, whereas (5) does not admit variational structure. As for (6), the presence of the integral term (non-local term) requires us to treat this term more delicately. In fact, we have achieved our goals thanks to some new ideas. More precisely, for (5), we carry out a delicate control of the solution so that it always stays in the domain where the non linearity is defined with no ambiguity. For (6), we control the oscillation of the non-local term to keep it small enough, and this allows us to deduce its convergence
Roser, Markus. "Investigation of dust explosion phenomena in interconnected process vessels." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/11692.
Full textRoach, Matthew Douglas. "Physically based simulation of explosions." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/2409.
Full textDounia, Omar. "Numerical investigation of gas explosion phenomena in confined and obstructed channels." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20584/1/DOUNIA_Omar.pdf.
Full textSocha, Jessica. "Graph-Based Fracture Models for Rigid Body Explosions." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1105.
Full textIn contrast to fracture models that are based on physics, I propose a new approach to simulating fracture which treats fracturing the rigid body as a pre-processing step. A rigid body can be pre-fractured by treating it as graph and using one of the two proposed graph partitioning algorithms to divide the object into the desired number of pieces. By treating fracture as a pre-processing step, much less computation need be done during the simulation than models based on physics.
It is shown that the recursive breadth-first search graph partitioning algorithm produces physically realistic results for shattering windows that are consistent with observations of real broken windows. The curvature-driven spectral partitioning algorithm fractures objects into two pieces where the object is weakest, where weakest is defined by the area with largest curvature. Numerical simulations of explosions and fracture were conducted to produce data that was used by a ray tracer and volume renderer to create images which were assembled into animations.
Ilieva, Ralitsa S. "Gamma-Ray spectroscopy studies of explosive stellar phenomena." Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/845495/.
Full textRuiz, C. "Aspects of nuclear phenomena under explosive astrophysical conditions." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/11338.
Full textSemeraro, Emanuele. "Experimental investigation on hydrodynamic phenomena associated with a sudden gas expansion in a narrow channel." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066516/document.
Full textThe sharp vaporization of superheated liquid sodium is investigated. It is suspected to be at the origin of the automatic shutdown for negative reactivity, occurred in the Phénix reactor at the end of the eighties.An experimental apparatus has been designed and operated to reproduce the expansion of overpressurized air, superposed to water in a narrow vertical rectangular section channel.When expansion begins, the initial flat interface separating the two fluids becomes corrugated under the development of two-dimensional Rayleigh-Taylor instabilities. The interface area increases significantly and becomes even 50 times larger than the initial value. Since the channel is very narrow, instabilities along the channel depth do not develop.The gas expansion in a narrow channel can be divided into two main phases: Rayleigh-Taylor (linear and non-linear) and multi-structures (transition and chaotic) phases. The former is characterized by the dynamic of corrugated profile and the interface area results proportional to the amplitude of corrugation The latter is influenced by the behavior of the liquid structures dispersed in gas matrix and the interface area is mainly proportional to the number of liquid structures.The distribution of volume fraction suggests a model of channel flow consisting of three regions: the regular profile of peaks, the spike region and the structures tails. The analysis of sensibility to surface tension confirms that, with a lower surface tension, the fluids configuration is more unstable. The interface corrugations are more pronounced and more structures are produced, leading to a higher increment of the interface area
Guereca, Gloria Romera. "Explosive vaporization in microenclosures and boiling phenomena on submicron thin film strip heaters /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17032.
Full textArumugham, Achari Ajith Kumar. "Numerical simulation of fluid dynamics and transport phenomena in electrostatically charged volatile sprays." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/277387.
Full textLos electrosprays están constituidos de microgotas altamente cargadas i en movimiento bajo la acción de fuerzas electrostáticas. Las gotas se generan como resultado de la ruptura de un chorro de líquido sometido a un campo eléctrico suficientemente fuerte. Las gotas generadas por lo tanto, son transportadas bajo la influencia combinada del gradiente electrostático entre el emisor y contraplaca, la interacción con la carga de las gotas de los alrededores y la fuerza de la resistencia aerodinámica. La mayor parte de las aplicaciones de electrosprays implican la evaporación de gotitas como un aspecto fundamental para lograr el resultado deseado. Cuando un sistema de partículas de aerosol se mueve con una velocidad neta en relación con el gas circundante, las partículas ejercen una fuerza de arrastre sobre el gas que causa que el movimiento del gas. En electrosprays, este movimiento de gas es inducido por las microgotas altamente cargadas bajo la acción de fuerzas electrostáticas. Mientras que muchos modelos numéricos no han considerado el flujo de gas inducido en las simulaciones numéricas de electrosprays, la evidencia experimental muestra que la velocidad del gas modifica el comportamiento del spray a nivel local. Considerando la incidencia que puede tener en la evaporación de gotitas en electrosprays volátiles, es evidente la necesidad de una metodología general para la simulación de la dinámica de electrosprays que incluyan este aspecto. Adicionalmente, ya que el movimiento del gas también influye en el movimiento de las gotas, la formulación debe considerar que estos movimientos están completamente acoplados (es decir, acoplados en las dos direcciones). Estos modelos más completos deberían ser capaces de dilucidar la influencia del flujo de gas inducida en las variables de importancia práctica, tales como el patrón de flujo de deposición en la contraplaca, el ensanchamiento del penacho, la distribución de densidad de número de gotas, y también en la predicción de la evaporación de las gotas. En este trabajo se ha desarrollado un esquema numérico integral que acopla completamente la dinámica de gotas electrospray de Lagrange con los efectos del flujo de gas inducido, las explosiones de Coulomb, y el transporte de vapor de disolvente, así como de la carga que dejan detrás las gotas que se desvanecen en los electrosprays volátiles. Se han desarrollado códigos diferentes para simular cada fenómeno por separado y se han ejecutado secuencialmente y de manera iterativa hasta conseguir la convergencia de todas las variables. Esta metodología se ha aplicado para comparar los efectos de evaporación en tres sistemas de electrospray con disolventes de diferente volatilidad: acetona, metanol y n-heptano. Las gotas se inyectaron en los tres sistemas con una distribución de diámetros log-normal unimodal con un valor medio de 8 µm, y un coeficiente de variación de 10%. Intensas explosiones de Coulomb se han observado dentro del spray en forma de bandas diagonales (en el dominio 2D). El transporte de vapor en estos sistemas es predominantemente por convección forzada en lugar de pura difusión. La más alta concentración de vapor se observa cerca de la zona de inyección para todos los tres sistemas, concentración que decae rápidamente a partir de entonces, en sentido tanto radial como axial. En los tres casos, pocas o ninguna gota llega a la contraplaca situada 3 cm por debajo de la boquilla capilar, poniendo en evidencia la necesidad de tener en cuenta la evaporación en la simulación de estos sistemas.
Electrosprays are constituted of highly charged micro drops moving under the action of electrostatic forces. They are generated as a result of the breakup of a liquid jet subjected to a sufficiently strong electric field. The droplets hence generated are transported under the combined influence of the electrostatic gradient between the emitter and counterplate, the interaction with the spray charge and the aerodynamic drag force. Most of the electrospray applications involve droplet evaporation as a critical aspect in achieving their desired result. When a collection of aerosol particles move with a net velocity relative to the surrounding gas, it exerts a drag force on the gas which can cause the gas to flow. In electrosprays, this gas motion is induced by the highly charged micro-drops moving under the action of electrostatic forces. While many numerical models have neglected induced gas flow in the numerical simulations of electrosprays, experimental evidence shows that the gas speed can be significant locally. Also considering the importance it can have in droplet evaporation in volatile electrosprays, there is a need for a general methodology to include the induced gas flow caused by the droplets in current numerical models of electrospray dynamics. Furthermore, since the gas motion also influences the droplet motion, a formulation that can accurately describe these motions should be fully coupled (i.e., two-way coupled). Such improved models should be able to elucidate the influence of the induced gas flow on variables of practical importance such as the flux deposition pattern on the counterplate, plume spread, droplet number density distribution, and also in the prediction of droplet evaporation. We developed a comprehensive numerical scheme which fully couples the Lagrangian electrospray droplet dynamics with the effects of induced gasflow, Coulomb explosions, and the transport of solvent vapor as well as charge left over by vanishing droplets in volatile electrospray systems. Separate codes for the diverse phenomena were developed. These codes have been run sequentially and in an iterative way until convergence was attained for all variables. This methodology has been applied to compare the evaporation effects in three electrospray systems with solvents of different volatility: acetone, methanol and n-heptane. The droplets were injected into the three systems with unimodal and log-normal distributed diameters with a mean value of 8 μm, and a coefficient of variation of 10%. Regions of intense Coulomb explosion events in form of diagonal bands (in the 2D domain) within the spray are well captured. We observe that the vapor transport in these systems is predominantly by forced convection rather than diffusion. Highest vapor concentration is observed near the injection zone for all the three systems, which rapidly decays thereafter, both radially as well as axially. In all three cases, few or no droplets arrive at the counterplate located 3 cm down the capillary nozzle, highlighting the relevance of accounting for evaporation when simulating these systems.
Books on the topic "Explosion Phenomenon"
International Colloquium on Dynamics of Explosions and Reactive Systems (12th 1989 Ann Arbor, Mich.). Dynamics of detonations and explosions--explosion phenomena. Washington, DC: American Institute of Aeronautics and Astronautics, 1991.
Find full textThe detonation phenomenon. Cambridge: Cambridge University Press, 2008.
Find full textL, Kuhl A., ed. Dynamic aspects of explosion phenomena. Washington, DC: American Institute of Aeronautics and Astronautics, Inc., 1993.
Find full textM, Hasan M., and United States. National Aeronautics and Space Administration., eds. Explosive boiling at very low heat fluxes: A microgravity phenomenon. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textInternational Symposium on Explosion, Shock Wave & High-Energy Reaction Phenomena (3rd 2010 Seoul, Korea). Explosion, shock wave and high energy reaction phenomena: Selected, peer reviewed papers from International Symposium on Explosion, Shock wave & High-energy reaction Phenomena 2010 (3rd ESHP Symposium), 1-3 September 2010, Seoul National University, Seoul, Korea. Stafa-Zurich, Switzerland: Trans Tech Publications, 2011.
Find full textInternational Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (2nd 2007 Kumamoto, Japan). Explosion, shock wave and hypervelocity phenomena in materials II: Selected peer reviewed papers from the 2nd International Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (ESHP-2), 6-9 March 2007, Kumamoto, Japan. Stafa-Zurich, Switzerland: Trans Tech Publications, 2008.
Find full textRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov, and Kirill Troshin. Remote studies of combustion and explosion processes based on optoelectronic methods. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/monography_62876066a124d8.04785158.
Full textInternational Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures: Ignition and Transition to Detonation of Reactive Media under Geometrical Constraints (1998 Aachen, Germany). Proceedings of the International Workshop on Shock Wave Focusing Phenomena in Combustible Mixtures: Ignition and Transition to Detonation of Reactive Media under Geometrical Constraints, December 15-16, 1998. Aachen: Shaker, 2000.
Find full textHistory of shock waves, explosions and impact: A chronological and biographical reference. Berlin: Springer, 2009.
Find full textKrehl, Peter O. K. History of shock waves, explosions and impact: A chronological and biographical reference. Berlin: Springer, 2009.
Find full textBook chapters on the topic "Explosion Phenomenon"
Kimura, Satoshi, Hidehiro Hata, Tetsuyuki Hiroe, Kazuhito Fujiwara, and Hideaki Kusano. "Analysis of Explosion Combustion Phenomenon with Ammonium Nitrate." In Explosion, Shock Wave and Hypervelocity Phenomena, 213–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-465-0.213.
Full textWillis, David A. "Stress Generation in Laser-Material Interaction: Phase Explosion Phenomenon." In Encyclopedia of Thermal Stresses, 4599–607. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_9.
Full textKorenevskaya, Maria, Oleg Zayats, Alexander Ilyashenko, and Vladimir Muliukha. "The Phenomenon of Secondary Flow Explosion in Retrial Priority Queueing System with Randomized Push-Out Mechanism." In Lecture Notes in Computer Science, 236–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01168-0_22.
Full textLiu, Zhi Yue, and Muhamed Suceska. "Numerical Prediction on Cookoff Explosion of Explosive under Strong Confinement." In Explosion, Shock Wave and Hypervelocity Phenomena, 89–94. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-465-0.89.
Full textTakayama, Kazuyoshi. "Explosion in Gases." In Visualization of Shock Wave Phenomena, 479–517. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19451-2_8.
Full textDoschek, G. A., S. K. Antiochos, E. Antonucci, C. C. Cheng, J. L. Culhane, G. H. Fisher, C. Jordan, et al. "Chromospheric Explosions." In Energetic Phenomena on the Sun, 303–75. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2331-7_4.
Full textPeng, Xiaofeng. "Explosive Boiling." In Micro Transport Phenomena During Boiling, 233–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13454-8_9.
Full textCostanzo, Frederick A. "Underwater Explosion Phenomena and Shock Physics." In Structural Dynamics, Volume 3, 917–38. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9834-7_82.
Full textRolc, S., Vladislav Adamík, J. Buchar, and L. Severa. "Plate Response to Buried Charge Explosion." In Explosion, Shock Wave and Hypervelocity Phenomena, 83–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-465-0.83.
Full textVasilev, Eugene I., Tov Elperin, and Gabi Ben-Dor. "Reconsideration of the So-Called von Neumann Paradox in the Reflection of a Shock Wave over a Wedge." In Explosion, Shock Wave and Hypervelocity Phenomena, 1–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-465-0.1.
Full textConference papers on the topic "Explosion Phenomenon"
Jurca, Adrian Marius, Mihaela Paraian, Mirela Ancuta Radu, Mihai Catalin Popa, and Dan Gabor. "ANALYSE OF EXPLOSION CHARACTERISTICS OF WOOD DUST CLOUDS IN DEPENDENCE OF THE PARTICLE SIZE DISTRIBUTION." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/5.1/s20.002.
Full textHu, Yang, Jinyang Zheng, and Li Ma. "Dynamic Fracture and Anti-Explosion Capacity Investigation of Composite Explosion Containment Vessel." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78496.
Full textHuang, XiangXin, and GuiCheng Lu. "THE DISCOVERY OF "SLIGHT EXPLOSION" PHENOMENON AND STUDY OF ANTI-EXPLOSION ARCH IN STOKER FIRING." In Energy and Environment, 1995. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/1-56700-052-5.1000.
Full textHagos, Ftwi Y., A. Rashid A. Aziz, and Isa M. Tan. "Water-in-diesel emulsion and its micro-explosion phenomenon-review." In 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN). IEEE, 2011. http://dx.doi.org/10.1109/iccsn.2011.6014903.
Full textPan Liu, Irene Tee, Soo Sien Seah, Chi Wen Soo, Ye Chen, and Zhi Qiang Mo. "Explosion phenomenon of high resistance via during TEM sample preparation using FIB." In 2010 IEEE International Reliability Physics Symposium. IEEE, 2010. http://dx.doi.org/10.1109/irps.2010.5488816.
Full textBalagansky, I., K. Hokamoto, P. Manikandan, A. Matrosov, I. Stadnichenko, H. Miyoshi, Mark Elert, et al. "PHENOMENON OF ENERGY FOCUSING IN EXPLOSION SYSTEMS WHICH INCLUDE HIGH MODULUS ELASTIC ELEMENTS." In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295102.
Full textLiu, Zhenhui, and Ragnar Igland. "Numerical Simulation of a Subsea Pipeline Subjected to Near-Field Underwater Explosion Loads With the Coupled Eulerian-Lagrangian (CEL) Method." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-80657.
Full textKim, Seung-Huyn, Yoon-Suk Chang, and Yong-Jin Cho. "Reactor Cavity Analysis Under Steam Explosive Conditions by TNT Model." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63224.
Full textShubin, O. N., V. Z. Nechai, V. N. Nogin, D. V. Petrov, and V. A. Simonenko. "Nuclear Explosion Near Surface of Asteroids and Comets - II. General Description of the Phenomenon." In Fifth International Conference on Space. Reston, VA: American Society of Civil Engineers, 1996. http://dx.doi.org/10.1061/40177(207)11.
Full textLebedev, Michael A. "Dissymmetrization of a powerful explosion: experiment and hypothesis on possible reasons for the phenomenon." In Twenty-Third International Congress on High-Speed Photography and Photonics, edited by Valentina P. Degtyareva, Mikhail A. Monastyrski, Mikhail Y. Schelev, and Alexander V. Smirnov. SPIE, 1999. http://dx.doi.org/10.1117/12.350503.
Full textReports on the topic "Explosion Phenomenon"
Judge, K. J. Installation and use of a quantimet 720 image analyzer for particle characterization. Natural Resources Canada/CMSS/Information Management, 1989. http://dx.doi.org/10.4095/331777.
Full textRichards, Paul G., Tatyana G. Rautian, Vitaly I. Khalturin, and W. Scott Phillips. Explosion Source Phenomena Using Soviet, Test-Era, Waveform Data. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/881052.
Full textSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full textMicrobiology in the 21st Century: Where Are We and Where Are We Going? American Society for Microbiology, 2004. http://dx.doi.org/10.1128/aamcol.5sept.2003.
Full text